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1 Introduction 

1.1 Biodiversity and human health 

The loss and gain of species, genes and biological traits are part of Earth’s evolutionary 

processes, but ecosystems worldwide are now losing biodiversity at accelerating rates 

(Cardinale et al. 2012). Current species extinction rates are estimated to be a thousand times 

higher than natural background rates of extinction, and future rates are likely to be ten 

thousand times higher (De Vos et al. 2015). This loss of biodiversity is mainly caused by 

habitat loss and fragmentation, pollution, overexploitation, invasive species and climate 

change, which are all anthropogenic in nature (MEA 2005). Following the Convention on 

Biological Diversity in 1992, in which the need for conserving biological diversity was 

stressed, interest grew in understanding the impact of biodiversity loss on ecosystem 

functioning and services (Cardinale et al. 2012). Recently, research focusing on the 

ecosystem service of disease control has linked biodiversity loss with increased infectious 

disease risk (Naeem et al. 2012; Johnson et al. 2013). 

Many infectious diseases in humans are zoonotic and vector-borne i.e. the source of the 

pathogens is a non-human, vertebrate ‘host’ and the pathogens are transmitted to humans 

via the bite of an arthropod, called the ‘vector’ (Taylor et al. 2001; Jones et al. 2008). The 

vector feeds on the host and so carries the pathogen from one host to another. In order for 

the transmission cycle of the pathogen to be sustained, the vector must be able to transmit 

the pathogen to the host during feeding and the host must be susceptible to infection and 

transmit the infection to the next vector (Randolph and Craine 1995; Gubler 2009). The 

persistence of the pathogen thus depends on the contact rate between vectors and infected 

hosts and the transmission potential of the hosts. Host species often differ in their potential 

to feed and propagate vectors and to transmit pathogens to the vectors. Some species 

transmit a pathogen efficiently to vectors (‘competent’ hosts or ‘reservoirs’), and other 

rarely or not (‘dilution’ hosts) (Matuschka et al. 1992; LoGiudice et al. 2003). 
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In an effort to elucidate the relationship between biodiversity and vector-borne disease risk, 

the ‘dilution effect hypothesis’ has been formulated (Norman et al. 1999; Ostfeld and 

Keesing 2000). A dilution effect occurs when a higher diversity of host species lowers the 

disease risk of one specific pathogen by decreasing the relative abundance of competent 

hosts over dilution hosts. A lower relative abundance of competent hosts decreases the 

contact probability between the vector and the competent hosts and makes a pathogen less 

abundant and less likely to persist than in the presence of highly competent host species 

alone (Keesing et al. 2006; Ogden and Tsao 2009; Wood and Lafferty 2013). A change in 

the host community composition might also affect the relationships between host species, 

potentially influencing the behaviour of competent hosts so that contact with the vector and 

subsequent pathogen transmission becomes less likely (Ostfeld and Keesing 2000; Keesing 

et al. 2006).  

The generality of such a dilution effect, however, remains incompletely understood. The 

dilution effect relies on the assumption that environments with a low diversity of host are 

dominated by competent host species (Ostfeld and Keesing 2000; LoGiudice et al. 2003). 

Yet, adding species to a host community could also increase the disease risk, e.g. by 

increasing the amount of competent hosts relative to dilution hosts, or by increasing the 

abundance of vectors due to increased feeding opportunities (Wood and Lafferty 2013). An 

increasing amount of studies argue that the dilution effect is a local phenomenon driven by 

the transmission dynamics of the individual pathogens, vectors and host species, rather than 

by host species diversity itself (Ogden and Tsao 2009; Salkeld et al. 2013; Wood and 

Lafferty 2013).   

1.2 The public and animal health concerns of ticks and tick-borne diseases 

Ticks are major vectors of infectious disease agents to humans and domesticated animals, 

and the importance of tick-borne diseases is rising worldwide (Dantas-Torres et al. 2012; 

Hartemink and Takken 2016). Ticks constitute a diverse group of arthropods with at least 

898 recognized species. In Europe, most cases of human tick-borne disease are related to 

ixodid tick species (Acari: Ixodidae). Ixodes ricinus (Linnaeus, 1758) is a widely spread 

tick species in Europe and can transmit a variety of viruses, bacteria and parasites to humans 

and domesticated animals (Randolph 2009; Heyman et al. 2010; Medlock et al. 2013). It is 

a host generalist that ascends the vegetation to wait for a passing host (called ‘questing’) to 

consume a blood meal. It may readily bite humans, thereby occasionally transmitting 
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pathogens (Gray 1998). Contrary to this exophilic behaviour, other ixodid species are more 

endophilic: they prefer dark, humid places and are usually found in the nests of their host 

species (Gern et al. 1997). Ixodes hexagonus (Leach, 1815) is such an endophilic tick that 

feeds primarily on hedgehogs, but has been found to infest other vertebrate species as well 

(Ogden et al. 2000; Sréter et al. 2003). Despite their nest-dwelling behaviour and 

specialization on hedgehogs, I. hexagonus is known to occasionally bite humans and 

transmit pathogens (Wormser and Wormser 2016), although less frequently than I. ricinus. 

Ixodes ricinus and I. hexagonus have been reported to feed on the same hosts 

(simultaneously) and are known to transmit a variety of tick-borne pathogens (Gern et al. 

1997; Sréter et al. 2003; Skuballa et al. 2010; Skuballa et al. 2012). 

The list of pathogens transmitted by ixodid ticks is growing (Rizzoli et al. 2014). The most 

frequently reported tick-borne infection in Europe and North America is Lyme borreliosis. 

The disease caused non-specific, influenza-like symptoms and most commonly manifests 

as erythema migrans, a slowly expanding skin lesion. The infection can spread to other 

tissues and organs, causing more severe manifestations that can involve a patient’s skin, 

nervous system, joints or heart (Stanek et al. 2012). Lyme borreliosis is caused by some 

bacteria belonging to the Borrelia burgdorferi sensu lato (s.l.) species complex (Stanek et 

al. 2012). The B. burgdorferi s.l. complex (hereafter called ‘Borrelia’) consists of several 

genetically and ecologically distinct species (‘genospecies’). At least five Borrelia 

genospecies have been shown to be pathogenic to humans, namely B. burgdorferi sensu 

stricto (s.s.), B. afzelii, B. garinii, B. spielmanii and B. bavariensis (see Stanek et al. 2012 

and references therein). Each of these genospecies is generally associated with a distinct 

clinical manifestation (Coipan et al. 2016). Current knowledge is that B. afzelii is 

predominantly involved in dermal infections (erythema migrans and acrodermatitis 

chronica atrophicans), B. burgdorferi s.s. usually leads to articular manifestations, and B. 

garinii and B. bavariensis are associated with neurological disorders (Balmelli and 

Piffaretti 1995; Coipan et al. 2016). Borrelia spielmanii infection in humans is rare and has 

only been found in patients with erythema migrans (Maraspin et al. 2006). Other 

genospecies, e.g. B. valaisiana, have been rarely or not (yet) detected in patients, or are not 

considered to be important pathogens (see Stanek et al. (2012) and references therein).  

Lyme borreliosis is a disease of high medical and economic impact. The societal cost of 

tick bites and Lyme borreliosis for the Netherlands in 2010 constituted approximately €19.3 
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million, including patient cost, healthcare cost and production loss (van den Wijngaard et 

al. 2017). The geographic range of I. ricinus and Lyme borreliosis in Europe is expanding, 

also to (sub)urban areas (Rizzoli et al. 2014; Medlock and Leach 2015), hence increasing 

the potential human health risk. Over the past decade, the incidence of Lyme borreliosis 

and tick bites has been reported to increase in some European countries, but not in others 

(see Hubálek 2009 and references therein). In the Netherlands, the incidence of general 

practitioner consultations for tick bites and diagnosis of erythema migrans has continuously 

increased between 1994 and 2009, but a recent survey showed a first sign of stabilization 

of erythema migrans diagnoses and a decreased incidence for tick bite consultations 

(Hofhuis et al. 2016). The incidence of Lyme borreliosis and tick bites in Belgium, on the 

contrary, appears to have been stable for at least over a decade. Vanthomme et al. (2012) 

and Bleyenheuft et al. (2015) observed no increasing trend in tick bites or Lyme borreliosis 

cases between 2003 and 2012. In 2013 and 2014, Borrelia infection in patients appeared to 

increase, most likely due to increased awareness by the public and health practitioners. 

Afterwards, the prevalence of Borrelia infection in humans in 2015 was again comparable 

with that of before 2013 (epidemio.wiv-isp.be). 

Besides the Borrelia genospecies, other established pathogens circulate in the same ixodid 

ticks and vertebrate hosts, for example tick-borne encephalitis virus, Anaplasma 

phagocytophilum, Rickettsia helvetica, Borrelia miyamotoi and “Candidatus Neoehrlichia 

mikurensis” (Skuballa et al. 2010; Jahfari et al. 2012; Sprong et al. 2012; Wagemakers et 

al. 2015). These pathogens can cause non-characteristic, influenza-like symptoms in 

humans and are often confused with Lyme borreliosis (see Table 1.1 for more information 

on the different tick-borne micro-organisms). The infections they cause are often self-

limiting, but in immunocompromised patients, they can cause severe clinical 

manifestations (Welinder-Olsson et al. 2010; Hovius et al. 2014; Silaghi et al. 2016). In the 

framework of human health and biodiversity loss, it is therefore important to gain more 

insight into the transmission dynamics and ecology of tick-borne diseases. 
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1.2.1 Lyme borreliosis ecology 

In Western Europe, I. ricinus is the tick vector that most frequently transmits Borrelia to 

humans (Piesman and Gern 2004) although some Borrelia genospecies have also been 

detected in I. hexagonus too (Skuballa et al. 2007; Skuballa et al. 2012).  

The life cycle of I. ricinus consists of three mobile, parasitic life stages: larva, nymph and 

adult. Larvae are smaller than 1 mm and have only three pairs of legs, while nymphs and 

adults have four pairs of legs (Hillyard 1996). Nymphs are 1.2 to 1.5 mm large and are 

generally light brown. Adult males are 2.4 to 2.8 mm large and have a black shield (scutum) 

that covers their back. The female is larger than the male (3.0 to 3.6 mm) and its back is 

only partly covered by the shield, so that it appears to be lighter in colour than the male 

(Hillyard 1996). The duration of the life cycle of I. ricinus may vary between two and six 

years and depends on several abiotic and biotic variables such as temperature, humidity and 

availability of hosts, but is usually completed in three years (Gray 1998; Randolph et al. 

2002). Each life stage needs one blood meal from a vertebrate host (Fig. 1.1). Adult males 

usually do not feed but rather climb on hosts to mate with females, who feed on a host to 

be able to lay eggs (Anderson and Magnarelli 2008). An infected host can transmit Borrelia 

to feeding ticks via its blood. The tick then passes on the infection from life stage to life 

stage (i.e. transstadial transmission) (Gray 1998). An infected tick, in its turn, can infect an 

uninfected host. The contribution of transovarial transmission of Borrelia (i.e. transmission 

from infected female to the egg) to the maintenance of Borrelia in enzootic cycle is 

considered to be negligible (Richter et al. 2012; Rollend et al. 2013). Even though 

transovarial transmission of Borrelia in ticks seems to be inefficient, larvae in nature are 

occasionally infected and Borrelia is rarely found in questing larvae (Tappe et al. 2014; 

van Duijvendijk 2016). This can be due to partial feeding of the larvae and premature 

detachment from the host, or to occasional successful transovarial transmission. The life 

stage that is most often responsible for transmitting Borrelia to humans is the nymph 

(Barbour and Fish 1993), because larvae are usually free of infection and nymphs are often 

10 fold more abundant in the vegetation than adult females (Perret et al. 2000). The nymph 

is thus the most interesting life stage to examine in the framework of public health risk.  
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Ixodes ricinus predominantly occurs in forests, due to the sheltered and humid microclimate 

and availability of suitable vertebrate hosts for their blood meals (Gray et al. 1998; 

Lindstrom and Jaenson 2003). They are sensitive to desiccation while questing and 

periodically return to the moist conditions at the base of the vegetation or the litter layer to 

restore their water balance (Needham and Teel 1991; Randolph and Storey 1999). In 

general, I. ricinus is inactive during the winter and begins questing when the temperature 

reaches to at least 7 °C for about 5 days (Perret et al. 2000). Nymphs are usually most active 

in late spring, often around May. However, the seasonal pattern of the density of questing 

I. ricinus nymphs seems to be variable and depending on local variations in abiotic 

conditions such as temperature and relative humidity (Tälleklint and Jaenson 1996; Perret 

et al. 2000; Randolph et al. 2002). Larvae usually quest close to the ground and can make 

contact with hosts of any size but usually feed on small hosts; nymphs quest slightly higher 

in the vegetation and miss most of the small hosts; adults quest higher than nymphs and 

generally feed and mate on large hosts (Mejlon and Jaenson 1997). Although I. ricinus is a 

host generalist that can parasitize a large range of host species, a recent European meta-

analysis has established that the majority of I. ricinus individuals feed on only a few host 

species, i.e. small rodents, thrushes and roe deer (Hofmeester et al. 2016), species that are 

generally abundant and widely spread in most European regions. In many regions and 

habitats, larvae mainly feed on small rodents such as mice and voles. Nymphs mainly feed 

on thrushes, but also on smaller birds and rodents. Large ungulates are by far the most 

important feeding host for adult ticks in Europe and are important in the maintenance and 

reproduction of I. ricinus populations (Gray 1998; Ruiz-Fons and Gilbert 2010; Hofmeester 

et al. 2016). The role of some host species, for example small rodents and birds (see e.g. 

Hanincová et al. (2003a), Hanincová et al. (2003b) and Heylen et al. (2014)), in the 

transmission dynamics of Borrelia genospecies in Europe has been intensively studied. For 

many widespread host species, such as hedgehogs, martens and squirrels, the exact 

contribution in the ecology of Lyme borreliosis has not yet been determined (Hofmeester 

et al. 2016). 
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Fig. 1.1: The life cycle of a (female) Ixodes ricinus tick for the Borrelia transmission cycle in 

which mice and deer act as host species (one of many possible scenarios; the host species 

chosen by the different tick life stages and the hosts’ infection status can differ from the ones 

presented here). The green spiral represent the Borrelia genospecies B. afzelii, which is 

associated with mice. The red spiral represents the bird-associated genospecies B. garinii or 

B. valaisiana. The larva hatches free from infection and will most commonly feed on a small 

rodent, such as a mouse. An infected mouse can transmit B. afzelii to the larva (a). The infected 

larva will then moult into an infected nymph. The infected nymph could consume its next 

blood meal on a bird, or it may again feed on a mouse. If the mouse is uninfected, it receives 

B. afzelii infection from the infected nymph (b). The infected nymph will then moult into an 

infected adult. The adult will most likely feed on a large ungulate, which does not transmit 

Borrelia (c). 
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Different host species, or ranges of hosts, are associated with different Borrelia 

genospecies. Many studies have already established the association between small rodents 

and B. afzelii (Humair et al. 1999; Hanincová et al. 2003a) and between birds and B. garinii 

and B. valaisiana (Hanincová et al. 2003b; Heylen et al. 2014). Some host species, such as 

the Eurasian red squirrel (Sciurus vulgaris Linnaeus, 1758) and the European hedgehog 

(Erinaceus europaeus Linnaeus, 1758) have been suggested to transmit B. afzelii as well 

(Skuballa et al. 2012; Pisanu et al. 2014). Large ungulates such as roe deer are considered 

incompetent to transmit any of the Borrelia genospecies (Fig. 1.1c) (Jaenson and Tälleklint 

1992; Matuschka et al. 1993). The genospecies-host association seems to be attributed to 

the host’s immune system, which may kill certain Borrelia genospecies that are transmitted 

via the tick to the host’s blood, but does not succeed to eliminate others (Kurtenbach et al. 

2002).  

1.2.2 Dilution effect for Lyme borreliosis 

The dilution effect hypothesis has been postulated, tested and elaborately discussed for the 

case of Lyme borreliosis in North American ecosystems (Norman et al. 1999; Ostfeld and 

Keesing 2000). In the forests of North America, the white-footed mouse (Peromyscus 

leucopus Rafinesque 1818) is by far the most competent host species and at the same time 

also the most common feeding host. LoGiudice et al. (2003) demonstrated that when host 

diversity increased, and other host species than the competent and ubiquitous white-footed 

mouse were added to the host community, Borrelia infection prevalence in ticks declined. 

Because these other host species were relatively inefficient in transmitting Borrelia, a 

higher host diversity decreased Lyme borreliosis risk. The ecology of Lyme borreliosis in 

North America differs from that in Europe. In North America, B. burgdorferi s.s. is the 

main Borrelia genospecies, which is not associated with a particular range of hosts in this 

region (Kurtenbach et al. 2006; Stanek et al. 2012). Furthermore, the host community of 

larval ticks in North America consists mainly of one competent host and several dilution 

hosts. In contrast, in Europe there are multiple pathogenic Borrelia genospecies associated 

with specific ranges of hosts, and these host communities probably consist of multiple 

competent reservoirs for Borrelia (Tälleklint and Jaenson 1994; Craine et al. 1995; Ostfeld 

and Keesing 2000). Therefore, because the impact of hosts densities on different Borrelia 

genospecies differs, the occurrence of a dilution effect for Lyme borreliosis in Europe has 

been questioned (Begon 2008) but has received little attention so far. In a study of Dutch 
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heathlands and adjacent forests, Tijsse-Klasen et al. (2010) did not find evidence of a 

dilution effect of sand lizards (Lacerta agilis Linnaeus, 1758), which are incompetent for 

most common Borrelia genospecies. The prevalence of Borrelia genospecies in ticks was 

not lower in the presence than in the absence of sand lizards. The study, however, did not 

investigate the host community composition in different sites of the same habitat. Instead, 

they compared ticks from heathland (sand lizard habitat) with ticks from adjacent forests 

(habitat unsuitable for sand lizards). Hofmeester et al. (2017) indirectly investigated the 

dilution effect in forest sites in the Netherlands by examining the possible indirect effect of 

the presence of predators in a host community on the density of reservoir-competent hosts 

and the tick burden on reservoir-competent hosts. The results from this study suggest that 

predators can lower the number of ticks feeding on reservoir-competent hosts, which 

implies that the host community composition can influence the density of infected nymphs. 

The effect of the whole host community of ticks on the density of infected ticks, however, 

was not examined. Investigating the impact of different host communities for ticks on Lyme 

borreliosis risk is crucial to evaluate the human health risk (Wood et al. 2014) seeing the 

ongoing biodiversity loss in European forests (MEA 2005), and the growing public health 

concern for Lyme borreliosis. 

1.3 The influence of forest characteristics on Lyme borreliosis risk 

The densities of I. ricinus and the prevalence of Borrelia in ticks strongly vary from one 

forest location to another (Gray et al. 1998; Jaenson et al. 2009). This variability is mainly 

determined by drivers related to the ticks’ ability to maintain optimal water balance and the 

presence of suitable hosts (Gray et al. 1998). Forest management can influence some of 

these drivers by e.g. changing the structure of the forest or the composition of the species 

in the tree, shrub and herb layer. 

1.3.1 Forest conversion in Europe 

The production of wood has long been the focus of forest management in Europe. At the 

end of the 18th century, following a period of over-exploitation of the (semi-) natural forest 

ecosystems, fast-growing conifer species were planted throughout Europe, far beyond the 

limits of their natural ranges, to meet the demand for wood. Today, the objectives of forest 

management are increasingly oriented towards maintaining multifunctional ecosystems, 

embracing all the forests’ goods and services (Farrel et al. 2000). Mixed and structurally 
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diverse forests are supposed to be better at delivering a whole suite of ecosystem services 

compared to homogeneous forests (van der Plas et al. 2016). Therefore, in many regions in 

Western Europe, forests are being converted from homogeneous conifer plantations to 

more natural, structure-rich mixed forests, dominated by indigenous broadleaved tree 

species (Olsthoorn et al. 1999; Spiecker et al. 2004), hereafter called ‘forest conversion’. 

Compared to homogeneous forests, mixed forests tend to support a higher biological 

diversity (Lust et al. 1998; Felton et al. 2010) and be more resistant against biotic and 

abiotic disturbances such as insect attacks and wind damage (Farrel et al. 2000; Löf et al. 

2004; Jactel and Brockerhoff 2007; Knoke et al. 2008). Moreover, mixed broadleaved 

forests are more attractive to visitors and have a higher recreation value compared to 

homogeneous coniferous forests (Bostedt and Mattsson 1995; Elsasser et al. 2010). 

1.3.2 The effect of forest conversion on the dilution effect 

In order to explain patterns in Lyme borreliosis risk, an increasing number of studies in 

Europe have focused on the influence of forest composition and structure (Lauterbach et 

al. 2013; De Keukeleire et al. 2015; Vourc’h et al. 2016). Estrada-Peña et al. (2011) 

investigated the geographic distribution pattern of the prevalence of Borrelia genospecies 

in I. ricinus ticks throughout Europe and found that the distribution pattern of genospecies 

showed a clear link with temperature gradients and vegetation features. A large-scale study 

in forests from southern France to central Sweden and Estonia showed that macroclimate 

only explained a small fraction of the variation in tick abundance and Borrelia prevalence 

in ticks between most European regions. Properties of macro- and microhabitat, which 

buffer macroclimate, had a considerable impact on tick abundance (Ehrmann et al. in press; 

Ehrmann et al. 2017). The abundance of ticks, therefore, strongly depends on habitat 

properties and on how humans manage forests. Tack (2013) investigated the effect of forest 

conversion on the abundance of I. ricinus in Belgium and found that densities of all life 

stages were higher in oak than in pine stands, and that tick densities increased with 

increasing shrub cover. Other studies also found higher densities of ticks in mixed and 

broadleaved forests compared to coniferous forests (Jaenson et al. 2009; James et al. 2013). 

The European practice of forest conversion thus appears to increase the density of ticks. 

However, the risk for human exposure to Lyme borreliosis depends on both the density of 

host-seeking infected ticks (hereafter called ‘acarological risk’) and the human-tick contact 

rate (Jaenson et al. 2009).  
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Both tick abundance and the prevalence of Borrelia in ticks are related to the host 

community composition (LoGiudice et al. 2003; Randolph 2004; Mannelli et al. 2012; 

Sprong et al. 2012; Hofmeester 2016), which is influenced by habitat characteristics. 

Changes in forest structure can improve habitat suitability for both ticks and important tick 

hosts such as small mammals and roe deer and are likely to be among the most crucial 

factors affecting tick-borne disease risk (Rizzoli et al. 2009; Tack et al. 2012a; James et al. 

2013). Structure-rich mixed forests are considered to contain a higher host species diversity 

than homogeneous coniferous forests (Kennedy and Southwood 1984; Laiolo 2002; Carnus 

et al. 2006; Alexander et al. 2006; Brockerhoff et al. 2008; Du Bus de Warnaffe and 

Deconchat 2008). Tack (2013) found that the densities of roe deer were higher in structure-

rich oak stands than in structure-poor pine stands. Forest conversion is thus expected to 

increase the density and diversity of host species, which will increase the density of ticks. 

Nevertheless, despite the higher tick density, the higher host diversity in converted forests 

could lower the Borrelia infection prevalence in ticks through a dilution effect, and so 

reduce the acarological risk for Lyme borreliosis. The effect of forest conversion on the 

infection prevalence of the different Borrelia genospecies in ticks has not been thoroughly 

investigated yet. 

The large-scale forest conversions in Western Europe provide a unique opportunity 

to test the dilution effect hypothesis in Europe, in a complex setting of multiple 

pathogenic Borrelia genospecies and multiple host community compositions. 
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1.4 Objectives and outline of the thesis 

The overall goal of this thesis was to gain more insight in the ecology of Lyme borreliosis 

and the relationships between the different components in the transmission cycle: the forest 

composition, the host community, the ticks and pathogens. The specific objectives of this 

thesis were: 

1. relating forest composition to the diversity of hosts for ticks, 

2. characterising the role of some poorly studied host species in the transmission 

cycle of Lyme borreliosis, 

3. assessing the relationship between the host community composition and Lyme 

borreliosis risk in a spatiotemporal framework, 

4. testing the dilution effect hypothesis in a setting of different forest compositions 

in Europe. 

It is not clear yet in what manner the host community composition influences Lyme 

borreliosis risk in Europe. According to the dilution effect hypothesis, an increased host 

diversity could decrease the density of infected ticks. The type of habitat is expected to 

have a large influence on the occurrence and density of both ticks and host species. 

Research investigating the effect of the host community composition on the density of ticks 

infected with the distinct Borrelia genospecies in different environments is lacking. 

In Belgium, conversion of structure-poor pine forests to structure-rich, semi-natural forests 

dominated by broadleaved tree species occurs on a large scale in the Kempen, a region with 

a high risk of Lyme borreliosis and a high recreation pressure (Verheyen et al. 2007; Linard 

et al. 2007; Vanthomme et al. 2012). Forests in this region mainly consist of even-aged 

homogeneous stands of Scots pine (Pinus sylvestris L.), and to a smaller extent Corsican 

pine (P. nigra Arnold subsp. laricio (Poiret) Maire) interspersed with more diverse, 

structure-rich broadleaved forests composed of pedunculate oak (Quercus robur L.), the 

exotic Northern red oak (Q. rubra L.), common beech (Fagus sylvatica L.), silver birch 

(Betula pendula Roth) and downy birch (B. pubescens Ehrh.). 

Previous research on the impact of forest conversion on Lyme borreliosis risk by Tack 

(2013) was conducted in several forest sites in the Kempen, in northern Belgium. Most 

attention was given to two study sites located approximately 30 km apart (Fig. 1.2). Postel 

(hereafter called ‘site P’) is located in the north, near the border with the Netherlands. 



Chapter 1 

14 

 

Averbode-Hertberg (hereafter called ‘site AH’) consists of two forests close to each other, 

located in the municipalities Herselt and Tessenderlo, separated by 1 to 2 km of agricultural 

land and pasture. Site P and site AH are similar in terms of topography, soil, composition 

of the understory vegetation, and historical land use. 

 

 

Fig. 1.2: Map of Flanders (northern Belgium) showing the area covered by forest, and the 

location of the forest sites that are investigated in this thesis. The two main study sites P and 

AH are depicted as two open circles. Map adapted from Tack (2013). 

 

Tack (2013) investigated forest stands of four different forest types (Fig. 1.3). The stands 

are dominated by either oak (mainly pedunculate oak) or pine (Scots or Corsican pine), 

hereafter called ‘oak stands’ and ‘pine stands’. The stands have a well-established shrub 

layer covering more than 50% of the ground (‘with shrub layer’) or less than 25% of the 

ground (‘without a shrub layer’). These four forest types represent different steps in the 

process of forest conversion, with structure-poor pine stands as the first stage in the process, 

structure-rich oak stands as the intended result and structure-rich pine stands and structure-

poor oak stands as intermediate stages. This thesis focusses on the same study area and uses 

a subset of the forest stands used in the study by Tack (2013).  
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The thesis consists of three parts (Fig. 1.4). 

The first part (Chapter 2 and Chapter 3) focuses on the variation in Lyme borreliosis risk 

among different forest types. As nymphs are most often responsible for transmitting 

Borrelia to humans, we mainly focus on this life stage. Chapter 2 describes a large-scale 

field study of Lyme borreliosis risk in 93 stands of different forest types in 20 sites. We 

related the density of infected nymphs and the prevalence of the different Borrelia 

genospecies to forest type and discuss the results in the light of the dilution effect 

hypothesis. 

 

 

Fig. 1.3: The four different forest types used in this thesis: pine stands without a shrub layer 

(a), pine stands with a substantial shrub layer (b), oak stands without a shrub layer (c) and oak 

stands with a substantial shrub layer (d). 
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For Chapter 3 we used data on nymphs collected in 2009, 2010, 2013 and 2014 in two study 

sites to describe the spatiotemporal variation in disease risk. We focussed on the rodent-

associated tick-borne pathogens Borrelia afzelii and B. miyamotoi since the spatial and 

temporal population dynamics of small rodents are expected to be important in explaining 

tick-borne disease risk. We discuss the possible role of climate, mast years of different tree 

species and the host community composition in the risk for tick-borne diseases, and stress 

the need to elucidate the contribution of the different hosts to the transmission cycle of 

Borrelia.  

The second part consists of two case studies (Chapter 4 and Chapter 5) in which we 

investigated the role of two poorly studied host species in the transmission cycle of Lyme 

borreliosis and other tick-borne diseases. In Chapter 4, we report the results of a study in 

which we collected larvae, nymphs and adults of Ixodes ricinus and I. hexagonus from 54 

hedgehogs and screened the ticks for presence of Borrelia genospecies, B. miyamotoi, 

Anaplasma phagocytophilum, Rickettsia helvetica and “Candidatus Neoehrlichia 

mikurensis”. Chapter 5 deals with the infection prevalence of these tick-borne pathogens 

in spleen and liver samples from 45 squirrels. 

In the third part (Chapter 6), we combined the acquired knowledge from the previous two 

parts and tested the dilution effect hypothesis for Lyme borreliosis. We used empirical data 

and a Bayesian belief network as complementary tools to investigate the impact of the 

proportion of dilution hosts in the host community on the density of ticks infected with B. 

afzelii and to identify the key drivers of the density of infected ticks. 
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Fig. 1.4: Schematic overview of the thesis. The numbers represent the chapters (2-6). Chapters 

2 and 3 investigate the spatiotemporal variability in Lyme borreliosis risk between different 

forest types that represent forest conversion from structure-poor pine stands to structure-rich 

oak stands. Chapters 4 and 5 focus on the role of two poorly characterized host species in the 

transmission cycle of tick-borne pathogens, and Chapter 6 focuses on the effect of host 

community compositions on Lyme borreliosis risk. 
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2 Diversifying forest communities may change Lyme disease risk: extra dimension 

to the dilution effect in Europe 

 

After: Ruyts S.C., Ampoorter E., Coipan E.C., Baeten L., Heylen D., Sprong H., 

Matthysen E., Verheyen K. (2016). Diversifying forest communities may change 

Lyme disease risk: extra dimension to the dilution effect in Europe. Parasitology, 

143(10), 1310-1319 (IF 2.713) 

2.1 Abstract  

According to the dilution effect hypothesis, formulated in North America, nymphal 

infection prevalence (NIP) with the Lyme borreliosis causing pathogen Borrelia 

burgdorferi sensu lato (‘Borrelia’) decreases with increasing host diversity since host 

species differ in transmission potential. We analysed Borrelia infection in nymphs from 94 

forest stands of four forest types in the Kempen, which are part of a diversification gradient 

with a supposedly related increasing host diversity: from pine stands without to oak stands 

with a shrub layer. We expected changing tree species and forest structure to increase host 

diversity and decrease NIP. In contrast with the dilution effect hypothesis, NIP did not 

differ between different forest types. Genospecies diversity however, and presumably also 

host diversity, was higher in oak than in pine stands. Infected nymphs tended to harbour 

Borrelia afzelii infection more often in pine stands while B. garinii and B. burgdorferi s.s. 

infection appeared to be more prevalent in oak stands. This has important health 

consequences, since the latter two cause more severe disease manifestations. We show that 

the dilution effect hypothesis must be nuanced for Europe and should consider the response 

of multiple pathogenic genospecies.  
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2.2 Introduction 

Forest conversion appears to lead to elevated tick densities (Tack et al. 2012a; Tack et al. 

2013). This is partially due to the higher shrub cover in more structurally diverse, converted 

stands, which leads to more suitable abiotic conditions for the ticks. Such a forest 

conversion will also induce changes in the host community (Brockerhoff et al. 2008; Du 

Bus de Warnaffe and Deconchat 2008; Tack et al. 2012a). Structure-rich mixed forests, the 

intended result of forest conversion, are considered to contain a higher host species 

diversity than homogeneous non-indigenous pine plantations (Kennedy and Southwood 

1984; Laiolo 2002; Carnus et al. 2006; Alexander et al. 2006; Brockerhoff et al. 2008; Du 

Bus de Warnaffe and Deconchat 2008). According to the dilution effect hypothesis, this 

may dilute the prevalence of Borrelia burgdorferi sensu lato (‘Borrelia’) in the ticks. 

Furthermore, an increase in host diversity may lead to an increase in genospecies diversity, 

which, due to the association between genospecies and clinical manifestations, can change 

Lyme borreliosis risk.  

By using the different Borrelia genospecies as distinct pathogens while testing the dilution 

effect in Europe, this study contributes to the knowledge gap on the interaction between the 

Borrelia genospecies, the tick Ixodes ricinus and hosts. In addition, most studies testing the 

dilution effect use indirect measures of human disease risk such as nymphal infection 

prevalence or tick abundance, while we use the density of infected questing nymphs, which 

better predicts risk (Begon 2008; Ogden and Tsao 2009). Here we investigated forest stands 

that differed in dominant tree species and presence of shrub cover, leading to four different 

forest types with supposedly increasing host diversification degree: from stands without a 

shrub layer dominated by pine trees to stands with a substantial shrub layer dominated by 

oak. Pine stands with a shrub layer and oak stands without a shrub layer are intermediate 

in diversification degree. We expect that changing dominant tree species and forest 

structure will lead to diversified forest communities, which entails increased host diversity, 

and changes Lyme borreliosis risk. We hypothesize that forest community diversification 

changes the density of infected nymphs by (i) increasing the abundance of nymphal ticks 

and (ii) decreasing the nymphal infection prevalence of Borrelia through a dilution effect. 

Furthermore, we expect the Borrelia genospecies community composition to change with 

forest community diversification, with nymphs from diversified forests housing a more 

diverse genospecies community. 
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2.3 Material and methods 

2.3.1 Study area 

For this study, we primarily used the same stands as Tack et al. (2012a). Each stand belongs 

to one of four forest types and represent a gradient of forest community diversification from 

low diversified pine stands without a shrub layer to highly diversified oak stands with a 

well-established shrub layer. The pine stands with a shrub layer and the oak stands without 

a shrub layer are less straightforward to rank mutually according to forest community 

diversity, but we can reasonably assume they are both intermediate between the high and 

low diversity forest types.  A total of 93 stands were selected in 20 different forest sites: 20 

pine stands without shrub layer, 32 pine stands with shrub layer, 19 oak stands without 

shrub layer and 22 oak stands with shrub layer. We attempted to select at least one stand of 

each type in every forest site. Due to the strong association between host species and tree 

species, the host community may differ between the two oak species. In our study, we 

selected pedunculate oak stands, as well as stands of non-indigenous red oak, but 

investigated their (indirect) effect on the ticks and Borrelia infection later during analysis. 

Forest stands were on average 1 ha large, ranging from 0.5 ha to 4 ha, and were distributed 

between 51°16’N, 4°29’E in the Northwestern part of the Kempen and 50°54’N, 5°39’E in 

the south-east. 

2.3.2 Data collection 

Each forest stand was visited once when the vegetation was dry between June and 

September 2013. To minimize the influence of time of day on the sampling of ticks, we 

visited the forest stands on each sampling occasion in a random order. Questing I. ricinus 

ticks were sampled by sweeping a white flannel blanket (1 m x 1 m) attached to a wooden 

pole over the herbaceous vegetation (‘flagging’). Six 25 m parallel transects were 

performed in the centre in a representative part of each stand. The sampled area was 

calculated as the product of distance flagged (6 x 25 m = 150 m) and width of blanket (1 

m); nymphs per 100 m2 was used to as our measure of relative nymphal population density. 

The composition of the herbaceous layer was comparable between the different stands so 

we think that it did not influence the density estimates by impeding the sampling technique 

(Tack et al. 2012a). For that reason, also, sampling in dense shrubbery and bracken fern 

(Pteridium aquilinum (L.) Kuhn) was avoided. Entire-blanket sampling is an established 

method for ixodid tick collection (Falco and Fish 1992). In this thesis, we use it to compare 
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densities of ticks between sites, and we do not aim to infer actual densities. With this 

sampling technique, we caught all life stages of I. ricinus, but only collected the nymphs 

for further analysis. To distinguish between life stages in the field, we relied on 

morphological characteristics (see Chapter 1). The tick species was determined in the lab 

based on Hillyard (1996). After each transect, nymphs were removed from the blanket with 

forceps and stored in vials containing 70% ethanol. Nymphs from the different sampling 

occasions were pooled per forest stand.  Due to limited resources, we only analysed a subset 

of the collected nymphs. We performed a power analysis in R version 3.2.0 (R Core Team 

2017) to estimate the number of nymphs we needed to analyse to have a good chance of 

detecting any statistical significant effect. Based on this, we randomly selected 35 

individuals from each pool.  For one stand, only 34 individuals were analysed due to a low 

number of nymphs caught. DNA extraction from each of these ticks was done by alkaline 

lysis in ammonium hydroxide, as described previously (Schouls et al. 1999). For the 

detection of Borrelia a duplex qPCR, targeting ospA and flaB genes, was used. For the 

sequences of primers and probes, we refer to Appendix 2.1. The qPCR was performed using 

the iQ Multiplex Powermix PCR reagent kit (Bio-Rad Laboratories, Hercules, USA), in a 

LightCycler 480 Real-Time PCR System (F. Hoffmann-La Roche, Basel, Switzerland). 

The reaction mix consisted of iQ multiplex Powermix, 100 nM of the B-FlaB-Rc and B-

FlaB-Rt primers, 200 nM of the B-FlaB-F, 400 nM of the B-OspA_modF and B-

OspA_borAS primers, 100 nM of the B-OspAmodPatto probe, 200 nM of the B-FlaB-Patto 

probe, and 3 μl of template DNA in a final volume of 20 μl. Cycling conditions included 

an initial activation of the iTaq DNA polymerase at 95 °C for 5 min, followed by 60 cycles 

of a 5 s denaturation at 95 °C, followed by a 35 s annealing-extension step at 60 °C (ramp 

rate 2.2 °C/s and a single point measurement at 60 °C) and a cooling cycle of 37 °C for 20 

s. Analysis was performed using the second derivative calculations for crossing point 

values. For each run, positive and negative controls and blank samples were included. For 

confirmation of presence of Borrelia DNA, the positive samples of the qPCR were further 

submitted to PCR targeting the variable 5S-23S intergenic spacer region (IGS). The PCR 

was performed according to the protocol described in Coipan et al. (2013). Identification 

of Borrelia genospecies was done based on the DNA sequence of IGS. This method is able 

to detect all known genospecies of Borrelia, as shown in (Coipan et al. 2013a). PCR 

products were sequenced using an ABI PRISM BigDye Terminator Cycle sequencing 

Ready Reaction kit (Perkin Elmer, Applied Biosystems). Sequences were confirmed by 

sequencing both strands (Sanger et al. 1977). Storage and analysis of the IGS sequences 
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were performed in BioNumerics version 7.0 (Applied Math, Belgium). Borrelia 

genospecies were assigned based on sequence identity with reference DNA sequences from 

GenBank (http://www.ncbi.nlm.nih.gov). The sensitivity of the PCR-based detection of 

Borrelia in ticks and the DNA sequencing is described in Heylen et al. (2013). We did not 

take into account the infection intensity of the Borrelia genospecies per tick. 

2.3.3 Data analysis 

All analyses were conducted in R version 3.2.0 (R Core Team 2017). Graphs were made 

with the package ggplot2 (Wickham 2009). We defined nymphal infection prevalence 

(NIP) as the proportion of nymphs infected with Borrelia and the density of nymphs (DON) 

as the number of nymphs caught per 100 m². The density of infected nymphs (DIN) is the 

product of NIP and DON. First, we fitted effects for tree species (‘pine’ or ‘oak’), the 

presence of a shrub layer (‘yes’ or ‘no’) and the interaction between tree species and the 

presence of a shrub layer on DON, NIP and DIN using generalized linear models (glm). 

DON and DIN resembled overdispersed count data, so we applied a negative binomial error 

distribution using the package MASS (Venables and Ripley 2002). For NIP, we used a glm 

with binomial error distribution for proportional data. Significances in all model fits were 

assessed through analysis of deviance with Chi-square test. We checked for heterogeneity 

of the residuals following the approach described in Zuur et al. (2009). 

Second, to examine the impact of the different types of forest composition and structure on 

the Borrelia genospecies community compositions, we fitted a multivariate generalized 

linear model (manyglm) to our data (Warton et al. 2012) as implemented in the R package 

mvabund (Wang et al. 2012). The fitted model assumed a binomial distribution of the 

prevalence (proportion) data. Predictor variables included tree species, the presence of a 

shrub layer and the interaction between tree species and presence of a shrub layer. An 

analysis of deviance for multivariate glm fits with likelihood ratio test was employed to 

determine which variables contributed significantly to the differences between the 

community compositions. Afterwards, we considered the Borrelia genospecies as distinct 

pathogens, and analysed the effect of the predictor variables on the prevalence of the 

individual genospecies the same way as described above for the response variable NIP with 

a binomial glm. 

http://www.ncbi.nlm.nih.gov/
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Finally, we calculated the diversity of each genospecies community (exponent of Shannon 

index or equivalent species numbers) with the function diversity in the R package vegan 

(Oksanen et al. 2015) and tested for the effect of the forest type variables with a generalized 

linear model. 

To test the impact of the ecologically relevant difference between the stands of indigenous 

pedunculate oak and non-indigenous red oak, we conducted all above-mentioned analyses 

on the whole dataset of 93 stands and afterwards on a limited dataset of the oak stands. The 

outcomes of the analysis on the dataset of the red oak stands were then compared to those 

of the pedunculate oak stands. No difference was found for any response variable, at the 

level of Borrelia or the genospecies, between the indigenous pedunculate oak stands and 

the non-indigenous red oak stands, so we considered the category “oak” as robust.    

2.4 Results 

In the 93 forest stands, a total of 9554 I. ricinus nymphs were caught, with a mean density 

(± SE) of 40.5 nymphs (± 3.6) per 100 m². We examined 3254 nymphs for Borrelia 

spirochetes, and 508 were infected. This corresponds with a mean nymphal infection 

prevalence (NIP) of 15.6% (± 0.8) over all forest stands. Average density of infected 

nymphs was 5.9 nymphs (± 0.6) per 100 m². Borrelia-positive nymphs were found in all 

forest stands examined. We identified six different genospecies in 462 (91%) infected 

nymphs, namely Borrelia afzelii, B. garinii, B. burgdorferi s.s., B. valaisiana, B. spielmanii 

and B. bavariensis. For the other 46 infected nymphs, genospecies could not be defined 

because of the lower sensitivity of the conventional PCR in comparison with the qPCR. 

Only one genospecies was identified in each infected nymph. From the six detected 

genospecies, B. afzelii was the most prevalent genospecies, occurring in 10.6% of the 

nymphs (± 0.7) or 73.8% (±2.8) of the infected nymphs. The mean prevalence of B. garinii 

and B. burgdorferi s.s. in nymphs was 1.5% (± 0.3) and 1.2% (± 0.2), respectively. The 

mean prevalences of the other genospecies were lower than 1%. 

The generalized linear models showed a significant effect of tree species on DON (p = 0.02) 

and a marginally significant effect of the presence of a shrub layer (p=0.05) with lowest 

densities in pine stands without a shrub layer (Fig. 2.1). The interaction between tree 

species and the presence of a shrub layer had a marginally significant effect on DIN (p = 

0.09). We found no significant effect of any predictor variable on NIP (Fig. 2.1).  
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Fig. 2.1 Density of nymphs (a), nymphal infection prevalence (b) and density of infected 

nymphs (c) in the different forest types (mean ± SE). n: number of stands used per forest type. 

Note the difference in scaling of the y-axis and the units used. 

  



Chapter 2 

26 

 

The community analysis of Borrelia genospecies revealed a significant effect of tree 

species on the diversity of Borrelia genospecies communities (Fig. 2.2, Appendix 2.2), with 

more diverse communities in nymphs from oak stands (t = -2.21, p = 0.03). The effect of 

tree species on the genospecies community composition was marginally significant (Dev = 

4.44, p = 0.07).  

When we considered the Borrelia genospecies as separate pathogens in the generalized 

linear models, we could not detect a significant effect of the forest type variables on the 

nymphal infection prevalence of the genospecies. Nevertheless, we can clearly see in the 

genospecies community composition (Fig. 2.2) a trend towards a higher prevalence of B. 

afzelii in nymphs from pine compared to oak stands, and for B. garinii and B. burgdorferi 

s.s. a trend towards a higher prevalence in oak compared to pine stands. The genospecies 

community in the infected nymphs appeared to be dominated by B. afzelii in all forest types 

but it was more pronounced in the pine stands (83.9% (95% confidence interval [71.4, 

91.6]) of the infected nymphs) compared to the oak stands (62.4% [46.9, 75.8]) (Fig 2.2, 

Appendix 2.2). B. garinii and B. burgdorferi s.s. occurred in 6.7% [2.4, 17.6] and 4.9% 

[1.4, 15.3] of the infected nymphs from the pine stands compared to 12.5% [5.4, 26.5] and 

16% [7.6, 30.5] in the oak stands, respectively. The share of B. valaisiana, B. spielmanii 

and B. bavariensis in the genospecies community in nymphs was relatively low, namely 

1% [0.1, 13.3], 3% [0.6, 13.3] and 0.4% [4.8e-5, 2.4] in pine, and 5.7% [1.6, 18.5], 2.9% 

[0.5, 15.6] and 0.3% [1.9e-5, 3.9] in oak stands, respectively. 

2.5 Discussion  

This study tests the dilution effect hypothesis for Lyme borreliosis in Europe while focusing 

on the different Borrelia genospecies as distinct pathogens, which, to our knowledge, has 

hardly been performed. Even though we did not test the dilution effect directly, since we 

did not empirically quantify the host communities, the association between planted forests 

and biodiversity has been covered sufficiently in literature to make reasonable assessments 

about the host diversity in the examined forest types (Laiolo 2002; Carnus et al. 2006; 

Brockerhoff et al. 2008; Du Bus de Warnaffe and Deconchat 2008). We assumed the host 

diversity to be higher in the oak stands with a substantial shrub layer than in the pine stands 

without a shrub layer. Further research that empirically quantifies the host communities, 

however, is needed to confirm this statement. We show that the dilution effect must be 

nuanced for Europe and should consider the response of multiple pathogenic genospecies. 
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The density of infected nymphs and associated human health risk will not necessarily 

decline with increasing biodiversity or host diversity, but will instead largely depend on the 

species assemblages of the host community. The different Borrelia genospecies can thus 

best be considered as separate pathogens, each with a separate possible dilution effect.  

  

 

Fig. 2.2 The community composition of Borrelia genospecies in field collected nymphs (mean 

proportion + 95% confidence interval) in pine and oak stands, with or without shrub layer. n: 

number of stands used per forest type. 

 

Highest densities of nymphs were found in oak stands and lowest in pine stands. Hence, 

our results show that changing forest composition could lead to increased tick abundances, 

which confirms the findings of former studies (Tack et al. 2012b; Tack et al. 2013). This 

could be due to the fact that more host species are present in oak forests, as suggested by 

Laiolo et al. (2004) and Tack et al. (2012b). We found an average nymphal infection 

prevalence of 15.6%, which is higher than the 10.1% mean nymphal infection prevalence 

usually found in Europe (Rauter and Hartung, 2005). This finding, together with the fact 

that the forests in the Kempen are readily visited for outdoor activities, suggests that it is 
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an area of potentially high Lyme borreliosis risk, as already proposed by Linard et al. 

(2007) and Vanthomme et al. (2012). The nymphal infection prevalence did not differ 

between forest types. The lack of a decline in nymphal infection prevalence does not allow 

us to confirm the dilution effect hypothesis. This might indicate that even though host 

diversity is likely higher in oak forests, the relative proportion of non-competent hosts is 

probably not substantially large enough to reduce infection prevalence, e.g. because more 

competent than non-competent species are added to the host community with increasing 

host diversity (a possible scenario recognized by Ostfeld and Keesing, 2000b; Wood and 

Lafferty, 2013). We could also not detect a significant effect of tree species or the presence 

of a shrub layer on the density of infected nymphs. According to Begon (2008) and Schmidt 

and Ostfeld (2001), a dilution effect only applies to situations where tick bites are wasted 

on less competent reservoir hosts and when the compensatory increase in vector abundance, 

caused by the increase in host diversity, is limited. Regardless of whether the host species 

in question are competent reservoirs or not, an increase in host abundance, and thus feeding 

opportunities for the ticks, will increase tick abundance (Ogden and Tsao 2009; Randolph 

and Dobson 2012). This indeed appears to be the case in our study, with higher densities of 

nymphs in oak forests.  

The most common genospecies found in questing nymphs in Europe are B. afzelii and B. 

garinii but the prevalence of the different genospecies varies between regions (Rauter and 

Hartung 2005). In our study region, we found that B. afzelii and B. garinii constituted 74.5% 

and 9.3% of the genospecies communities, respectively. Since B. afzelii is associated with 

small rodents, and the majority of infected nymphs was infected with this genospecies, we 

can assume that rodents such as mice and voles are important feeding hosts for I. ricinus 

larvae and important transmission hosts of Borrelia infection. B. garinii (and also B. 

valaisiana) is associated with passerine birds (Heylen et al. 2013b), and birds appear to be 

less important reservoir hosts in the Borrelia transmission cycle of I. ricinus ticks than 

rodents, since the infection prevalence of questing nymphs with B. garinii and B. valaisiana 

is much lower than that with B. afzelii. This lower prevalence of infection can be due to the 

fact that passerine birds are less important feeding hosts for the larvae of I. ricinus or that 

they are less efficient at transmitting Borrelia infection, or both (Brunner et al. 2008). A 

recent meta-analysis demonstrated that birds are generally more important feeding hosts 

for nymphs than for larvae (unpublished results, although this strongly depends on bird 

species, see Comstedt et al., 2006; Marsot et al., 2012) so that questing larvae are less likely 
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to obtain infection with B. garinii than questing nymphs. In the nymphs in our study area, 

we also found an unusually high prevalence of B. burgdorferi s.s., namely 9.8% (Rauter 

and Hartung 2005; Burri et al. 2007; Bingsohn et al. 2013). This is the highest reported 

prevalence of this genospecies in questing nymphs in Western Europe as far as we know. 

Borrelia burgdorferi s.s. is most probably associated with Eurasian red squirrel (Sciurus 

vulgaris) but because this association is not yet strictly determined (Humair and Gern, 

1998; Pisanu et al., 2014, but see Kurtenbach et al. 2002), it is plausible that another host 

species, or range of hosts, is responsible for the transmission of B. burgdorferi s.s. to the 

ticks in our study area. It is however not yet clear which one. The predictions based on the 

occurrence or abundance of the different host species, however, are based on speculations 

since we do not possess data on the host species community. Further research should 

empirically determine the host community composition in different habitats. 

The genospecies community composition in questing nymphs did not significantly differ 

between forest types, but tree species had a marginally significant effect on the community 

composition. In pine stands, larvae seem to have fed more often on small rodents, which 

transmit B. afzelii. In oak stands, larvae seem to have fed more on other types of hosts, such 

as birds, which transmit B. garinii and B. valaisiana (Humair et al. 1999; Hanincová et al. 

2003a; Hanincová et al. 2003b; Heylen et al. 2014). There was a clear effect of tree species 

on the diversity of the genospecies communities, with more diverse communities in oak 

stands compared to pine stands. This increase in Borrelia genospecies diversity in the ticks 

from diversified forest communities can pose serious health risks. Borrelia burgdorferi s.s. 

and B. garinii are most often associated with Lyme arthritis and neuroborreliosis, 

respectively, while an infection with B. afzelii commonly causes skin manifestations such 

as erythema migrans or acrodermatitis chronica atrophicans (Strle and Stanek 2009). These 

conditions can be regarded as less severe, compared to damage of joints or the nervous 

system caused by B. burgdorferi s.s. and B. garinii. This indicates that human health risk 

can increase with increasing host diversity, when the contribution to the genospecies 

community of the more ‘dangerous’ Borrelia genospecies increases. 

Compared to the average home range of some host species, the forest stands we investigated 

are of relatively small size (Verkem et al. 2003) and often imbedded in a mosaic of stands 

of a different forest type. First, tick abundance is not only determined by the availability of 

hosts, but also by abiotic factors such as humidity. Therefore, the density of tick can be 
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related to forest type.  Second, while ranging, a host species may cross different unsuitable 

habitats and spend some of its time there. As ticks are distributed while being attached to 

their host, it is plausible that nymphs that have fed as a larva on a particular host species 

are occasionally found in a habitat that is not suitable for that host. Thus ticks, and so also 

typical host specific Borrelia genospecies, can occur in a forest type that is not the 

favourable habitat of the host. Hosts will spend, however, more of their time in their 

preferred habitat, so that the chance that a tick drops off in that habitat type instead of in an 

unfavourable habitat type is higher. Moreover, despite the small size of forest stands, Tack 

(2013) found that populations of bank vole and wood mouse differed between small 

neighbouring stands of different forest types, with different populations being composed of 

different individuals. Most larvae will thus probably be distributed by their host to a forest 

stand that is of a favourable forest type for the host, and so the association between Borrelia 

genospecies and forest type remains reasonable. We think, however, that our estimates of 

Borrelia genospecies prevalence and diversity are only conservative estimates. In a more 

homogeneous landscape, with larger stands of the same forest type, the pattern in Borrelia 

genospecies occurrence we see now would be even clearer and the differences between the 

forest types even larger. 

2.6 Conclusions 

From our results we may conclude that the public health risk associated with Lyme 

borreliosis in Europe will not only depend on the nymphal infection prevalence of Borrelia 

or on density of infected nymphs, but also on the prevalences of the distinct genospecies. 

Even if a more diverse host community causes a dilution effect to occur and the density of 

infected nymphs declines, disease risk can increase if the prevalence of a more ‘dangerous’ 

genospecies increases. As already suggested by Kurtenbach et al. (2006), and mentioned 

above, the interaction between Borrelia, ticks and hosts in Europe appears to be much more 

complex than the situation observed in North America, because of the existence of multiple 

pathogenic and specialist Borrelia genospecies in Europe. We can now confirm the contrast 

between these two regions and suggest that increasing host diversity, or adding species to 

the host community, can increase or decrease the prevalence of individual genospecies, 

depending on the response of the associated host species. Most likely in Europe the 

prevalence of B. afzelii will decline with increasing forest community diversification due 

to a dilution effect on small rodents, while the prevalence of the more ‘dangerous’ 
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pathogens B. garinii and B. burgdorferi s.s. will increase. It is then still possible for a 

dilution effect to occur in Europe on the level of Borrelia, when hosts that are added to the 

host community are less efficient in transmitting Borrelia to ticks than hosts already 

occurring in a species poor community (Ostfeld and Keesing 2000; LoGiudice et al. 2003), 

which decreases the chance that a tick feeds on a competent reservoir species. This scenario 

is similar to the trend we observed in our study. It is therefore not increasing biodiversity 

in itself that will decrease Lyme borreliosis risk. The identity of the hosts that are added to 

the host community and their interactions with each other and the ticks will determine if a 

dilution effect will occur (Ostfeld and Keesing 2000; Randolph and Dobson 2012), both at 

the level of Borrelia and of the Borrelia genospecies. These new insights introduce an extra 

dimension to the dilution effect hypothesis for Lyme borreliosis in Europe and pose 

important implications for the role of biodiversity in disease ecology. This study therefore 

strongly emphasizes the need to consider the different Borrelia genospecies as distinct 

pathogens and to study the species assemblages of the host community in high risk areas to 

assess human disease risk. 
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Appendix 2.1.  

Primers and probes used in the PCR analyses to detect Borrelia burgdorferi s.l. and Borrelia 

genospecies infections. 

 

Target gene/primer & probe 

Amplicon 

length Sequence 

OspA (Outer membrane 

Protein A, B. burgdorferi s.l.) 

± 139bp 
 

   
 

B-OspA_modF  5'-AAT ATT TAT TGG GAA TAG GTC TAA-3' 
 

B-OspA_borAS 5'-CTT TGT CTT TTT CTT TRC TTA CA-3' 
 

B-OspAmodPatto 5'-Atto520-AAG CAA AAT GTT AGC AGC CTT GA-

BHQ1-3' 

 
FlaB (Flagelin B, B. 

burgdorferi sl.) 

± 89bp 
 

  
 

 
B-FlaB-F  

 
5'-CAG AIA GAG GTT CTA TAC AIA TTG AIA TAG 

A-3' 
 

B-FlaB-Rc 
 

5'-GTG CAT TTG GTT AIA TTG CGC-3' 
 

B-FlaB-Rt  
 

5'-GTG CAT TTG GTT AIA TTG TGC-3' 
 

B-FlaB-Patto  5'-Atto425-CAA CTI ACA GAI GAA AXT AAI AGA 

ATT GCT GAI CA-Pho-3'  

    
X = BHQ-1-dT 

BHQ = Black Hole Quencher 
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Appendix 2.2 

Proportions of Borrelia genospecies detected in the genospecies community in nymphs from the 

Kempen region and the diversity (exponent of Shannon index) of the genospecies communities, per 

forest type (mean ± SE). n: number of stands used per forest type. Mean is given in percentage. 

 

Borrelia genospecies pine       oak       

  without shrub with shrub without shrub with shrub 

    (n=20) (n=32) (n=19) (n=22) 

          
B. afzelii  82.2 (±5.2) 85 (±3.3) 61.9 (±7) 62.9 (±6.7) 

B. garinii  6.2 (±2.9) 7.1 (±2.3) 12.5 (±4.6) 12.5 (±3.3) 

B. burgdorferi s.s. 5.5 (±3.3) 4.5 (±1.8) 15.7 (±5.9) 16.3 (±3.9) 

B. valaisiana  1.3 (±0.9) 0.8 (±0.6) 5.3 (±2.3) 6.1 (±2) 

B. spielmanii  3.8 (±3.75) 2.6 (±1.5) 4.6 (±2.8) 1.5 (±1.5) 

B. bavariensis  1 (±1) 0 (±0) 0 (±0) 0.6 (±0.6) 

                    

diversity of Borrelia 

genospecies community 1.4 (±0.5) 1.5 (±0.5) 2 (±0.8) 2.2 (±1) 
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3 Year-to-year variation in the density of Ixodes ricinus ticks and the prevalence of 

the rodent-associated human pathogens Borrelia afzelii and B. miyamotoi in 

different forest types.  

 

After: Ruyts S. C., Tack W., Ampoorter E., Coipan E. C., Matthysen E., Heylen 

D., Sprong H., Verheyen K. Year-to-year variation in the density of Ixodes ricinus 

ticks and the prevalence of the rodent-associated human pathogens Borrelia afzelii 

and B. miyamotoi in different forest types. Ticks and Tick-borne diseases, accepted 

(IF 3.23) 

3.1 Abstract 

The human pathogens Borrelia afzelii, which causes Lyme borreliosis and B. miyamotoi, 

which causes relapsing fever, both circulate between Ixodes ricinus ticks and rodents. The 

spatiotemporal dynamics in the prevalence of these pathogens have not yet been fully 

elucidated, but probably depend on the spatiotemporal population dynamics of small 

rodents. We aimed to evaluate the effect of different forest types on the density of infected 

nymphs in different years and to obtain more knowledge about the spatial and temporal 

patterns of ticks and tick-borne pathogens. We analysed unfed nymphal ticks from 22 

stands of four different forest types in Belgium in 2009, 2010, 2013 and 2014 and found 

that the density of nymphs in general and the density of nymphs infected with B. afzelii and 

B. miyamotoi varied yearly, but without temporal variation in the infection prevalence. The 

yearly variation in density of infected nymphs in our study thus seems to be caused most 

by the variation in the density of nymphs, which makes it a good predictor of disease risk. 

The risk for rodent-associated tick-borne diseases also varied between forest types. We 

stress the need to elucidate the contribution of the host community composition to tick-

borne disease risk. 
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3.2 Introduction 

Both Borrelia afzelii, which causes Lyme borreliosis, and B. miyamotoi, which causes 

relapsing fever, circulate in the same tick species and the same vertebrate hosts (Hanincová 

et al. 2003a; Cosson et al. 2014). In Europe, Ixodes ricinus is the main vector for B. afzelii 

transmission to humans (Piesman and Gern 2004) and especially the host-seeking nymphs 

contribute most to the Lyme borreliosis risk (Barbour and Fish, 1993). In addition, this tick 

species is an important carrier for B. miyamotoi, and as with other tick-borne pathogens, B. 

afzelii regularly co-occurs with B. miyamotoi in the same tick individuals (Gern et al. 2010; 

Cosson et al. 2014; Kjelland et al. 2015).  

The different genospecies of B. burgdorferi s.l. (‘Borrelia’) and B. miyamotoi each appear 

to be associated with a particular host species, or a range of hosts. Borrelia afzelii is 

commonly transmitted to ticks by small rodents, such as the wood mouse (Apodemus 

sylvaticus Linnaeus, 1758) and the bank vole (Myodes glareolus Schreber, 1780) 

(Hanincová et al., 2003; Humair et al., 1995). Also Eurasian red squirrels (Sciurus vulgaris 

Linnaeus, 1758) and European hedgehogs (Erinaceus europaeus Linnaeus, 1758) have 

been suggested to transmit B. afzelii to ticks (Skuballa et al. 2012; Pisanu et al. 2014). Like 

B. afzelii, B. miyamotoi appears to be associated with rodents (Barbour et al. 2009; Taylor 

et al. 2013; Cosson et al. 2014). 

A recent European meta-analysis including 44 hosts, however, showed that only a few host 

species (small rodents, thrushes and roe deer) feed the majority of I. ricinus individuals 

(Hofmeester et al. 2016). Roe deer are generally the most important feeding host for female 

ticks in Europe and are important in the maintenance and reproduction of I. ricinus 

populations (Gray, 1998; Hofmeester et al., 2016; Ruiz-Fons and Gilbert, 2010). In most 

regions, larvae mainly feed on small rodents, and rodents are generally responsible for the 

majority of Borrelia infections in I. ricinus larvae (Hofmeester et al. 2016). The densities 

of small rodents such as wood mouse and bank vole in our study region, but also of other 

important host species such as roe deer, are positively correlated with the presence of a 

shrub layer and are higher in broadleaved forests than in coniferous forests (Tack et al. 

2012a; Tack 2013). Furthermore, infection prevalence of nymphs with B. afzelii tends to 

be higher in pine than in oak forests (see Chapter 2), which suggests that small rodents feed 

more larvae in pine than in oak forests, relative to other host species. The densities of 

nymphs are also highest in structure rich broadleaved forests, as shown in Chapter 2 and 
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other studies (Gray et al. 1998; Tack et al. 2012b). Besides the type of forest, also the 

availability of seeds influences the occurrence and population dynamics of rodents. A 

negative effect of rodent abundance on human Hantavirus disease incidence in Belgium 

has already been observed in a study by (Tersago et al. 2009), which showed that abundant 

seed production of oak and beech precedes disease epidemics, due to an increase in bank 

vole abundance. Increased rodent abundance due to increased seed supply is shown to affect 

the density of nymphs (Ostfeld et al. 2001; Ostfeld et al. 2006; Tack 2013; van Duijvendijk 

2016). Therefore, it is expected that the spatial and temporal differences in population 

dynamics of small mammals are important in explaining the density of infected nymphs, 

which is a commonly used tick-borne disease risk measure (Ostfeld et al. 2006).  

The temporal dynamics in the prevalence of many important tick-borne pathogens, such as 

the Lyme borreliosis bacteria, remain largely unclear. In the light of the reported rise in 

incidence of tick-borne diseases in recent years, the study of the ecology and the spatial and 

temporal patterns of ticks, hosts and tick-borne pathogens is becoming increasingly 

important (Gray et al. 2009; Randolph 2010; Estrada-Peña et al. 2011). With our temporal 

survey, we provide data on the annual variability of the impact of forest characteristics on 

the density of ticks and the infection prevalence of the rodent-associated pathogens B. 

afzelii and B. miyamotoi. 

3.3 Material and methods 

3.3.1 Forest stand selection 

This study was performed in the two study sites Postel (‘site P’) and Averbode-Hertberg 

(‘site AH’). The 22 forest stands we used in this study were selected in the framework of 

the study of Tack et al. (2012b) and were also studied in Chapter 2. The studied stands 

included five pine stands without a shrub layer, six pine stands with a shrub layer, six oak 

stands without a shrub layer and five oak stands with a shrub layer. In our study region, the 

years 2006, 2007 and 2011 were mast years of pedunculate oak and 2011 was a mast year 

of beech (Nussbaumer et al. 2016). Corsican pine experienced a high seed crop in 2012 and 

2013 and Scots pine in 2013 (Verstraeten A., personal communication). No data for these 

pine species are available for our region before 2009. 
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3.3.2 Data collection 

Questing nymphs were sampled three to four times per year in a fixed representative part 

of each forest stand between June and October in 2009, 2010, 2013 and 2014. For the exact 

procedure of tick sampling, we refer to Chapter 2. The differences in structure and 

composition of the herbaceous community between the different stands were negligible so 

that the sampling could be performed in a standardized way (Tack et al. 2012a). Nymphs 

were removed from the blanket after sampling each transect and transferred to vials 

containing 70% ethanol and afterwards stored at -22 °C. The ticks from 2009 and 2010 

were collected in the framework of another study (Tack 2013) and were not collected by 

the same person as the ticks from 2013 and 2014. Differences in the sampling techniques 

of these persons and daily and seasonal variation in abiotic factors (temperature, humidity) 

may have affected the number of ticks caught. However, all stands were sampled with 

comparable intensity and in the same period each year. The stands were sampled in a 

random order each time, to account for daily fluctuations in temperature and humidity 

during the sampling sessions. To account for seasonal differences in tick abundance, we 

pooled nymphs per forest stand for all sampling occasions in the same year. We counted 

and pooled nymphs from all sampling occasions from each year per forest stand. From each 

pool, 35 individual nymphs were randomly selected to examine for infection with Borrelia 

genospecies and B. miyamotoi. For the procedure of DNA extraction of the individual 

nymphs and the simultaneous detection of Borrelia and B. miyamotoi by multiplex qPCR, 

and for the identification of Borrelia genospecies, we refer to the methods described in 

Hansford et al. (2014). The molecular tools we used are not suited to detect infection 

intensities of the pathogens. As the conventional Borrelia-PCR followed by Sanger 

sequencing is less sensitive than our duplex Borrelia-qPCR, we could not assign a 

genospecies to all ticks that were Borrelia-positive by qPCR. A more sensitive test, that 

would assign all Borrelia-positive samples to a genospecies, is not available yet, as far as 

we know. To correct for this shortcoming, we approximated the infection prevalence of 

nymphs with each Borrelia genospecies for each plot by following the approach described 

by Hofmeester et al. (2017). We proportionally assigned the unidentifiable sequences per 

stand to the different Borrelia genospecies using the proportion of each genospecies 

detected in the nymphs from that stand as a weighting factor. We assumed that the 

probability to successfully identify a genospecies is equal for all Borrelia genospecies, but 
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we acknowledge that it is possible that the qPCR will be more sensitive to the most 

prevalent genospecies.  

3.3.3 Statistical analysis 

All analyses were conducted in R version 3.3.1 (R Core Team 2017). DON is the average 

yearly density of nymphs per plot. The nymphal infection prevalence (NIP) is the 

proportion of infected nymphs per year, averaged over all sampling occasions per year per 

plot, and the density of infected nymphs (DIN) is the product of DON and NIP. We 

calculated NIP and DIN for the Borrelia complex (subscript ‘sl’), for each Borrelia 

genospecies and for B. miyamotoi. Due to low numbers for Borrelia genospecies other than 

B. afzelii, only NIPsl, DINsl, NIPafzelii, DINafzelii, NIPmiyamotoi, and DINmiyamotoi were included 

in the statistical analyses.  

We used linear mixed-effect models (lme) from the package nlme (Pinheiro et al. 2015) to 

explore the effect of sampling year and forest characteristics on the response variables 

DON, NIPsl, DINsl, NIPafzelii, DINafzelii, NIPmiyamotoi and DINmiyamotoi. As fixed effects, we 

used sampling year (levels ‘2009’, ‘2010’, ‘2013’, ‘2014’), the dominant tree species 

(‘pine’ or ‘oak’), the presence of a shrub layer (‘yes’ or ‘no’) and all two-way interactions. 

We added forest stand as a random effect to take into account the repeated measures in each 

stand. Significance of the predictor variables in all model fits were assessed using analysis 

of variance (ANOVA) with Chi-square (χ²) test and we checked for heterogeneity of the 

residuals following the approach described in Zuur et al. (2009). Finally, to estimate if 

changes in DON correlate to changes in NIP, we performed a Spearman Rank Correlation 

using the package Hmisc (Harrell et al., 2016) on DON and NIPsl, NIPafzelii and NIPmiyamotoi. 

We did not statistically test the effect of weather variables such as precipitation and 

temperature on the tick-borne disease risk, since our sample size of four years and 22 stands 

was too low.  

3.4 Results 

In the 22 forest stands, a total of 21,376 questing I. ricinus nymphs were collected. We used 

3,080 nymphs for further analysis. Overall, 17.63% of the analysed nymphs was infected 

with at least one pathogen. We identified six different Borrelia genospecies in 341 of the 

471 (72.4%) infected nymphs, namely B. afzelii, B. garinii, B. burgdorferi s.s., B. 
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valaisiana, B. spielmanii and B. bavariensis (Appendix 3.1), but we were unable to identify 

the genospecies in 130 B. burgdorferi s.l.-positive nymphs. Thirteen nymphs were co-

infected with Borrelia and B. miyamotoi. For eight of these co-infected nymphs, B. 

miyamotoi occurred together with B. afzelii.  The Borrelia genospecies in the remaining 

five cases of co-infection could not be identified. 

Figure 3.1 visualizes DON, NIPafzelii and DINafzelii in each year. We found a significant 

effect of year (p < 0.01), dominant tree species (p < 0.01), presence of a shrub layer (p = 

0.01) and the interaction between year and the presence of a shrub layer (p < 0.01) on DON. 

Highest values of DON were observed in 2010 and lowest in 2014 (Table 3.1 and Fig. 3.1). 

DON was consistently higher in oak forests than in pine forests (Fig. 3.1, Table 3.1). DON 

was significantly higher in stands with a shrub layer than in stands without a shrub layer in 

2009 and 2010, but no difference was found in 2013 and 2014.  

The variables NIPsl, NIPafzelii and NIPmiyamotoi did not show significant temporal variation 

(Table 3.1). NIPafzelii was significantly higher in pine forests (p < 0.01), consistently 

throughout the years (Table 3.1 and Fig. 3.1). We found no correlation between DON and 

NIPsl (p = 0.17, ρ = -0.15), between DON and NIPafzelii (p = 0.24, ρ = -0.13) or between 

DON and NIPmiyamotoi (p = 0.32, ρ = -0.11). 

Table 3.1 The effect of sampling year, dominant tree species and presence of a shrub layer 

and their two-way interactions on density of nymphs (DON), nymphal infection prevalence of 

Borrelia burgdorferi s.l. (NIPsl), B. afzelii (NIPafzelii) and B. miyamotoi (NIPmiyamotoi), and 

density of nymphs infected with B. burgdorferi s.l. (DINsl), B. afzelii (DINafzelii) and B. 

miyamotoi (DINmiyamotoi). Values represent F-values obtained by ANOVA (* p < 0.05). Higher 

F-values indicate higher variation in the response variable. 

         

   year tree shrub tree:shrub tree:year shrub:year  

 DON 13.27* 20.29* 8.32* 0.2 2.02 5.90*  

 NIPsl 0.16 4.17 <0.01 0.38 0.03 0.65  

 DINsl 3.82* 6.54* 6.36* 1.04 0.29 2.49  

 NIPafzelii 0.63 9.43* 0.9 0.5 1.42 0.18  

 DINafzelii 1.65 1.59 1.49 1.12 0.19 0.7  

 NIPmiyamotoi 0.27 0.06 <0.01 0.71 0.6 1  

 DINmiyamotoi 2.38 6.85* 0.2 0.5 0.36 1.56  
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Fig. 3.1 The density of nymphs (DON), nymphal infection prevalence of the rodent associated 

pathogen Borrela afzelii (NIPafzelii) and density of nymphs infected with B. afzelii (DINafzelii) 

in the different sampling years averaged over pine and oak stands (mean ± SE).  

 

Like DON, DINsl significantly differed among years (p = 0.02), with highest values in 2010 

and lowest in 2014 (Table 3.1). DINmiyamotoi and DINafzelii did not show significant temporal 

variation (Table 3.1). Like DON, DINsl (p = 0.02) and DINmiyamotoi (p = 0.01) were higher 

in oak forests than in pine forests, consistently throughout the years (Table 3.1).  

3.5 Discussion 

In this temporal survey, we looked at the inter-annual dynamics in tick densities and the 

infection prevalence of tick-borne bacteria, with special attention to the rodent-associated 

human pathogens B. afzelii and B. miyamotoi, in relation to forest types in Belgium. Our 

results indicate that the risk of rodent-associated tick-borne disease varies both between 

different types of forest and between years. This spatiotemporal variation can be related to 
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the response of both ticks and hosts to the biotic and abiotic conditions influenced by the 

dominant tree species, and can be predicted by the density of nymphs.  

In our study, the rodent-associated pathogens B. afzelii and B. miyamotoi were the most 

common bacteria in the investigated nymphs. The bird-associated Borrelia genospecies B. 

garinii and B. valaisiana occurred at low infection prevalence in our study sites. Together, 

this suggests that rodents are most likely the most important feeding hosts for larvae in our 

study area, as stated by Hofmeester et al. (2016). In our study, B. miyamotoi displayed co-

infection with B. afzelii, which supports the assumption that they share the same hosts 

(Barbour et al. 2009; Taylor et al. 2013; Cosson et al. 2014).  

Our results show that DON, but not NIP, displays inter-annual fluctuations. Some European 

studies have reported that an increased supply of acorns can increase the population density 

of wood mouse and bank vole the next year (Tack 2013; van Duijvendijk 2016). Moreover, 

they show that this increased rodent density leads to more feeding opportunities for larvae 

and a high DON one year later, while NIP remains stable. Also densities of other host 

species, such as roe deer, red squirrel and wild boar, may increase after a high seed crop of 

oak, beech or pine (Wauters and Lens 1995; Tixier and Duncan 1996; Wauters et al. 2004; 

Cutini et al. 2013). Oak experienced a high seed crop in 2006, 2007 and 2011, beech in 

2011 and pine in 2012 and 2013. Based on this, we would expect DON to be highest in the 

years 2009, 2013 and 2014. However, DON is highest in 2010 and 2013. Yearly variation 

in weather conditions such as temperature and the amount of precipitation can also 

influence DON. Since ticks are sensitive to desiccation (Needham and Teel 1991), they will 

be more prone to death in dry conditions, or will seek shelter in the litter layer or lower 

vegetation which makes it more difficult to collect them with the standard sampling 

methods and thereby biasing the results. In our study, it is not possible to conclude if mast 

years or weather conditions affect DON, as these and other possible influencing factors are 

not accounted for. 

Lyme borreliosis incidence has increased significantly the last decades in many European 

countries (Hofhuis et al. 2006; Ducoffre 2010; Sprong et al. 2012). We found no clear 

pattern in DON, NIPsl or DINsl but rather DON and DINsl varied from one year to the other. 

Similar to our results, Estrada-Peña et al. (2011) detected no specific temporal trend at the 

European level in the prevalence of Borrelia genospecies and relate the prevalence of 

genospecies across Europe to temperature and vegetation stress, which are important 
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drivers of both tick and host populations. Like in other studies (Jouda et al. 2004; James et 

al. 2013; Vourc’h et al. 2016), but contrary to Tälleklint and Jaenson (1996), we found no 

correlation between DON and NIP. As NIP in our study did not vary from year to year, the 

temporal variation in DIN resembles the temporal variation in DON. This confirms that 

DON can be a good predictor of disease risk, as already suggested by e.g. Jaenson et al. 

(2009). The relationship between DON and NIP, however, can depend on the specific host 

community composition (van Buskirk and Ostfeld 1995; Tälleklint and Jaenson 1996b; 

Kurtenbach et al. 2006). 

In accordance with other studies (Tack et al. 2012b) and as shown in Chapter 2, we found 

a higher DON in oak forests and a higher NIPafzelii in pine forests. The higher DON in oak 

stands can be explained by the more favourable biotic and abiotic conditions for ticks in 

oak forests than in pine forests, such as a better microclimate or a higher abundance of hosts 

(Gray et al. 1998). Previous research has shown that oak forests in our study region harbour 

higher densities of small rodents and roe deer compared to pine forests, and thus more 

feeding opportunities for ticks (Tack et al. 2012a; Tack 2013). Although the densities of 

small rodents are higher in oak than in pine forests, it is possible that, perhaps due to their 

wide ecological tolerance (Douglass et al. 1992), wood mouse and bank vole contribute 

more to the host community in pine than in oak forests, relative to other host species. This 

way they feed relatively more larvae in pine forests. Squirrels are also generally more 

abundant in pine than in oak forests (Wauters and Lens 1995). Since squirrels are, like mice 

and voles, believed to be associated with B. afzelii (Humair et al. 1995; Hanincová et al. 

2003a; Pisanu et al. 2014), this might explain the higher NIPafzelii in pine than in oak stands.  

3.6 Conclusions 

From our results, we may conclude that the density of nymphs can be used to predict yearly 

variation in tick-borne disease risk. We found that the effect of the dominant tree species 

on the density of nymphs, which reflects changes in biotic and abiotic conditions, is 

consistent through time. In this study, we did not directly examine the host community of 

the ticks. Further research should therefore try to determine the exact contribution of the 

different host species and of the whole host community to the enzootic cycle of human 

pathogens, and to test the effect of weather conditions and different host community 

compositions to the tick-borne disease risk. 
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Appendix 3.1  

The infection prevalence (%) of Ixodes ricinus nymphs with Borrelia miyamotoi or a distinct 

Borrelia genospecies in 2009, 2010, 2013 and 2014 in each studied forest type, averaged over all 

forest stands from that forest type. We approximated the nymphal infection prevalence of the 

Borrelia genospecies to correct for the samples that were positive in RT-PCR but could not be 

identified to genospecies level, as written in the text. 

Bacteria Year   Pine       Oak       

      without shrub with shrub without shrub with shrub 

B. afzelii 2009  17.9  9.1  9.0  11.1  

 2010  10.6  10.0  9.1  8.8  

 2013  16.0  16.0  9.6  6.3  

 2014  15.3  13.5  6.3  6.0  

           
B. garinii 2009  0  1.3  4.8  2.0  

 2010  0  3.5  0.5  0.6  

 2013  0  1.0  1.5  2.9  

 2014  0  1.8  0.6  7.4  

           
B. burgdorferi s.s. 2009  3.3  3.6  0  1.7  

 2010  5.4  1.8  1.2  4.3  

 2013  0  0.6  4.0  0.6  

 2014  1.2  0.9  0  0  

           
B. valaisiana 2009  0  0.8  0.6  0  

 2010  0  1.4  0.6  0  

 2013  0  0  0.6  0.6  

 2014  0  1.0  1.7  0  

           
B. spielmanii 2009  0  0  0  0  

 2010  0  0  0  0  

 2013  0  0  0.5  1.1  

 2014  0.7  0.0  1.3  1.5  

           
B. bavariensis 2009  0  0  0  0  

 2010  0  0  0  0.6  

 2013  0  0  0  0  

 2014  0  0  0  0  

           
B. miyamotoi 2009  0.6  3.8  3.8  2.3  

 2010  2.9  1.9  3.3  3.4  

 2013  3.4  2.9  3.8  1.7  
  2014   1.7   3.3   1.9   2.3   
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4 Melting pot of tick-borne zoonoses: the European hedgehog contributes to the 

maintenance of various tick-borne diseases in natural cycles urban and suburban 

areas 

 

After: Jahfari S. and Ruyts S.C., Frazer-Mendelewska E., Jaarsma R., Verheyen 

K., Sprong H. (2017). Melting pot of tick-borne zoonoses: the European hedgehog 

contributes to the maintenance of various tick-borne diseases in natural cycles 

urban and suburban areas. Parasites & Vectors, 10(1), 134 (IF 3.080) 

 

4.1 Abstract 

European hedgehogs (Erinaceus europaeus) are urban dwellers and host both Ixodes 

ricinus and I. hexagonus. These ticks transmit several zoonotic pathogens like Borrelia 

burgdorferi s.l. (‘Borrelia’), Anaplasma phagocytophilum, Rickettsia helvetica, Borrelia 

miyamotoi and “Candidatus Neoehrlichia mikurensis”. It is unclear to what extent 

hedgehogs in (sub)urban areas contribute to the presence of infected ticks in these areas, 

which subsequently pose a risk for acquiring a tick-borne disease. Engorged ticks from 

hedgehogs were collected from (sub)urban areas via rescue centres in Belgium. Ticks were 

screened individually for presence of Borrelia genospecies, B. miyamotoi, A. 

phagocytophilum, R. helvetica and “Ca. N. mikurensis”. Infection rates of the different 

pathogens in hedgehog ticks were calculated and compared to infection rates in questing 

ticks. Both I. hexagonus and I. ricinus of all life stages were found on the 54 investigated 

hedgehogs. Only a few hedgehogs carried most of the ticks, with six of the 54 hedgehogs 

carrying more than half of all ticks. Anaplasma phagocytophilum, R. helvetica, B. afzelii, 

B. bavariensis and B. spielmanii were found significantly more in ticks from hedgehogs in 

comparison to questing I. ricinus. European hedgehogs seem to contribute to the spread 

and transmission of tick-borne pathogens in urban areas. The relatively high prevalence of 

B. bavariensis, B. spielmanii, B. afzelii, A. phagocytophilum and R. helvetica in engorged 

ticks suggests that hedgehogs contribute to their enzootic cycles in (sub)urban areas. The 

extent to which hedgehogs can independently maintain these agents in natural cycles and 

the role of other hosts (rodents and birds) remain to be investigated.  
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4.2 Introduction 

The Borrelia genospecies are most commonly transmitted to humans by Ixodes ricinus; a 

tick species that quests in the vegetation to find a host for its blood meal. Other ixodid tick 

species, such as I. hexagonus, have been shown to transmit Borrelia genospecies to its host 

species too (Skuballa et al. 2012). Contrary to I. ricinus, I. hexagonus does not quest but in 

its off-host phase, mainly stays in the nests of its host species, which is primarily the West 

European hedgehog (Erinaceus europaeus Linnaeus, 1758). The European hedgehog is a 

nocturnal insectivorous mammal commonly found throughout Western Europe (Reeve 

1994). They seem to have adjusted to a wide variety of habitats and occur in rural, suburban, 

and urban areas but generally prefer grassland with sufficient edge habitats. Hedgehogs can 

reach up to nine times higher densities in urban areas with parks and garden, than in rural 

areas, with lowest densities in forests and open grassland fields and agricultural land 

without cover such as shrubs or dead wood (Huijser 1999; Young et al. 2006; Hubert et al. 

2011). Since they are one of the most successful urban adapters, hedgehogs and I. 

hexagonus could contribute to the spread and persistence of pathogens in a (sub)urban 

habitat via secondary enzootic cycles, even when the contact between I. hexagonus and 

humans is low (Pfäffle et al. 2011; Skuballa et al. 2012). 

Only a few studies have been performed on the reservoir competence of the European 

hedgehog. These studies have shown that these mammals can be infected with different 

Borrelia genospecies (Gern et al. 1997; Skuballa et al. 2007; Skuballa et al. 2012) as well 

as other tick-borne pathogens, such as Anaplasma phagocytophilum (Skuballa et al. 2010; 

Silaghi et al. 2012), tick-borne encephalitis virus (TBEV) (Labuda and Randolph 1999) and 

Rickettsia helvetica (Speck et al. 2013). The role of the European hedgehog and both ixodid 

tick species feeding on it in the transmission cycle of many tick-borne pathogens like 

Borrelia miyamotoi and “Candidatus Neoehrlichia mikurensis” is not completely 

illuminated, yet (Krawczyk et al. 2015). 

In this study, we aim to investigate the prevalence of Borrelia genospecies, B. miyamotoi, 

A. phagocytophilum, “Ca. N. mikurensis” and R. helvetica in the different stages of the I. 

hexagonus and I. ricinus tick species sampled from European hedgehogs from Belgium. 

Furthermore, we aim to investigate the role of these tick species and that of the hedgehog 

in the enzootic cycle of the different disease pathogens. By using epidemiological analysis 

and comparing the infection prevalences of the different pathogens from engorged ticks 
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collected from hedgehogs with questing nymphs from the vegetation, we aim to i) 

determine the reservoir status of the European hedgehog for Borrelia genospecies, B. 

miyamotoi, A. phagocytophilum, “Ca. N. mikurensis” and R. helvetica, and ii) find 

indications for the vector competence of I. hexagonus for tick-borne pathogens. 

4.3 Methods  

4.3.1 Hedgehog and tick sampling 

Since European hedgehogs are legally protected in Belgium, the current investigation was 

carried out on ticks sampled from hedgehogs that were brought to the rescue centres of 

Herenthout and Heusden-Zolder in the Kempen, Belgium. In general, these hedgehogs 

were captured in gardens and urban areas by civilians. To grant the hedgehogs an easy and 

full recovery, removal of all ectoparasites upon arrival at the rescue centre is a standard 

procedure. Because it would be detrimental for their recovery, it was not possible to analyse 

blood samples of the hedgehogs. For this study, attached ticks of all life stages were 

collected by the centres' volunteers in 2014 (both centres) and 2015 (only Herenthout) 

between the end of April and the end of October. Tick specimens were stored in 70% 

ethanol at room temperature until further investigation. Ticks were identified to species and 

life stage (Arthur 1963). The number of attached ticks (tick burden) was recorded for each 

hedgehog. Since only hedgehogs that harboured ticks were used in this study, there is no 

data on the percentage of hedgehogs that were infested by ticks. Age (adult or juvenile) 

was determined based on size (Skuballa et al. 2012) for all hedgehogs, except two. The 

questing I. ricinus ticks that we used in this study were caught by drag-sampling the 

vegetation in a suburban forest in the same region as where the hedgehogs were collected, 

are part of a previously published study (Heylen et al. 2016). 

4.3.2 Sample preparation and molecular detection of tick-borne pathogens  

All ticks were processed individually. The questing I. ricinus ticks that are part of a 

previously published study (Heylen et al. 2016) were processed and analysed by using the 

same protocols. Nucleic acids were extracted using the DNeasy Blood & Tissue Kit 

(Qiagen, Hilden, Germany), according to the manufacturer's instructions. The extracted 

DNA was stored at -20 degrees Celsius until further use. Ticks were tested individually for 

presence of Borrelia, B. miyamotoi, A. phagocytophilum, “Ca. N. mikurensis” and R. 
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helvetica DNA using two separate multiplex real-time PCR assays as described before 

(Stenos et al. 2005; Jahfari et al. 2012; Heylen et al. 2013a; Heylen et al. 2016), followed 

by sequencing for species identification. For the identification of Borrelia genospecies a 

conventional PCR assay targeting the 5S-23S intergenic region (IGS) was performed. 

Borrelia genospecies identification was determined by comparison of sequences to isolate 

in-house molecular databases (Coipan et al. 2013a). As genospecies identification was 

successful for only 43.4% of the Borrelia-positive sequences, we proportionally assigned 

these unidentifiable sequences in each life stage per tick species to the different Borrelia 

genospecies present in each stage, using the proportion of each genospecies detected in that 

stage as a weighting factor, as described in Chapter 3. For confirmation of B. miyamotoi 

conventional PCR targeting glpQ gene was done (Hovius et al. 2014). The groEL gene of 

A. phagocytophilum was amplified and sequenced (Jahfari et al. 2014). For all conventional 

PCR's, both strands of PCR products were sequenced by BaseClear (Leiden, the 

Netherlands). The molecular tools we used are not suited to detect infection intensities of 

the pathogens.  

4.3.3 Statistical tests 

All statistical tests were performed using R version 3.2.0 (R Core Team 2017) and all 

graphs were made with the package ggplot2 (Wickham 2009). To test the differences in 

distribution of tick species, tick burden and infection prevalence of the different pathogens 

in ticks on hedgehogs from different age classes, Kruskal-Wallis tests were employed. The 

number of mixed tick species infestations (both tick species on the same hedgehog) was 

compared to the number of single species infestations (only I. ricinus or I. hexagonus) with 

Pearson’s Chi-squared test. With the prop.test function, we tested if the pathogens in the 

ticks occurred more frequently alone or co-existing with a different pathogen in the same 

tick. Afterwards we compared the infection prevalence of the pathogens in I. hexagonus 

with the prevalence in I. ricinus. Finally, for a species to be a reservoir host of a pathogen, 

it has to be able to transmit the pathogen to ticks feeding on it. This can be evaluated by  

allowing an uninfected tick feeding on the host and afterwards analysing the tick for 

infection (‘xenodiagnosis’). To assess the transmission capabilities of the hedgehog for 

each pathogen, we compared the infection prevalence in the engorged ticks collected from 

hedgehogs with the infection prevalence in questing I. ricinus from the same region, and 

used this as a proxy to evaluate the reservoir status of the hedgehog. In order to evaluate 
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the importance of a host species to transmit a pathogen, it is best to compare engorged I. 

ricinus larvae with questing I. ricinus larvae and nymphs.  

As the amount of engorged I. ricinus larvae is too low to perform these analyses (n = 7), 

we decided to compare the infection prevalence of each pathogen in engorged I. ricinus 

larvae and nymphs collected from hedgehogs with the infection prevalence in host-seeking 

I. ricinus nymphs and adults. This way, we compare ticks that fed once (engorged larvae 

and questing nymphs) or twice (engorged nymphs and questing adults), and omit ticks that 

had the chance to feed three times (engorged adults). Engorged adults have a higher chance 

to be infected than a questing tick anyway, because a questing tick has never fed more than 

twice. The difference between the pathogen communities in engorged and questing ticks is 

thus that the engorged ticks will have certainly fed, at least once, on hedgehogs, while the 

chance that the questing ticks will have fed on hedgehogs is rather low. Differences 

between the infection prevalence of the pathogens in engorged and questing ticks may then 

reflect the importance of the hedgehog in the transmission of pathogens. A higher infection 

prevalence of a certain pathogen in engorged larvae and nymphs will then suggest that the 

hedgehog has an important role in the transmission of that pathogen. 

4.4 Results 

Of the 54 hedgehogs investigated, 24 were adults and 28 were juveniles. For two 

hedgehogs, age was not determined. Both I. hexagonus and I. ricinus ticks of all life stages 

were found on the hedgehogs. The number of ticks per hedgehog ranged from one to 167. 

Most hedgehogs in our study carried only few ticks, while only few individuals harboured 

the majority of the ticks. Six of the 54 hedgehogs carried more than half of all ticks 

(624/1205) and only 15 hedgehogs carried 25 or more ticks. Tick burden did not 

significantly differ between hedgehog age classes (p = 0.97). In total, we collected 1205 

ticks and found significantly more I. hexagonus (n = 1132) than I. ricinus (n = 73, p < 0.05). 

The most common life stage of I. hexagonus retrieved from the hedgehogs were nymphs 

(n = 586, p = 0.03). Of I. ricinus, all life stages were equally common (p = 0.07, Fig. 4.1). 

Some hedgehogs were found to harbour both species of ticks (n = 10), but infestations with 

only one tick species were more common (n = 44, p < 0.05).  

Of the 1205 collected ticks, two (one I. ricinus and one I. hexagonus) got lost during sample 

preparation; hence the molecular analyses were performed on 1203 ticks. A total of 859 
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(71.4%) ticks was infected with at least one of the tested pathogens. Of these infected ticks, 

524 (61%) had a single infection, and 335 ticks (39%) were infected with more than one 

pathogen of another genus. Anaplasma phagocytophilum and R. helvetica were the two 

most common pathogens and occurred in 466 ticks (38.7% of all analysed ticks or 54% of 

all infected ticks) coming from 34 hedgehogs and in 481 ticks (40% of all analysed ticks or 

56% of all infected ticks) coming from 37 hedgehogs, respectively (Table 4.1, Appendix 

4.1). An infection with Borrelia occurred in 297 ticks (24.7% of all analysed ticks or 34.6% 

of all infected ticks) from 28 hedgehogs. We were able to identify the Borrelia genospecies 

in 129 (43.4%) of these infected ticks, of which B. afzelii (n = 80), B. spielmanii (n = 28) 

and B. bavariensis (n = 17) were the most common. Borrelia turdi occurred once in both 

tick species and Borrelia garinii and B. valaisiana each in one I. ricinus tick. An infection 

with B. miyamotoi occurred in 20 ticks from five hedgehogs. Only three Ixodes ricinus ticks 

from two hedgehogs were infected with “Ca. N. mikurensis” (Appendix 4.1, Fig. 4.2). The 

pathogen prevalence per tick species is depicted in Figure 4.2. Ixodes ricinus seems to be 

more likely infected with at least one pathogen (59/72, 81.9%) than I. hexagonus 

(800/1131, 70.7%) but the difference between the two tick species was only marginally 

significant (p = 0.06). More specifically, the infection prevalence of A. phagocytophilum, 

“Ca. N. mikurensis”, B. afzelii, B. garinii, B. valaisiana and B. turdi was highest in I. 

ricinus while infection with R. helvetica was highest in I. hexagonus (p < 0.05, Fig. 4.2). 

For the infection prevalence of B. miyamotoi, B. spielmanii and B. bavariensis, no 

difference between the tick species could be observed. There was no difference in infection 

prevalence between adult and juvenile hedgehogs for any of the detected pathogens (p > 

0.05).  

Co-infections of other pathogens with Borrelia were investigated. For I. ricinus, 37 of the 

59 infected ticks (62.7%) carried two (n=31) or three (n=6) pathogens. The most common 

co-infection in I. ricinus (24/37) was with Borrelia and A. phagocytophilum. Of the 800 

infected I. hexagonus ticks, 298 (37.3%) had a co-infection composed of two (n=232) or 

three (n=65) pathogens. Co-infections of A. phagocytophilum and R. helvetica (102/298), 

A. phagocytophilum and Borrelia (86/298) and A. phagocytophilum, R. helvetica and 

Borrelia (64/298) occurred most often. One I. hexagonus tick was infected with four 

pathogens: A. phagocytophilum, R. helvetica, Borrelia and B. miyamotoi. All pathogens 

were found more often co-existing with another pathogen in a tick, than as the single 

pathogen infecting the tick (p < 0.05).  
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Fig. 4.1 The distribution of the different life stages of Ixodes ricinus and Ixodes hexagonus 

collected from 54 hedgehogs in the Kempen, Belgium (mean ± SE). 

 

 

 

 

Ixodes ricinus larvae and nymphs from hedgehogs were infected more often (28/35) than 

questing I. ricinus nymphs and adults (367/1874, p < 0.05). We could not detect any 

difference in prevalence of R. helvetica, B. miyamotoi, B. garinii and B. valaisiana. For all 

other pathogens, infection prevalence was significantly higher in the engorged ticks from 

the hedgehogs (p < 0.05).  
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Fig. 4.2 The prevalence of the distinct pathogens in engorged Ixodes ricinus and I. hexagonus 

ticks collected from hedgehogs and in questing I. ricinus collected from the vegetation (mean 

± SE). No SE was calculated for the Borrelia genospecies, since we used the prevalence of 

each genospecies corrected for the unidentifiable sequences per life stage per tick species, as 

written in the text. 
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Afterwards we repeated these analyses for I. hexagonus collected from hedgehogs and 

compared the larvae and nymphs of this tick species with the questing I. ricinus nymphs 

and adults collected from the vegetation. This enables us to interpret more comprehensively 

the reservoir role of the hedgehog for the different pathogens, and the vector competence 

of I. hexagonus. We observed that B. garinii and B. valaisiana were more prevalent in the 

questing I. ricinus ticks. No significant difference in infection prevalence between questing 

or engorged ticks could be detected for B. turdi, B. miyamotoi and “Ca. N. mikurensis”. 

The prevalence of all other pathogens, including R. helvetica, is higher in the engorged than 

the questing ticks. Furthermore, when comparing just the ticks collected from hedgehogs 

that carried 25 or more ticks, we obtain the same outcome. 

For A. phagocytophilum, R. helvetica, B. bavariensis and B. miyamotoi, the distribution of 

the infections was clustered in some hedgehogs, with most hedgehogs harbouring no, or 

only few infected ticks, while only few hedgehogs were responsible for the majority of the 

infected ticks (Fig. 4.3). Twelve of the 17 ticks infected with B. bavariensis and 16 of the 

20 ticks infected with B. miyamotoi came from one individual hedgehog (hedgehog #18). 

Hedgehog #33 harboured 125 ticks of which 118 were infected with A. phagocytophilum 

(25.3% of all A. phagocytophilum infections). Still, there are hedgehogs that harbour many 

ticks, while no or few or these ticks are infected with one of these pathogens (Fig. 4.3). 

Of the A. phagocytophilum positive ticks, 43 were sequenced of which 33 I. hexagonus and 

10 I. ricinus from 18 different individual hedgehogs. All the groEL sequences of the A. 

phagocytophilum isolates clustered with the zoonotic ecotype, ecotype I (Jahfari et al. 

2014).   
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4.5 Discussion  

Our results confirm that hedgehogs are a host of all three stages of I. hexagonus and I. 

ricinus. Still, more I. hexagonus were found feeding on hedgehogs than I. ricinus ticks. The 

aggregation of ticks on hedgehogs varied vastly between the individual hedgehogs, as only 

a few hedgehogs were recorded to carry most of the ticks. Such aggregated distribution, in 

which most individuals carry only few parasites and only a few individuals carry the 

majority of parasites, is a well-known principle in parasitology (Shaw et al. 1998; Hughes 

and Randolph 2001). This means that just a few hedgehogs contribute to tick maintenance, 

similar to what is seen on rodents (van Duijvendijk 2016). This seems to be especially the 

case for I. hexagonus, and to a lesser extend for I. ricinus, since the burdens of I. ricinus on 

hedgehogs appears to be relatively low. Moreover, it is less likely that hedgehogs can 

maintain the I. ricinus life cycle as the sole host species because, even though it can feed 

all life stages of this generalist tick species. Hedgehog densities in forested areas, the 

preferred habitat of I. ricinus, are probably too low to feed enough ticks, especially 

compared to the densities of wood mouse and bank vole, species that are generally 

responsible for the feeding of the majority of I. ricinus larvae (Huijser 1999; Verkem et al. 

2003; Hubert et al. 2011). Namely, if all I. ricinus stages should rely only on the hedgehog 

to feed on, many ticks would starve and perish since the amount of encounters with this 

host would be low. We think, rather, that a host community without large mammals but 

composed only of small or medium-sized mammals such as rodents, birds and hedgehogs 

(like in (sub)urban area's and parks), can already be sufficient to complete the life cycle of 

I. ricinus. This because, as we show, large mammals are not the only hosts adult I. ricinus 

ticks feed on. More research is needed, however, to elucidate the role of hedgehogs in the 

life cycle of this generalist tick species. Other animals that live close to human settlements, 

such as foxes, squirrels and martens could possibly also serve as a host for adult ticks 

(Sréter et al. 2005; Millins et al. 2015). Moreover, domestic animals, such as dogs and cats, 

are known to carry adult females (Ogden et al. 2000). The role of wildlife and domesticated 

animals in tick-borne disease risk, however, still needs to be addressed. Furthermore, the 

ticks we investigated were collected from animals that were sick or needed (medical) 

assistance in some way. This might have influenced the results from this study, and future 

research should investigate ticks from hedgehog populations in nature. 

Since 71.4% of the ticks retrieved from hedgehogs were infected by at least one pathogen, 

hedgehogs can be considered as epidemiologically important wildlife species. Moreover, 
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39% of all infected ticks carried more than one pathogen of another genus. High prevalence 

of tick-borne pathogens B. bavariensis, B. spielmanii, B. afzelii, A. phagocytophilum and 

R. helvetica in engorged I. hexagonus and I. ricinus ticks obtained from E. europaeus, 

indicates that hedgehogs contribute to pathogen maintenance in natural cycles in urban and 

suburban areas. For B. bavariensis, B. spielmanii, B. afzelii, A. phagocytophilum and R. 

helvetica, the infection prevalence was higher in the engorged ticks of both species, in 

comparison to the infection rates in questing ticks from the same region. This indicates that 

the hedgehog is a possible reservoir host of these pathogens and contributes to their 

enzootic cycle. On the other hand, “Ca. N. mikurensis” infection rate was not significantly 

higher in questing I. ricinus ticks than in engorged hedgehog ticks, indicating that 

hedgehogs do not play a main role in the maintenance of the enzootic cycle of this pathogen.  

Engorged I. ricinus ticks tend to be more infected with any pathogen in comparison to 

engorged I. hexagonus, except for R. helvetica, which was significantly more prevalent in 

I. hexagonus ticks. Perhaps this observation can be subscribed to transmission pathway of 

R. helvetica, which occurs transovarially as well as transstadially. Therefore, ticks in nature 

are usually thought to be the main reservoir and vectors of R. helvetica (Socolovschi et al. 

2009). However, since transovarial transmission rates are less than 100%, vertebrate hosts 

like the hedgehog can act as an amplifier of this pathogen, playing a vital role in 

transmission cycles. The pathogens that are present in engorged I. ricinus ticks can 

originate from a previous blood meal from another host species, while the pathogens I. 

hexagonus carries are most probably coming from the hedgehog, since hedgehogs are their 

preferred host species. This way infection prevalence in engorged I. ricinus can be higher 

than engorged I. hexagonus, when they fed in a previous stage on a host species that 

functions as an efficient reservoir species for some of the investigated pathogens, such as 

small rodents or birds. 

Remarkably, the infection of some pathogens such as B. bavariensis, B. miyamotoi, R. 

helvetica and A. phagocytophilum seems to be clustered per individual hedgehog, meaning 

that only a few hedgehogs contribute to the gross of the infected ticks. Borrelia  miyamotoi 

is known to give short-term systemic infection in rodents, therefore making rodents 

excellent but transitory hosts of this bacterium (Burri et al. 2014). Vertebrates other than 

rodents may also become infected: B. miyamotoi DNA was also found in the tissue of an 

European greenfinch and a great tit (Wagemakers et al. 2017). The clustering of infected 
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fed ticks on only one hedgehog in this study indicates that B. miyamotoi might cause a 

short-term systemic infection in hedgehogs as well. The role of these animals in the 

transmission cycle is not clear; they could be transitory hosts. Another possible explanation 

for the fact that many ticks were infected with the same pathogen on the same hedgehog 

could be co-feeding transmission (Randolph 2011; Voordouw 2015). With this route of 

transmission, the co-feeding ticks act as reservoirs and vectors. The host is only a transient 

bridge, bringing together infected and uninfected ticks in both space and time, thereby 

facilitating pathogen exchange. The host does not necessarily have to be infected himself 

(Randolph 2011; Voordouw 2015). The bird associated Borrelia genospecies, B. garinii 

and B. valaisiana, were each detected in one I. ricinus adult tick, and B. turdi occurred in 

one I. hexagonus female and one I. ricinus nymph. We can thus confirm the indication that 

hedgehogs are no reservoir hosts for the bird associated, only for the rodent-associated, 

Borrelia genospecies (Skuballa et al. 2012). 

Hedgehogs and their host-specific parasite I. hexagonus seem to play a role in maintaining 

some pathogens, like B. bavariensis, B. spielmanii, and A. phagocytophilum in cryptic 

cycles. The generalist feeding behaviour of I. ricinus and the low prevalence of these 

pathogens in questing I. ricinus suggest that they do not play a main role in the maintenance 

of the enzootic cycle of these pathogens. However, when feeding on hedgehogs I. ricinus 

may still be infected by I. hexagonus-associated pathogens and transmit them to humans. 

Borrelia bavariensis can cause neurological disease in humans (Coipan et al. 2016), and B. 

spielmanii has been linked to erythrema migrans in humans. Both pathogens have already 

been linked to hedgehogs (Skuballa et al. 2007; Skuballa et al. 2012). Moreover, co-

infection of R. helvetica and Borrelia has been shown in neuroborreliosis patients 

(Koetsveld et al. 2015). Also, co-infections are thought to affect the severity of disease and 

influence clinical outcomes in some cases (Swanson et al. 2006). Since hedgehogs seem to 

contribute to co-infection rates in ticks, this poses an increased health risk. Moreover, it has 

been shown that co-infections can reduce or increase the virulence of one or multiple 

pathogens, depending on the mechanistic details of the pathogens’ exploitation of the host 

or tick (Brown et al. 2002). The effect of the co-infections in the ticks on the virulence of 

the pathogens in the ticks has not been investigated but should be addressed in further 

research. The variant of A. phagocytophilum detected in these samples were all linked to 

human cases of anaplasmosis (ecotype I) (Jahfari et al. 2014).  
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4.6 Conclusions 

From these findings we conclude that hedgehogs are important components in the enzootic 

cycle of a diverse set of human pathogens, thereby contributing to the maintenance of 

various tick-borne diseases in (sub)urban areas. Humans are likely to come into contact 

with ticks infected with one or several of these pathogens while gardening or recreating in 

parks (Mulder et al. 2013). This poses a potential human health risk. Most hedgehogs, 

however, carry only few ticks and hedgehog densities are relatively low, thus hedgehogs 

will probably infect only few ticks with a certain pathogen. Further research is necessary 

to elucidate the interaction between hedgehog densities, tick burden and tick infection 

prevalence and to assess the precise impact of hedgehogs on the enzootic cycle of the 

various tick borne human pathogens, and the associated human health risk.   
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5 Molecular detection of tick-borne pathogens Borrelia afzelii, Borrelia miyamotoi 

and Anaplasma phagocytophilum in Eurasian red squirrels (Sciurus vulgaris) 

 

 

After: Ruyts S. C., Frazer-Mendelewska E., Van Den Berge K., Verheyen K., 

Sprong H. (2017). Molecular detection of tick-borne pathogens Borrelia afzelii, 

Borrelia miyamotoi and Anaplasma phagocytophilum in Eurasian red squirrels 

(Sciurus vulgaris). European Journal of Wildlife Research, 63(3), 43 (IF 1.264) 

 

5.1 Abstract 

Eurasian red squirrels (Sciurus vulgaris) are common hosts of ixodid ticks and could thus 

carry tick-borne disease agents. The relative contribution of the red squirrel, a medium-

sized rodent species, to the transmission dynamics of tick-borne pathogens in Europe yet 

remains unclear. We analysed spleen and liver samples from 45 dead squirrels collected in 

Flanders, Belgium, and detected the presence of Borrelia burgdorferi s.l. in the spleen of 

two squirrels (4.4%). One of the sequences could be identified as B. afzelii. Borrelia 

miyamotoi was detected in the spleen of three squirrels (6.7%) and Anaplasma 

phagocytophilum in four spleen samples (8.9%). Both A. phagocytophilum ecotype I and 

II were found. We could not detect the presence of “Candidatus Neoehrlichia mikurensis” 

or tick-borne encephalitis virus in any of the squirrels. Our results suggest that Eurasian red 

squirrels can host B. afzelii, as already proposed by previous studies, but we could not 

confirm the previous established association between squirrels and B. burgdorferi sensu 

stricto. Our results demonstrate the epidemiological importance of the red squirrel, 

particularly in (sub)urban areas, since they can harbour a similar community of tick-borne 

pathogens as do mice and voles and can act as hosts for A. phagocytophilum ecotype I, 

which has important implications for human health risk. 
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5.2 Introduction 

For some common host species, such as the medium-sized rodent Eurasian red squirrel 

(Sciurus vulgaris Linnaeus, 1758), the exact contribution in the ecology of Lyme 

borreliosis has not yet been determined. Some studies, however, suggest that red squirrels 

act as reservoir hosts for transmitting the Borrelia burgdorferi s.l. (‘Borrelia’) genospecies 

B. afzelii and B. burgdorferi sensu stricto (s.s.) to ticks (Humair and Gern 1998; Pisanu et 

al. 2014). Furthermore, rodents can carry the emerging pathogens Borrelia miyamotoi, 

“Candidatus Neoehrlichia mikurensis”, Anaplasma phagocytophilum and tick-borne 

encephalitis virus (TBEV) (Mansfield et al. 2009; Burri et al. 2014; Obiegala et al. 2014). 

The relative contribution of the red squirrel to the transmission dynamics of the above-

mentioned tick-borne pathogens in Europe thus remains to be elucidated. This is of high 

epidemiological importance, since red squirrels can reach higher densities in (sub)urban 

areas than in forested areas (see Rézouki et al. (2014) and references therein). This way 

they can potentially pose an important human health risk by maintaining and spreading 

tick-borne pathogens in ixodid ticks in areas close to human habitation. In this study, we 

tried to detect the presence of DNA of the tick-borne pathogens Borrelia, B. miyamotoi, 

“Ca. N. mikurensis”, A. phagocytophilum and TBEV in tissue samples of spleen and liver 

of dead squirrels. The presence of DNA in these organs points to systemic disseminated 

infection in the host animal, which indicates that the pathogen has dispersed throughout the 

body Furthermore, we aimed to confirm the suspected association of previous studies 

between the red squirrel and the Borrelia genospecies B. afzelii and B. burgdorferi s.s.  

5.3 Material and methods 

As a part of a surveillance study, the Flemish Research Institute for Forest and Nature 

collected dead red squirrels, which were victims of road traffic, throughout Flanders, 

Belgium, from 2010 to 2014. The bodies were frozen at -20°C until dissection. For this 

study, we selected the 52 animals in which the internal organs were not visibly affected by 

decay or scavengers. Most of the squirrels we used in this study were collected at roads in 

the provinces Antwerpen (19/52) and Limburg (18/52), areas with a high incidence of tick 

bites and Lyme borreliosis compared to other Flemish provinces (Linard et al. 2007; 

tekennet.wiv-isp.be). Other animals came from the province Oost-Vlaanderen (12/52), 

West-Vlaanderen (3/52) or Vlaams-Brabant (4/52), the latter province having a high 

incidence of tick bites and Lyme borreliosis as well (Linard et al. 2007; tekennet.wiv-
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isp.be). No information regarding the surrounding environment was recorded. Tissue 

samples were taken from liver and spleen from 52 animals. Seven animals, of which two 

were females and five were males, were collected between December and February and 45 

animals, of which 25 were females and 20 were males, were collected between March and 

November. This is the activity period of Ixodes ricinus, an important ixodid tick species 

that acts as a vector of the pathogens under study between vertebrate hosts and humans in 

Europe (Dantas-Torres et al. 2012; Coipan et al. 2013b). Since the infection status of a 

reservoir host (and the number of ticks feeding on it) is an important factor in interpreting 

the reservoir role of the host, the infection status in the period that ticks are most active is 

crucial (Hofmeester et al. 2016). Moreover, the presence of a pathogen in the environment 

can be maintained by persistent infection in (long-living) host animals. It is not yet clear if 

squirrels are capable of maintaining persistent infections. Therefore, we decided to report 

the results on the animals collected during tick activity season and during winter as separate 

groups, to better interpret the reservoir role of the squirrel.  

Spleen and liver were collected and frozen at -80°C. For the detection of DNA of Borrelia, 

B. miyamotoi, A. phagocytophilum and “Ca. N. mikurensis”, and the identification of the 

Borrelia genospecies, we refer to the methods described in the previous Chapter and in 

Stenos et al. (2005), Jahfari et al. (2012), Heylen et al. (2013), Coipan et al. (2013a) and 

Heylen et al. (2016). We used primers that can detect all genospecies of Borrelia (Heylen 

et al. 2013b), and all ecotypes of Anaplasma phagocytophilum (Jahfari et al. 2014). For the 

detection of TBEV, real-time qPCR reactions were done in a final volume of 20 μl with 

TaqMan® Fast Virus 1-Step Master Mix (Thermo Fisher scientific, USA), 5 μl of sample 

and 0.4 μM for all primers and 0.4 μM probe. The primers for TBEV we used are described 

in Klaus et al. (2010). An internal control was added to all samples, with 20 min reverse 

transcription step at 50°C, denaturation at 95°C for 30 s and 55 cycles of 95°C for 10 s and 

60°C for 30 s. The amplification was performed on a Roche LightCycler 480 instrument. 

The DNA of bacteria (such as Borrelia) in a wide range of organisms and tissues is fairly 

stable (personal observation), and degradation does not happen easily. Therefore, the 

number of days that the squirrels were dead before collection, which is limited, will most 

likely not influence the prevalence of the pathogens or the ability of the real-time qPCR to 

detect the pathogens in this study.  
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We used the prop.test function in R version 3.3.2 (R Core Team 2017) to test whether 

infection occurred more in male or female squirrels. 

5.4 Results 

Based on the PCR analysis of the tissue samples of the 45 animals collected in the tick 

activity period, we could detect DNA of at least one of the selected pathogens in seven 

animals (15.6%), of which six were males and one was female. Males were found to be 

infected more often than females (p = 0.048). All positive samples were spleens. Borrelia 

DNA was detected in the spleen of two squirrels (4.4%), DNA of B. miyamotoi was found 

in the spleen of three squirrels (6.7%) and A. phagocytophilum DNA in four spleen samples 

(8.9%). One Borrelia sequence was identified as B. afzelii, by conventional PCR followed 

by sequence identification. We were unable to determine the identity of the other isolate. 

Two sequences of A. phagocytophilum were identified as ecotype II and one sequence as 

ecotype I. The third isolate could not be further typed. Co-infection occurred in the spleen 

of two animals. One animal harboured DNA of B. miyamotoi and A. phagocytophilum 

ecotype I and one animal harboured DNA of B. afzelii and B. miyamotoi. Of the eight 

squirrels collected in winter, all animals except one tested negative for all tick-borne 

pathogens investigated. For this male squirrel collected in December, both spleen and liver 

tested positive for Borrelia infection. DNA of “Ca. N. mikurensis” or TBEV could not be 

detected in any of the samples. All Borrelia-positive squirrels originated from a province 

with high incidence of tick bites and Lyme borreliosis (Limburg and Vlaams-Brabant). 

5.5 Discussion 

The prevalence of Borrelia in the tissue samples of red squirrels in our study is low (4.4%), 

in contrast to the infection prevalence in mice such as Apodemus spp., which is on average 

17% (Hofmeester et al. 2016). Our results suggest that squirrels can host B. afzelii, as 

already proposed by previous studies (Humair and Gern 1998; Pisanu et al. 2014). These 

studies report a higher Borrelia prevalence in tissue samples from dead red squirrels and 

state that B. burgdorferi s.s. was the most common genospecies, which we cannot confirm. 

These studies, however, used skin tissue to detect presence of pathogen DNA. It is possible 

that B. burgdorferi s.s., or other Borrelia genospecies, were present in the skin of the 

animals we investigated, but absent from the liver and spleen, because it did not (yet) 

disperse throughout the body. The differences in infection prevalence of Borrelia in 



The Eurasian red squirrel 

69 

 

squirrels and the detection of certain genospecies between Switzerland, France and 

Flanders can also be due to differences in eco-epidemiological aspects, such as e.g. host 

composition, tick-host contact rates or tick population dynamics. Because we were able to 

detect DNA of B. afzelii in the spleen and liver of one individual collected in December, it 

seems that B. afzelii can cause a persistent infection in squirrels. The methods we used in 

this study, however, do not allow us to make statements about the absence of pathogens, 

only about the presence. We emphasize the need to study the presence of pathogens in skin 

tissue of squirrels, as well as in liver and spleen and in ticks that fed on squirrels, to assess 

the role of red squirrels in the transmission of tick-borne pathogens. Moreover, for a species 

to be a reservoir host of a pathogen, it has to be able to transmit the pathogen to ticks feeding 

on it. This can be evaluated by allowing an uninfected tick feeding on the host and 

afterwards analysing the tick for infection (‘xenodiagnosis’). Further research should 

investigate the infection prevalence of tick-borne pathogens in ticks that fed on squirrels. 

Male squirrels were infected with tick-borne pathogens more often than females. Earlier 

studies have shown that at least for some small rodent species, such as bank vole and wood 

mouse, males tend to have higher infestation levels with ticks than females. The higher 

infestation of males has been linked to their larger home ranges (Tälleklint and Jaenson 

1997; Brunner and Ostfeld 2008) and to high testosterone levels, which has been shown to 

weaken the immune response (Hughes and Randolph 2001). This may cause males to be 

infected with tick-borne pathogens more often than females. Red squirrel males have larger 

home ranges than females (Wauters and Dhondt 1992; Wauters et al. 2004).  

Humair & Gern (1998) found a higher prevalence of B. burgdorferi s.s. in ticks collected 

from red squirrels than in questing ticks, and concluded that the red squirrel is probably an 

important reservoir host for this genospecies. The conclusions from that study, however, 

are based on a low sample size (only six squirrels). One study (Pisanu et al. 2014) 

investigated tissue samples of a large amount of squirrels (273 individuals) but the animals 

were collected throughout the year in a large region, without specifying infection 

prevalence per season or region. Hofmeester and colleagues (Hofmeester et al. 2016) 

therefore stress that the results from these two studies are not conclusive.  

Previous research showed that rodents can act as reservoir hosts for B. miyamotoi and “Ca. 

N. mikurensis”, but are probably only accidental hosts of A. phagocytophilum, only rarely 

transmitting the pathogen to attached ticks (Burri et al. 2014; Obiegala et al. 2014). Jahfari 
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et al. (2014) detected A. phagocytophilum ecotype III in the spleen of a wood mouse and 

in two ixodid ticks that had fed on a wood mouse. Ecotype III was not detected in any other 

host species except rodents, and only at very low infection prevalence, and rodents did not 

carry other ecotypes than ecotype III (Jahfari et al. 2014). Contrary to this, we did not find 

ecotype III in the tissue samples of red squirrel in our study. This may be due to the fact 

that ecotype III is probably mainly maintained in an enzootic cycle involving small 

woodland rodents such as mice and voles and I. trianguliceps, an ixodid tick species that is 

not likely to feed on squirrels (Bown et al. 2003). All human cases of anaplasmosis are 

linked only to A. phagocytophilum ecotype I, no other ecotype has been detected in humans 

(Jahfari et al. 2014). We show here that red squirrels can carry A. phagocytophilum ecotype 

I, which has the highest zoonotic potential, and ecotype II, which has been associated to 

wild ungulates (Jahfari et al. 2014).  

5.6 Conclusions 

In our study, we find that the Eurasian red squirrel, which is a medium-sized rodent species, 

can harbour a comparable community of tick-borne pathogens as do small rodents such as 

mice and voles. Our results demonstrate the epidemiological importance of the red squirrel 

since they can carry A. phagocytophilum ecotype I. The exact role of the red squirrel in the 

human health risk remains unclear. Future research should assess the transmission potential 

of different pathogens to ticks and the reservoir competence of this ubiquitous European 

host of ixodid ticks. 
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6 Low probability of a dilution effect for Lyme borreliosis in Belgian forests 

 

After: Ruyts S.C., Landuyt D., Ampoorter E., Heylen D., Ehrmann S., Matthysen 

E., Sprong H., Verheyen K. Low probability of a dilution effect for the rodent 

associated Lyme borreliosis pathogen   Borrelia afzelii in different forest types in 

Belgium, Europe. Ticks and Tick-borne diseases, submitted (IF 3.23) 

6.1 Abstract 

An increasing number of studies have investigated the consequences of biodiversity loss 

for vector-borne disease risk. As host species differ in their ability to transmit the Lyme 

borreliosis bacteria Borrelia burgdorferi s.l. (‘Borrelia’) to ticks, increased host diversity 

can decrease disease prevalence by increasing the proportion of dilution hosts, which 

transmit pathogens less efficiently. Previous research shows that Lyme borreliosis risk 

differs between forest types and suggests that a higher diversity of host species might dilute 

the contribution of small rodents to infect ticks with B. afzelii, a common Borrelia 

genospecies. However, empirical evidence for a dilution effect in Europe is largely lacking. 

We tested the dilution effect hypothesis in 19 Belgian forest stands of different forest types. 

We used both empirical data and a Bayesian belief network to investigate the impact of the 

proportion of dilution hosts on the density of ticks infected with B. afzelii, and identified 

the key drivers of the density of infected ticks, a measure of human infection risk. Densities 

of ticks and B. afzelii infection prevalence differed between forest types, but the model 

indicated that the density of infected ticks is hardly affected by a change in dilution. The 

most important variables in explaining variability in disease risk were related to the density 

of ticks. Combining empirical data with a model-based approach supported decision 

making to reduce tick-borne disease risk. We found a low probability of a dilution effect 

for Lyme borreliosis in a Northwestern European context and emphasize that under these 

circumstances Lyme borreliosis prevention should rather aim at reducing tick-human 

contact rate instead of attempting to increase the proportion of dilution hosts. 

 

 

  



Chapter 6 

74 

 

6.2 Introduction 

In Chapter 2, we have indirectly tested the dilution effect hypothesis for the different 

Borrelia genospecies in Europe and found indications that Lyme borreliosis risk can differ 

between different forest types. Ixodes ricinus nymphs were more likely infected with B. 

afzelii in pine forests than in oak forests and infections with other genospecies tended to 

occur more often in oak forests. These findings suggest that a higher diversity of host 

species might diminish the influence of small rodents to infect ticks with B. afzelii, the most 

common Borrelia genospecies. We thus expect to see a dilution effect for B. afzelii in oak 

forests, caused by a lower proportion of rodents in the host community, and a higher host 

diversity, in oak forests compared to pine forests. However, the relations between forest 

types, host community composition and disease risk have not been adequately studied so 

far. This research gap makes it impossible to verify the validity of the dilution effect 

hypothesis for Lyme borreliosis in Europe.  

This study aims to unravel the relationship between host community composition and Lyme 

borreliosis risk and tests the dilution effect hypothesis for Lyme borreliosis in a European 

context, using the density of infected nymphs, a widely applied disease risk measure 

(Ogden and Tsao 2009). We focus on Borrelia afzelii, the most common Borrelia 

genospecies in our study region, as shown in Chapters 2 and 3, whose enzootic cycle is 

mainly driven by rodents. We use empirical models to study relationships in the field and 

a literature-based Bayesian belief network model to (1) gain more insights into the 

mechanisms that drive these field observations in different forest types, and to (2) position 

our study within the full range of conditions that can be observed in the field.  

6.3 Material and methods 

6.3.1 Study site 

For this study, we used the I. ricinus ticks that were collected from forest stands in site AH 

and site P in the framework of the studies described in Chapters 2 and 3. In site AH, we 

investigated 10 stands: two pine stands without a shrub layer, three pine stands with a shrub 

layer, three oak stands without a shrub layer, and two oak stands with a shrub layer. In site 

P, we sampled nine stands: three pine stands without a shrub layer, three pine stands with 

a shrub layer, and three oak stands with a shrub layer. Oak stands with a shrub layer are 

supposed to contain the highest host diversity, and pine stands without a shrub layer 
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supposedly the lowest (Carnus et al. 2006; Du Bus de Warnaffe and Deconchat 2008). In 

each stand, we chose a sampling plot of 0.2 ha in the center of each stand, representative 

for that forest type, for the collection of the data.  

6.3.2 Data collection 

6.3.2.1 Ticks 

In the studies described in Chapters 2 and 3, we only examined the density of (infected) 

questing I. ricinus nymphs. The nymphal life stage most often transmits Borrelia infection 

to humans, so this is the most interesting life stage to examine in the light of human health. 

The density of infected nymphs depends on the density of infected larvae, which is the 

product of the density of larvae and the proportion of larvae that fed on a competent host. 

Here, we aim to gain more insight in the mechanism of the dilution effect by evaluating the 

impact of the proportion of larvae that fed on competent host species on the density of 

nymphs and by interpreting how variation in certain variables will affect the density of 

infected nymphs. Therefore, in this study, we examine both the density of questing larvae 

and the density of questing nymphs. 

Questing Ixodes ricinus ticks were collected by dragging a 1 m² flag through the vegetation 

along six transects of 25 m in the sampling plot in each stand in June, July and September 

in 2013 and in 2014. Larval I. ricinus are less than 1 mm large and have only six legs, and 

are distinguished in the field from nymphs which  are larger (1.2 to 1.5 mm) and have eight 

legs (Hillyard 1996). We visually estimated the total amount of larvae attached to the flag 

at the end of the six transects in 2013. In 2014, we collected all nymphs attached to the flag 

at the end of each transect in plastic vials containing 70% ethanol, following the procedure 

described in Chapter 2. Nymphs from the different sampling occasions were pooled per 

forest stand.  The density of larvae (DOL) and nymphs (DON) for each stand was calculated 

as the number of larvae and nymphs, respectively, per 100 m², averaged over the three 

sample occasions. 

6.3.2.2 Borrelia genospecies 

We randomly selected 35 nymphs per pool for further analysis. For the molecular detection 

of Borrelia infection in the nymphs and identification of the Borrelia genospecies, we 

followed the same approach as described in Chapter 3. For each genospecies, we calculated 
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the nymphal infection prevalence (NIP) as the percentage of nymphs infected with a certain 

genospecies. In this study, we focused on the percentage of nymphs infected with B. afzelii. 

The density of nymphs infected with B. afzelii (DIN) is the product of NIP and DON. 

6.3.2.3 Host community 

To estimate the density of the different host species for ticks, we used a combination of 

different sampling methods in the sampling plots in 2014 and 2015. For a detailed 

description of the sampling procedures, we refer to the supplementary material (Appendix 

6.1). In 2014, we used live traps to estimate densities of small mammals (mice, voles and 

shrews) and used roe deer resting site as our approximate roe deer density per sampling 

plot. Bird species were identified by sound and densities were estimated by point counts. 

We only focused on thrushes (Turdus sp.), Eurasian wren (Troglodytes troglodytes 

Linnaeus, 1758) and European robin (Erithacus rubecula Linnaeus, 1758) since they are 

the forest bird species who contribute the most to the tick population (Marsot et al. 2012). 

In 2015, footprint tunnels and bite marks on hazelnuts and pine cones were used to assess 

presence of hedgehogs and squirrels, respectively. We used camera traps and bait to detect 

a diverse set of vertebrates such as wild boar (Sus scrofa Linnaeus, 1758), red fox (Vulpes 

vulpes Linnaeus, 1758) and stone marten (Martes foina Erxleben 1777). Since red squirrel, 

European hedgehog, red fox and stone marten occur in relatively low densities in European 

forests and have large home ranges (Heydon et al. 2000; Verkem et al. 2003; Wauters et al. 

2004; Young et al. 2006), it is not feasible to quantify densities in small forest stands. 

Therefore, we used data on presence or (observed) absence in the sampling plots to 

approximate of the density of these species in our small stands. In the stands where we 

recorded wild boar, we set their abundance at 10 individuals, as this is the average group 

size in our study region (Verkem et al. 2003). As a result of differences in life history traits, 

the spatiotemporal dynamics of the populations of the medium sized and large host species 

recorded in 2015 are expected to vary less than those of the smaller host species sampled 

in 2014 (Begon et al. 2006). Therefore, we assumed that our estimation of the population 

density of the host species recorded in 2015 is representative for their densities in 2014. In 

our study, we considered mice, voles, squirrels and hedgehogs as competent hosts for B. 

afzelii transmission based on our studies described in Chapters 4 and 5 and other studies 

(Humair and Gern 1998; Skuballa et al. 2007; Pisanu et al. 2014; van Duijvendijk et al. 

2015). All other recorded host species were considered to be dilution hosts.  
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We multiplied the estimated density for each host species with its average larval burden in 

Europe, as reported by Hofmeester et al. (2016), to approximate the importance of a 

particular host species for the feeding of larvae. This way, the proportion of dilution hosts 

in the total host community, taken into account their average larval burden, thus represents 

the proportion of larvae in a particular stand that could potentially feed on dilution hosts. 

This index was called the ‘potential dilution’, as opposed to the ‘realized dilution’, that 

represents the actual number of larvae that feeds on a dilution host. The potential dilution 

in our study is an estimation of the realized dilution. We further used the estimated host 

densities and their potential larval burden to calculate an exponential Shannon Wiener 

index (eH). Species richness (SR) was calculated as the total number of recorded species. 

For oak stands with a shrub layer from site P, we eliminated one stand in the calculation of 

eH and potential dilution, because of lack of data on mice, voles and shrews (Appendix 

6.1).  

6.3.3 Data analysis 

All statistical analyses were performed in R version 3.4.0 (R Core Team 2017). The risk 

for human exposure to Lyme borreliosis depends on the density of host-seeking infected 

ticks (acarological risk) and on the human-tick contact rate (Jaenson et al. 2009). Here, we 

studied acarological risk and used DOL from 2013, DON from 2014, NIP from 2014 and 

DIN from 2014.  

First, we examined the effect of forest type on DOL, DON, NIP and DIN and on the host 

community indices SR, eH and potential dilution. We used univariate linear mixed-effect 

models (lmer) with a Gaussian error distribution from the lme4 R-package (Bates et al. 

2014). Forest site was used as a random effect to account for the hierarchical design of our 

study, forest type (‘pine without shrub’, ‘pine with shrub’, ‘oak without shrub’, ‘oak with 

shrub’) was used as fixed effect. For each response variable, we compared the null model 

containing only the random effect with the model containing the fixed effect. Then, to 

evaluate the dilution effect hypothesis, we assessed the effect of the host community (SR, 

eH and potential dilution) on DOL, DON, NIP and DIN with univariate lmer, using the 

same procedure as described above. For each analysis, we checked for heterogeneity of the 

residuals following the approach described in Zuur et al. (2009). We used the Akaike 

Information Criterion adjusted for sample size (AICC) (Hurvich and Tsai 1989) to select 

the model with the highest probability of observing the data (smallest AICC). Finally, we 
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calculated the marginal R² (R²m), i.e. the fraction of the variation explained by the fixed 

structure, and the conditional R² (R²c), i.e. the fraction of the variation explained by the 

fixed and random structure. 

6.3.4 Bayesian belief network modelling 

Bayesian belief networks (BBNs) are probabilistic graphical models that model a system 

by accounting for all causal relations among the system’s variables and by quantifying 

those relations through conditional probability distributions (Jensen and Nielsen 2007). The 

ability to explicitly account for uncertainties makes this technique highly suitable for 

modelling systems when uncertainty levels are high (Landuyt et al. 2013), like in the case 

of the enzootic cycle of Borrelia in Europe. Through probabilistic inference, BBNs can 

propagate these uncertainties through the model while making predictions for one of the 

model’s variables given some data on the others. For more details on the modelling 

technique, see Jensen and Nielsen (2007).  

BBNs have a history in medical diagnosis problems, deriving the type of disease from 

observed symptoms or test results. However, after their introduction, they have been used 

in other domains as well, especially for cases where uncertainties prevail and where systems 

can be represented by a relatively simple linear chain of causes and consequences. The 

major advantages of BBNs include their transparency (they can increase system 

understanding), their explicit accounting for uncertainties and the possibility to include all 

kinds of data (expert knowledge, literature data, field data). The major disadvantages 

include their simplicity (they might not be suited for modelling complex systems with 

feedback loops) and information loss through discretization of all variables (transferring 

continuous variables and equations into discrete counterparts) (Jensen and Nielsen 2007). 

We constructed a BBN model to evaluate the impact of dilution of pathogens by hosts and 

to predict acarological risk under variable conditions. We based our model on published 

theories and data on Lyme borreliosis ecology in Europe, focusing on B. afzelii as single 

pathogen. We used the simple but realistic scenario in which rodents, squirrels and 

hedgehogs are the only source of B. afzelii infection of nymphs in a certain habitat, and no 

infected nymphs are transported from nearby habitat patches. The structure of the network 

was defined based on relationships described in the literature (e.g. see Piesman and Gern 

2004) and is visualized in Figure 6.1. The network represents the turnover of larvae in one 
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year to nymphs infected with B. afzelii the next year in a certain location. In this model, the 

‘realized dilution’, the actual number of larvae that feeds on a dilution host, is estimated by 

the potential dilution, the proportion of dilution hosts in the total host community. The 

model’s output node is the risk measure DIN which directly depends on the density of 

larvae the previous year, on the probability that they are infected by their host, and on the 

probability that they will moult into nymphs. We used BBN to explore the conceptual 

model of the dilution effect, contrary to hypothesis testing. Therefore, the structure of BBN 

is the structure of the conceptual model. We directly translated the conceptual model of the 

dilution effect into an operational BBN and explored how the operational model 

corresponds to the conceptual model. 

As all relations among the system’s variables could be described through mathematical 

equations, conditional probability distributions were populated through sampling, using the 

“Equation To Table” tool available in Netica (Norsys Software Corporation 1998). Figure 

6.1 shows the equations that were used to construct the model. The input nodes of the model 

(DOL, ‘host finding success larvae’, ‘realized dilution’, ‘rodent infection rate’, ‘rodent 

infectivity’ and ‘moulting success larvae’) require prior probability distributions or, if 

available, a fixed state (e.g. DOL = 150). The probability distribution of the other nodes 

depends on the state or probability distribution of the other nodes. As a result of missing 

prior knowledge on some of the model's input nodes, including DOL, ‘host finding success 

larvae’, ‘moulting success larvae’ and ‘realized dilution’, uniform prior probability 

distributions were used for these variables. As empirical data will be inserted into the 

variables DOL and ‘realized dilution’ for model simulations, these prior probabilities did 

not affect model predictions reported below. Probability distributions for the network’s 

input nodes ‘rodent infection rate’ and ‘rodent infectivity’ were defined based on values 

found in the literature (Humair et al. 1999; Huegli et al. 2002; Buffet et al. 2012; Gassner 

et al. 2013; van Duijvendijk 2016; Vourc’h et al. 2016). The number of infected nymphs 

that feed on rodents and transmit the pathogen to the rodents, influences the rodent infection 

rate (van Duijvendijk et al. 2015). Our model, however, only considers the turnover from 

the density of uninfected larvae to the density of infected nymphs, which is influenced by 

the rodent infection rate at that particular time step. Therefore, in our BBN we do not 

consider the impact of NIP or DIN on rodent infection rate. In this study, we collected 

empirical data for the nodes DOL, DON, DIN and ‘realized dilution’. We entered the 
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empirical data for these nodes depending on the specific aspect we wanted to simulate with 

the model. 

 

 

Fig. 6.1 The graphical structure of the Bayesian belief network model and the equations 

underlying the relationships between the variables. All square nodes in the network represent 

densities of ticks, the oval shaped nodes are parameters that affect the density nodes when 

moving to the next stage, and reflect survival and infection probability of ticks. The input 

variables density of larvae in 2013 (DOL), density of nymphs in 2014 (DON), density of 

infected nymphs in 2014 (DIN) and realized dilution, variables for which we have empirical 

data, are depicted in grey. Realized dilution: proportion of larvae that feeds on dilution hosts. 

An increase in realized dilution will decrease the amount of larvae on rodents and subsequently 

DIN and Lyme borreliosis risk. The (+) and (-) signs above each arrow represent the nature 

(positive or negative, respectively) of the relation between the variables. 
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To compare model predictions with empirical data, several scenarios were evaluated using 

the model, with each scenario representing one of the studied forest types in one of the 

forest sites. For each scenario, Netica was used to calculate the probability distribution of 

realized dilution given the empirical DOL, DON and DIN as input variables, averaged over 

all stands for each scenario. Afterwards, to interpret the relationship between DIN and 

realized dilution, we only inserted information on DOL and DON into the model, and 

assessed potential changes of DIN as a result of varying realized dilution from 0% to 90-

100%. In pine forests without a shrub layer in site P, the average empirical density of 

nymphs in 2014 was higher than the average empirical density of larvae in 2013. Probably 

we underestimated the density of larvae in 2013 because of imperfect sampling due to 

unverified accidental conditions such as human error or weather. Since it is not a realistic 

situation, we did not include this forest type as a scenario in the BBN. To investigate the 

sensitivity of DIN to changes in any other node, we performed a sensitivity analysis using 

Netica. 

6.4 Results 

A total of 2924 nymphs were collected in the 19 forest stands in 2014 and we counted 9020 

larvae in the forest stands in 2013. We examined 665 nymphs for Borrelia spirochetes, of 

which 104 (15.64%) were found to be infected. In each infected nymph, only one 

genospecies could be identified. We identified five different Borrelia genospecies in 72 

(69.23%) infected nymphs, namely B. afzelii, B. garinii, B. burgdorferi s.s., B. valaisiana 

and B. spielmanii. For the other 32 infected nymphs, genospecies could not be defined. The 

genospecies B. afzelii was most common, occurring in 66.36% of all infected nymphs, or 

in 10.08% of all nymphs. This corresponds to a mean (± SE) NIP of 10.1% (± 1.8) over all 

stands. DIN ranged from 0 to 10.6, with a mean DIN of 2.1 (± 0.6). The second most 

common genospecies in the examined nymphs was B. garinii, which occurred in 2.7% (± 

1) of all nymphs. The mean prevalence B. spielmanii and B. valaisiana was 1% (± 0.6) and 

0.9% (± 0.5), respectively, B. burgdorferi s.s. occurred in 0.6% (± 0.3) nymphs.   

We found that the model that included forest type as an explanatory variable explained the 

variation in DOL and NIP better than the null model (Fig. 6.2a, c; Appendix 6.2). More 

larvae were caught in oak than in pine stands. DON also shows a trend towards higher 

densities in oak stands compared to pine stands (Fig. 6.2b). NIP was higher in pine than in 

oak stands. Forest type had no effect on DIN (Fig. 6.2d, Appendix 6.2). 
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Fig. 6.2 The mean densities of larvae (DOL, a), densities of nymphs (DON, b), nymphal 

infection prevalence (NIP, c) and densities of infected nymphs (DIN, d) (± SE) for Borrelia 

afzelii in pine and oak stands, with a shrub layer (+SL) or without a shrub layer (-SL) in site 

AH and site P, averaged over all forest stands per forest type. 
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The host community that we observed in the stands during our sampling campaigns 

consisted of bank vole, wood mouse, common/crowned shrew (Sorex araneus/coronatus), 

pygmy shrew (S. minutus Linnaeus, 1758), roe deer, wild boar, squirrel, hedgehog, fox, 

stone marten (Martes foina Erxleben 1777), wren, robin, common blackbird (Turdus 

merula Linnaeus, 1758) and song thrush (T. philomelos Brehm 1831) (Appendix 6.3). We 

grouped these last two bird species as ‘thrushes’ (Turdus spp.). For the species groups 

‘rodents’, ‘shrews’, ‘birds’ and ‘predators’ we summed the observed densities of the two 

rodent species, the two shrew species, the three groups of birds and the two predators, 

respectively.  We could not detect a difference in host community measures between the 

different forest types (Appendix 6.3). However, the density of small rodents appears to be 

lowest in pine stands without a shrub layer in both sites (Fig. 6.3). We could not detect a 

difference in potential dilution between the different forest types, but the potential dilution 

appeared to be higher in pine than in oak stands (Fig. 6.4). The models containing SR, eH 

or potential dilution as explanatory variable did not explain the variation in DOL, DON, 

NIP or DIN better than the null models (Appendix 6.4).  

In the BBN, we see that for some scenarios, the predicted probability of realized dilution 

does not correspond to the potential dilution (Appendix 6.5). For the oak stands in site AH, 

realized dilution is higher than the potential dilution, while for the pine stands in site P, 

potential dilution is much higher than the realized dilution. In three scenarios (Fig. 6.5a-c), 

DIN changes only little with varying realized dilution while in the other three scenarios 

(Fig. 6.5d-f), DIN decreases with increasing realized dilution. The five most-influencing 

variables all strongly relate to the density of ticks (Fig. 6.6). The input variables related to 

the infection prevalence of ticks, such as reservoir competence of rodents and realized 

dilution, caused a much smaller reduction in relative variance.  
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Fig. 6.4 The mean percentage (± SE) of the host community that consists of dilution hosts for 

Borrelia afzelii (potential dilution) in pine and oak stands, with a shrub layer (+SL) or without 

a shrub layer (-SL) in site AH and site P. Percentages are averaged over all forest stands per 

forest type. 

 

6.5 Discussion 

This study investigated the composition of the host community of ticks in different forest 

types. We examined the presence of a dilution effect for the rodent associated Lyme 

borreliosis genospecies Borrelia afzelii using both empirical data as well as a model, and 

identified the most important variables that influence acarological risk. Based on a 

Bayesian belief network, we found that the most important variables in explaining variation 

in DIN in our study are related to the density of ticks, instead of to the proportion of dilution 

hosts. We found no effect of SR, eH or potential dilution on the risk measures DOL, DON, 

NIP or DIN and thus cannot confirm the dilution effect hypothesis. 

The most common Borrelia genospecies in the nymphs from our study sites was the rodent-

associated B. afzelii, which confirms our assumption that Lyme borreliosis in our region is 

to a large degree rodent-driven. We found B. afzelii in 10.1 % of the collected nymphs.  
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Fig. 6.5 Relation between density of infected nymphs (DIN) and realized dilution (%) as 

predicted by the model for six scenarios representing different forest types in different forest 

sites. Scenarios were set by inserting average measured densities of larvae (DOL) and nymphs 

(DON) into the model for scenario. Asterisks depict measured potential dilution and DIN 

values for each scenario. The grey area represents the standard deviation. The different 

scenarios include pine stands without a shrub layer (a) and with a shrub layer (c) and oak 

stands without a shrub layer (b) and with a shrub layer (d) in site AH and pine stands with a 

shrub layer (e) and oak stands with a shrub layer (f) in site P. 
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Fig. 6.6 Relative reduction in variance of the model predictions (density of infected nymphs 

(DIN)) by inserting evidence in one of the network’s variables, calculated for each variable 

through a sensitivity analysis of the model. 

 

We found a clear trend towards higher tick densities in oak stands compared to pine stands. 

Tick abundance is mainly determined by humidity and the availability of hosts (Gray et al. 

1998; Tagliapietra et al. 2011). The density of rodents appears to be lowest in pine stands 

without a shrub layer. Since small rodents are important feeding hosts for larval ticks 

(Hofmeester et al. 2016), this could explain the apparent lower density of nymphs in pine 

stands, compared to oak stands. Moreover, we found that NIP was higher in pine than in 

oak stands, which seems to indicate that the contribution of small rodents to the feeding of 

ticks is higher in pine stands, and thus that dilution is highest in oak stands, as suggested in 

Chapters 2 and 3. The density and composition of the host communities we surveyed, 

however, do not seem to support the assumption that broadleaved forest stands contain a 

higher host diversity and hence a higher probability for dilution than coniferous stands 

(Carnus et al. 2006; Du Bus de Warnaffe and Deconchat 2008). Contrastingly, the potential 

dilution appears to be higher in pine stands than in oak stands. It appears that dilution in 

our study is mainly driven by the varying density of rodents, since the densities of other 

host species, multiplied by their possible average larval burden, is comparable between the 

different forest types. Although there are more dilution hosts in pine stands than in oak 

stands for ticks to feed on, larvae seem to feed relatively more on rodents than on dilution 
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hosts in pine stands compared to oak stands. Our results indicate that in our study region, 

the difference in the density of dilution hosts between habitats is probably less important 

in establishing a dilution effect. Instead, the mechanism of the dilution effect is probably 

driven by densities of transmission competent hosts, an aspect that is often neglected in 

literature (Ostfeld and Keesing 2000; LoGiudice et al. 2003). Yet, although our empirical 

data showed a trend towards higher potential dilution in pine compared to oak stands, the 

BBN model predicted the opposite. Realized dilution in oak stands is predicted to be higher 

than the potential dilution. The potential dilution in the oak stands is thus probably an 

underestimation of the realized dilution.  

Although we estimated the host community composition adequately, there are some 

uncertainties in our calculations as we used relatively small sampling plots that do not 

reflect the home range of larger host species and the average larval burden per host species 

from literature. Moreover, the relation between the host community composition and 

realized dilution might be more complex than initially assumed. The potential dilution is 

only an estimation of the host use by ticks, taking into account the densities of the host 

species and their average larval burden. The average larval burden for each host species did 

not incorporate the impact of different habitat types on host use by larvae, and is thus only 

an approximation of the actual larval burden for our study. The realized host use does not 

only depend on the availability and suitability of host species, but also on the tick-host 

contact rate (Randolph and Craine 1995; Levi et al. 2016). In habitats with comparable host 

communities but with different composition and structure of the vegetation, and different 

microclimate, contact between ticks and hosts could differ because of host behavior or tick 

questing behavior (Craine et al. 1995; Randolph and Craine 1995; Randolph and Storey 

1999). This differential host use by ticks in different habitats might explain the higher 

realized dilution in oak stands, despite the higher rodent densities. Furthermore, host 

species other than wood mouse, bank vole, squirrel and hedgehog could be able to transmit 

B. afzelii to feeding larvae. More research is needed to establish the importance of different 

vertebrate species in Europe in the feeding of I. ricinus and the transmission of different 

Borrelia genospecies. Further research on the dilution effect in Europe should take into 

account not only the host community composition, but also the effect of vegetation features 

and microclimate on larval burden on hosts. By comparing our empirical results with the 

model predictions, we were able to explore the complexity of the relationship between the 

host community composition, the habitat and the dilution effect. 
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An increase in the realized dilution, and thus a decrease in the density of larvae that feed 

on competent host species, could theoretically decrease DIN and the subsequent disease 

risk. However, we found that DIN was low in many scenarios and insensitive to a change 

in realized dilution. This is in accordance with the sensitivity analysis of the BBN model, 

which indicates that realized dilution has only limited influence on DIN. The most 

important variables in explaining variation in DIN are related to the density of ticks, which 

makes DON a good predictor of acarological risk, as found in Chapter 3 and suggested by 

others (Jaenson et al. 2009; Coipan et al. 2013). Since the variability in DON is generally 

much larger than the variability in NIP, which in our study varies between 0 and 0.30, DON 

has a higher weight in the calculation of DIN than NIP or realized dilution.  

6.6 Conclusions 

From our results we conclude that it may not be feasible to focus on the dilution effect to 

reduce Lyme borreliosis risk in our study region, and possibly in other European regions 

with similar forest communities. Instead, Lyme borreliosis prevention should aim to reduce 

tick densities and the contact rate between ticks and humans, which appear to be the most 

important variables in explaining acarological risk (Jaenson et al. 2009). An increase in 

host diversity did not decrease DIN in our study sites. Moreover, adding different species 

to the host community can even increase Lyme borreliosis risk, because different host 

species are associated with different Borrelia genospecies, which lead to different 

manifestations of Lyme borreliosis. An increase in host diversity could thus increase Lyme 

borreliosis risk by increasing the prevalence of Borrelia genospecies that give rise to more 

severe clinical manifestations than B. afzelii, which is associated with skin manifestations. 

The bird-related B. garinii, for example, can cause neuroborreliosis (Balmelli and Piffaretti 

1995). Future research should focus on establishing the importance of less studied host 

species in the enzootic Borrelia cycle and the behavior of ticks and hosts in different forest 

types and vegetation features. We emphasize the need to reduce tick-human contact rate, 

for example by guiding visitor flows through forests or frequently mowing the vegetation 

along forest trails. These are actions that are easier and more effective for forest managers 

to take than increasing the dilution probability (Verheyen and Ruyts 2016). 
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Appendix 6.1: The host sampling protocol. 

The sampling campaigns to estimate presence or density of hosts occurred in 2014 for small 

mammals, birds and European roe deer (Capreolus capreolus Linnaeus, 1758). In 2015 we 

used additional techniques to estimate densities of wild boar (Sus scrofa Linnaeus, 1758), 

red fox (Vulpes vulpes Linnaeus, 1758), stone marten (Martes foina Erxleben 1777), 

European hedgehog (Erinaceus europaeus Linnaeus, 1758) and Eurasian red squirrel 

(Sciurus vulgaris Linnaeus, 1758). The sampling was performed in a 0.2 ha sampling plot 

in the center of each forest stand, and densities of hosts in each sampling plot were 

representative for that particular forest stand. 

Live traps 

To estimate the relative population densities of small mammals (wood mouse (Apodemus 

sylvaticus Linnaeus, 1758), bank vole (Myodes glareolus Schreber 1780), pygmy shrew 

(Sorex minutus Linnaeus, 1758) and common/crowned shrew (S. araneus/coronatus)), 

trapping sessions were performed in each forest stand at the end of August and the 

beginning of September 2014. Each session consisted of four consecutive nights, in which 

traps (Trip-Trap live traps, Procter Brothers Ltd, Pantglas Industrial Estate, UK) were 

checked two to three times per night, starting from 21h, with an interval of two to three 

hours. Prior to the trapping session, traps were prebaited for two days. In the sampling plots, 

49 traps were placed in a 7 x 7 grid, with 7 m distance in between the traps. We replaced 

the original plastic nest box of each trap with a larger wooden box (6 cm × 7 cm × 18 cm) 

and a wire-meshed opening at the bottom to reduce stress in the captured animals. A 

mixture of oat flakes, raisins and peanut butter was used as bait. Shrews are particularly 

vulnerable to accidental mortality during live-trapping, so each trap was supplied with meal 

worms to increase survival (Do et al. 2013). Captured rodents were identified to the species 

level, and released at the spot after being marked by clipping their fur. Shrews were 

immediately released without marking, to prevent mortality due to stress. We estimated 

relative rodent abundance in each stand using the mark-recapture data of the individuals 

following the approach described by Schnabel (1938) (e.g. Ryan 2011; Hager and Stewart 

2013; Tack 2013). When the densities of captured rodents were too low to perform these 

calculations, we used the number of captured individuals in each sampling plot over all 

trapping sessions as our measure of relative rodent population density. As we did not mark 

the shrews, shrew population density was estimated using the number of captured 
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individuals. In one oak stand with a shrub layer in site P, the densities of small mammals 

are underestimated, since the traps were often accidently closed by foraging wild boar. 

Therefore, we eliminated this forest stand when investigating the relationships between 

host community composition and forest type or disease risk.  

Resting sites 

During sampling of ticks in 2014, we counted the number of resting sites of European roe 

deer in each sampling plot. Resting sites of roe deer could be detected as oval shaped 

patched of slightly scraped soil, often accompanied by other marks such as hoof prints, or 

depressions in the vegetation. We used the maximum amount of resting sites of the three 

sampling occasions for each forest stand as a proxy for the density of roe deer as performed 

by Bíró et al. (2006) and Tack et al. (2012). 

Point counts 

We estimated the density of common blackbird (Turdus merula Linnaeus, 1758), song 

thrush (T. philomelos Brehm 1831), Eurasian wren (Troglodytes troglodytes Linnaeus, 

1758) and European robin (Erithacus rubecula Linnaeus, 1758) for each forest stand using 

point counts (Bibby et al. 1998). Each stand was visited three times in 2014 (beginning of 

April, end of April, middle of May), between sunrise and midday on dry days, and numbers 

of individual were counted for each detected bird species. We positioned ourselves in the 

middle of the sampling plot, waited for one minute to allow the birds to settle down after 

our arrival, and counted the number of individuals per species we heard within the limits 

of the sampling plot during eight minutes. Individuals were identified to species level based 

on their song. We distinguished between different individuals of the same species based on 

the location of the song. When we saw a bird flying off and moving to another position to 

sing, we took this into account to reduce the bias of overestimating the number of 

individuals. However, this was challenging in dense vegetation. We multiplied the number 

of individuals per forest stand per sampling occasion by two, to account for the females, 

since songs usually originate from males (Williams 2004). We then used the maximum 

amount of individuals in a sampling plot, over all sampling occasions, as a proxy of the 

density of a bird species per forest stand.  
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Feeding marks 

The average density of Eurasian red squirrels in our study region varies from 0.1 squirrel 

per ha for small forest fragments, to 2.2 per ha in large forests, and their home range is 

approximately 2 to 5 ha large in pine forests and more than 10 ha in broadleaved forest 

(Verbeylen et al. 2003; Wauters et al. 2004). Since red squirrels occur in relatively low 

densities in Belgian forests and have large home ranges, it is not feasible to attempt to 

quantify densities in small forest stands. Therefore, we used data on presence or absence of 

squirrels as an approximation of squirrel density in our forest stands. 

We recorded the presence/absence of red squirrels using feeding marks on hazelnuts and 

pine cones (Gurnell et al. 2001). We hung a small wooden tray in five trees in each forest 

stand and provided each tray with five hazelnuts in May 2015, and visited the forest stands 

again in October. Feeding marks on hazelnuts from squirrels could be distinguished from 

those of birds or other rodents such as mice, as squirrels tend to split hazelnuts in half, while 

on the top of one of the halves, marks from their lower incisors are often visible (Olsen 

2013). Additional to the hazelnut feeding planks, remains of pine cones on the forest floor 

were investigated for feeding signs typical of squirrels (Olsen 2013). Feeding signs of 

squirrels on hazelnuts or pine cones in a forest stand indicated that at least one squirrel was 

present in that stand.  

Footprint tunnels 

Presence/absence of European hedgehogs was surveyed using footprint tunnels (Yarnell et 

al. 2014). In each tunnel (Mammal Society Hedgehog Tube Kit, Envisage Wildcare Ltd, 

UK) we put cat food in the middle, as bait, and placed ink pads on either side of the bait. 

Near the opening of the tunnel, at both ends, we placed a piece of white paper. Hedgehogs 

were attracted to the bait and, when visiting the tunnel, left footprints on the paper after 

returning from the middle of the tunnel to the opening. In May 2015, two tunnels were 

placed, approximately 50 m apart, in each forest stand, and were checked on five 

consecutive mornings. Bait was replaced if necessary and papers were replaced if they were 

damaged or if footprints of any animal were recorded. As the densities of hedgehogs in 

forests are generally low and rarely exceed 1 per ha (Huijser 1999; Young et al. 2006; 

Hubert et al. 2011), it is not feasible to attempt to quantify densities in small forest stands. 

We used presence-absence data rather than an approximation of relative hedgehog density. 
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Camera traps 

Using camera traps with passive infrared (PIR) sensors, we assessed the presence of stone 

marten, fox and wild boar in the different forest stands. The PIR sensor responds to changes 

in infrared energy (heat) emitted by background temperature and a moving object, and 

triggers the camera if the difference exceeds a pre-set threshold (Rovero et al. 2013). Within 

each forest stand, one camera trap (Browning Recon Force, series BTC-2, Promotheus 

group LLC, USA) was deployed for 23 weeks, and moved to a new, random, location 

within the same sampling plot twice, to increase detection of host species. The camera was 

hung facing north and parallel to the ground on a tree at a height of 40 cm above ground 

level. At a distance of about two meters, we placed a stick of one meter length and 

embedded the top of the stick with a lure, consisting of a mixture of peanut butter and fish 

oil. If necessary, we pruned the vegetation in front of the camera (as far as 5 m, and 1 m 

broad) to optimize the detection of species and reduce triggering of the sensor by moving 

vegetation (Meek et al. 2014). When triggered, the camera took three ‘rapid fire shots’, and 

stayed inactive for 10 seconds before it could take a next set of pictures.  Since martens and 

foxes occur in relatively low densities in Belgian forests and have large home ranges 

(Verkem et al. 2003), it is not feasible to attempt to quantify densities in small forest stands. 

Therefore, we used data on presence or absence of stone marten and red fox as an 

approximation of their density in our forest stands. In the stands where we recorded wild 

boar, we set the density of wild boar at 10 individuals, as this is the average group size as 

seen on the camera images during our sampling campaign. 
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Appendix 6.2 

Comparison of alternate univariate generalized linear mixed effect models (lmer) for the 

effect of forest type on acarological risk measures (A) and host community measures (B). 

The models contain the random effect, i.e., forest site, and the fixed effect, i.e. forest type. 

Densities of animals used for the calculation of exponential Shannon Wiener diversity (eH) 

and potential dilution are estimated densities multiplied by the average larval burden for 

that particular species, or species group, in Europe. The potential dilution is calculated as 

the percentage of dilution hosts in the total host community, based on the densities of the 

hosts. ∆AICc represents the difference between the Akaike Information Criterion corrected 

for small sample sizes (AICc) for each model and the model with the lowest AICc and is 0 

for the model that best explains the variation in the data. R²m refers to the marginal R², i.e. 

the fraction of the variation explained by the fixed structure; R²c refers to the conditional 

R², i.e. the fraction of the variation explained by the fixed and random structure. DOL: the 

density of larvae in 2013; DON: the density of nymphs in 2014; NIP: the nymphal infection 

prevalence in 2014; DIN: the density of infected nymphs in 2014. 

A. Acarological risk                 

 DOL    DON        

  ΔAICc R²m R²c   ΔAICc R²m R²c     

null model 5.84 0.00 0.00  0.00 0.00 0.00     

forest type 0.00 0.61 0.61   4.41 0.32 0.32      

            

  NIP       DIN         

  ΔAICc R²m R²c   ΔAICc R²m R²c     

null model 0.25 0.00 0.09  0.00 0.00 0.05     

forest type 0.00 0.48 0.49   8.60 0.15 0.15     

            

B. Host community measures             

 SR    eH     potential dilution 

  ΔAICc R²m R²c   ΔAICc R²m R²c  ΔAICc R²m R²c 

null model 0.00 0.00 0.00  0.00 0.00 0.54  0.00 0.00 0.23 

forest type 9.00 0.12 0.12   5.84 0.14 0.68   6.11 0.25 0.40 
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Appendix 6.3 

The empirical densities of host species observed per forest stand. The densities are 

estimated using various techniques (see main text for more detail) and represent abundance 

per sampling plot per forest stand. 
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AH AH3 oak no 66.9 81.5 1 9 0 0 1 1 0 1 4 4 2

AH AH42 oak yes 152.6 65.2 5 4 3 0 0 0 1 1 6 4 6

AH AH10 pine yes 292.5 23.4 2 1 0 0 1 0 1 0 4 4 2

AH AH11 pine yes 104.0 71.5 0 6 0 0 1 0 1 0 4 4 6

AH AH17 pine no 42.4 20.0 3 0 3 0 1 0 1 1 4 4 0

AH AH18 pine no 2.0 29.6 0 1 11 0 0 0 0 1 4 4 4

AH AH19 pine yes 69.3 78.1 1 4 1 0 1 0 0 0 4 6 4

AH AH25 oak no 119.3 103.1 0 5 1 0 0 0 0 0 6 4 0

AH AH26 oak no 137.2 23.7 0 0 4 0 1 0 1 1 4 4 2

AH AH40 oak yes 79.0 45.7 0 0 1 0 1 0 1 1 4 2 2

P P4 oak yes NA NA NA NA 3 10 0 0 1 0 0 4 0

P P5 oak yes 37.3 29.9 11 5 0 10 1 0 1 0 2 4 2

P P6 oak yes 23.3 35.0 3 4 2 0 1 1 1 1 4 2 2

P P7 pine no 53.7 17.1 1 14 0 10 1 0 1 0 4 4 0

P P8 pine no 10.0 2.0 6 19 0 10 0 1 1 1 2 4 0

P P9 pine no 13.0 16.6 11 41 0 10 1 0 1 1 2 4 0

P P10 pine yes 1.0 0.0 2 11 0 10 0 0 0 0 4 2 0

P P11 pine yes 16.0 67.0 6 8 0 10 1 0 0 0 6 4 4

P P12 pine yes 51.3 35.2 5 2 1 10 1 0 0 1 2 4 6
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Appendix 6.4  

Comparison of alternate univariate generalized linear mixed effect models (lmer) for the 

effect of host community measures on acarological risk measures. The models contain the 

random effect, i.e., forest site, and the fixed effect, i.e. host community measure. Densities 

of animals used for the calculation of exponential Shannon Wiener diversity (eH) and 

potential dilution are estimated densities multiplied by the average larval burden for that 

particular species, or species group, in Europe. The potential dilution is calculated as the 

percentage of dilution hosts in the total host community, based on the densities of the hosts. 

∆AICc represents the difference between the Akaike Information Criterion corrected for 

small sample sizes (AICc) for each model and the model with the lowest AICc and is 0 for 

the model that best explains the variation in the data. R²m refers to the marginal R², i.e. the 

fraction of the variation explained by the fixed structure; R²c refers to the conditional R², 

i.e. the fraction of the variation explained by the fixed and random structure. DOL: the 

density of larvae in 2013; DON: the density of nymphs in 2014; NIP: the nymphal infection 

prevalence in 2014; DIN: the density of infected nymphs in 2014. 

  DOL       DON     

  ΔAICc R²m R²c   ΔAICc R²m R²c 

null model 0.00 0.00 0.00  0.00 0.00 0.00 

SR 3.16 0.01 0.01   1.40 0.10 0.10 

        
  NIP       DIN     

  ΔAICc R²m R²c   ΔAICc R²m R²c 

null model 0.00 0.00 0.09  0.00 0.00 0.05 

SR 2.91 0.02 0.09   1.34 0.10 0.12 

        
                

 DOL      DON     

  ΔAICc R²m R²c   ΔAICc R²m R²c 

null model 0.00 0.00 0.00  0.00 0.00 0.00 

eH 2.88 0.03 0.03   2.55 0.05 0.05 

        
  NIP       DIN     

  ΔAICc R²m R²c   ΔAICc R²m R²c 

null model 0.00 0.00 0.14  0.00 0.00 0.07 

eH 2.43 0.10 0.10   0.54 0.16 0.16 
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Appendix 6.4 (continued) 

                

 DOL      DON     

  ΔAICc R²m R²c   ΔAICc R²m R²c 

null model 0.00 0.00 0.00  0.00 0.00 0.00 

potential dilution 1.38 0.11 0.11   3.24 0.01 0.01 

        
  NIP       DIN     

  ΔAICc R²m R²c   ΔAICc R²m R²c 

null model 0.00 0.00 0.14  0.00 0.00 0.07 

potential dilution 2.36 0.10 0.10   3.27 0.01 0.03 
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Appendix 6.5 

The mean (± SD) realized dilution (%) for the six scenarios of forest types, given the 

average density of larvae (DOL), nymphs (DON) and infected nymphs (DIN), averaged 

over all forest stands from that scenario. The different scenarios include pine and oak 

stands, with a shrub layer (+SL) or without a shrub layer (-SL) in site AH and in site P. The 

triangles represent the mean realized dilution of oak stands; the circles represent the mean 

realized dilution of pine stands. The potential dilution in each scenario is depicted with an 

asterisk. 
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7 General discussion and conclusions 

 

A large body of evidence demonstrates the positive effects on human well-being of getting 

in contact with nature (MEA 2005; Luck et al. 2011; Cardinale et al. 2012; Carrus et al. 

2015). People have a need to recreate in natural areas such as forests and (sub)urban green 

spaces (Hansmann et al. 2007; Keniger et al. 2013; Wolch et al. 2014). Although interacting 

with nature in green environments delivers a range of measurable benefits for human health 

and well-being (Keniger et al. 2013), it brings people in close contact with ticks and tick-

borne pathogens.  

Tick-borne diseases are a growing public health concern globally as their incidence is rising 

(Dantas-Torres et al. 2012). However, the spatiotemporal dynamics of the hazard, namely 

questing ticks infected with zoonotic pathogens such as the Lyme borreliosis bacteria, 

remain largely unclear. Studying the ecology of Lyme borreliosis and the spatial and 

temporal patterns of tick density, host community composition and the prevalence of tick-

borne pathogens is therefore becoming increasingly important (Gray et al. 2009; Randolph 

2010; Estrada-Peña et al. 2011). We focused on pathogens causing Lyme borreliosis, but 

we also investigated the transmission dynamics of other common tick-borne pathogens. 

Several tick-borne pathogens cycle between the same vector and vertebrate host species. 

Ixodes ricinus, the most common tick species that readily bites humans in Europe, acts as 

a vector for many human pathogens such as the Lyme borreliosis genospecies (e.g. Borrelia 

afzelii), as well as Borrelia miyamotoi, Anaplasma phagocytophilum, “Candidatus 

Neoehrlichia mikurensis”, Rickettsia helvetica and the tick-borne encephalitis virus 

(Randolph 2001; Coipan et al. 2013b). These pathogens can cause similar non-

characteristic viral-like symptoms in human patients, which makes proper diagnosis 

challenging (Jahfari et al. 2016). Furthermore, many of these pathogens, alone or together, 

can be transmitted to ticks by the same host species, such as e.g. small rodents (Coipan 

2016). With this PhD thesis, we aimed to fill gaps in the knowledge concerning Lyme 

borreliosis ecology and tested the dilution effect hypothesis, which claims that an increase 

in host diversity decreases Lyme borreliosis risk, in a European context. 
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More specifically, we first investigated the spatiotemporal variation in the density of I. 

ricinus infected with Borrelia burgdorferi s.l. (‘Borrelia’) and the prevalence of the 

different Borrelia genospecies in different forest types (Chapters 2 and 3). In the second 

part of this thesis, we assessed the role of two poorly studied host species in the 

transmission cycle of Lyme borreliosis and other tick-borne diseases (Chapters 4 and 5). 

Afterwards, we combined the acquired knowledge from the previous two parts with data 

on the host community composition in the different forest types to test the dilution effect 

hypothesis (Chapter 6). 

7.1 Host community composition and Lyme borreliosis risk 

7.1.1 Spatiotemporal dynamics in Lyme borreliosis risk in different forest types in the 

Kempen 

In the first part of the thesis (Chapters 2 and 3), we studied forest stands that represent the 

different stages in the process of forest conversion in the Kempen (northern Belgium) - 

from pine (Pinus spp.) stands without a substantial shrub layer to oak (Quercus spp.) stands 

with a shrub layer. We showed that Lyme borreliosis risk was significantly affected by 

forest type. The density of nymphs was higher in the oak than in the pine stands. The higher 

tick densities in oak stands can be related to the response of ticks and their hosts to the 

specific biotic and abiotic conditions in the different forest stands, which are influenced by 

the dominant tree species and assumed to be more favourable for ticks and their hosts under 

oak (Gray et al. 1998). We found that the nymphal infection prevalence of B. afzelii, the 

most common Lyme borreliosis genospecies in patients in Western Europe (Jahfari et al. 

2017b), was higher in the pine stands while the diversity of Borrelia genospecies was 

higher in the oak stands. Infected nymphs tended to harbour B. afzelii more often in pine 

stands, while B. garinii and B. burgdorferi ss. infection appeared to be more prevalent in 

oak stands. Because of the specific associations between hosts and Borrelia genospecies 

(Kurtenbach et al. 2002), the higher prevalence of B. afzelii in pine stands seems to reflect 

a difference in host use by ticks in the different forest types. In pine stands, larvae seem to 

feed more often on small rodents, which transmit B. afzelii. In oak stands, the larvae seem 

to feed more on other types of hosts, such as birds, which transmit B. garinii and B. 

valaisiana (Humair et al. 1999; Hanincová et al. 2003a; Hanincová et al. 2003b; Heylen et 

al. 2014).  
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The density of nymphs fluctuated from year to year but did not increase from 2009 to 2014. 

As the prevalence of B. afzelii in the studied nymphs did not show any temporal variation, 

the density of infected nymphs in a certain year, and thus the Lyme borreliosis risk, will 

resemble the density of nymphs in that year. The density of nymphs, therefore, can be used 

to predict the disease risk. The observed absence of an increase in nymph densities is in 

accordance with the reported stable incidence of tick bites and Lyme borreliosis in Belgium 

(Vanthomme et al. 2012; Bleyenheuft et al. 2015). 

7.1.2 The role of hedgehogs and squirrels in the transmission of tick-borne pathogens 

In the second part of the thesis, we investigated the role of two poorly studied tick hosts in 

the enzootic cycle of Lyme borreliosis and other tick-borne diseases: the European 

hedgehog (Erinaceus europaeus Linnaeus, 1758; Chapter 4) and the Eurasian red squirrel 

(Sciurus vulgaris Linnaeus, 1758; Chapter 5). We collected ticks from hedgehogs from 

(sub)urban areas and found that most hedgehogs carried only few ticks, while a few 

hedgehogs harboured many. Hedgehogs carried all three life stages of I. hexagonus and I. 

ricinus, but I. hexagonus was the most common tick species feeding on hedgehogs. Even 

though hedgehogs can feed all life stages of I. ricinus and can thus theoretically maintain 

the tick’s life cycle as the sole host species, hedgehog densities in forested areas, the 

preferred habitat of this generalist tick species, are probably too low to actually allow ticks 

to complete their entire life cycle on hedgehogs. We analysed 1203 ticks (I. ricinus as well 

as I. hexagonus) from 54 hedgehogs and detected Borrelia miyamotoi, B. afzelii, B. 

bavariensis, B. spielmanii, Anaplasma phagocytophilum and Rickettsia helvetica in both 

tick species. Borrelia afzelii, B. bavariensis, B. spielmanii, A. phagocytophilum and R. 

helvetica were found significantly more in ticks collected from hedgehogs than in questing 

I. ricinus from a suburban forest in the same region (Heylen et al. 2016), which suggests 

that hedgehogs contribute to the enzootic cycles of these pathogens.  

In the tissue samples (spleen and liver) of 45 dead Eurasian red squirrels, we found B. 

afzelii, as already proposed by previous studies, as well as B. miyamotoi and Anaplasma 

phagocytophilum. We could not confirm the previously observed association between 

squirrels and B. burgdorferi s.s. (Pisanu et al. 2014). Our results demonstrate the 

epidemiological importance of red squirrel in (sub)urban areas, seeing that the squirrels can 

harbour similar tick-borne pathogens as mice and voles. 
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In forests, squirrels and hedgehogs probably do not play a major role in the transmission 

cycles of tick-borne pathogens because of their low density. In (sub)urban areas, however, 

they may play a major role in the disease risk due to their higher abundances (see e.g. 

Hubert et al. 2011; Rézouki et al. 2014). Humans are thus likely to encounter ticks infected 

with one or several pathogens while gardening or recreating in parks (Mulder et al. 2013). 

7.1.3 A dilution effect in European forests? 

The Bayesian belief network model that we employed in Chapter 6 to elucidate the 

relationship between the host community and Lyme borreliosis risk showed that a decrease 

in the number of larvae that feed on competent host species, i.e. the realized dilution, can -

in theory - decrease the density of infected nymphs and the subsequent disease risk. 

According to the dilution effect hypothesis, such an increase in realized dilution and a 

decrease in the density of infected nymphs are caused by an increase in host diversity. In 

our study sites, however, we did not find a relationship between the host diversity and the 

density of infected nymphs. Therefore, we could not confirm the dilution effect hypothesis.  

There was no difference in host diversity between the studied forest types, but the density 

of small transmission-competent rodents was lowest in the pine stands without shrub layer. 

As the densities of the other host species in those pine stands without shrub layer were 

similar to the other forest types, larvae were more likely to feed on dilution hosts in the 

pine forests without shrub layer, which leads to a high potential dilution in these stands. 

Yet, the prevalence of the rodent-associated B. afzelii was higher in nymphs from pine 

stands than in nymphs from oak stands (cf. 7.1.1 and Chapters 2 and 3), and the model 

demonstrated that larvae more often fed on small rodents than on dilution hosts in pine 

stands. Seeing the higher rodent densities in the oak forests and similar densities of dilution 

hosts, the realized dilution was higher in oak stands than in pine stands.  

The realized host use by larval ticks does not only depend on the availability and suitability 

of host species, but also on the tick-host contact rate (Randolph and Craine 1995; Levi et 

al. 2016). In habitats with comparable host communities but with a different composition 

and structure of the vegetation and a different microclimate, contact between ticks and hosts 

can differ because of differences in the behaviour of hosts or questing ticks (Craine et al. 

1995; Randolph and Craine 1995; Randolph and Storey 1999). Furthermore, host species 
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other than the ones included in our model (i.e. wood mouse, bank vole, squirrel and 

hedgehog) could be able to transmit B. afzelii to feeding larvae. 

The dilution effect hypothesis for Borrelia, as described by Ostfeld and Keesing (2000), 

did not apply to our study forests, and possibly neither to other similar forest communities 

in Europe. Because of the multiple Borrelia genospecies in Europe and the host-

genospecies associations, the interactions between Borrelia, ticks and hosts appear to be 

much more complex in Europe than in North America. An increase in host diversity can 

increase or decrease the prevalence of individual genospecies, depending on the response 

of the associated host species. If a dilution effect of increased host diversity is to occur in 

Europe, it will most likely occur at the level of specific Borrelia genospecies, rather than 

on the overall prevalence of Borrelia. Hence, we strongly emphasize to the need to consider 

the different Borrelia genospecies as distinct pathogens in studies on the impact of host 

community composition on Lyme borreliosis risk.  

7.2 Recommendations for (forest) management  

In our study region, the effects of forest conversion and a higher host diversity on the 

density of infected nymphs are probably small. However, forest management can play a 

role in reducing Lyme borreliosis risk.  

Since there is a low probability of a dilution effect in our forest sites, increasing the host 

diversity (e.g. through changing the composition and structure of forests) in order to lower 

the density of infected ticks is not an efficient management strategy. Moreover, increasing 

host diversity can even increase tick-borne disease risk, because different host species are 

associated with different tick-borne pathogens. An increase in host diversity could thus 

increase Lyme borreliosis risk by increasing the prevalence of Borrelia genospecies that 

give rise to more severe clinical manifestations than B. afzelii, which is associated with skin 

manifestations. The bird-related B. garinii, for example, can cause neuroborreliosis 

(Balmelli and Piffaretti 1995). The most important variables in explaining variation in the 

density of infected nymphs were related to the density of larvae and nymphs, rather than to 

the infection prevalence of Borrelia or B. afzelii. This confirms that the density of nymphs 

is a good predictor of disease risk, as suggested before (Jaenson et al. 2009; Coipan et al. 

2013b). The homogeneous pine forests harboured lower densities of ticks than the more 

natural, mixed forests dominated by oak trees. However, it is certainly not advisable to 
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reverse the ongoing forest conversion towards more species-rich and structurally diverse 

forests as a disease prevention measure. Mixed forests are better able to deliver a whole 

suite of ecosystem services such as biodiversity conservation, prevention of soil 

degradation, watershed protection and recreation (van der Plas et al. 2016). Smart 

management of (converted) forests involves planning and conducting forest management 

in a fully integrated manner through which a maximum number of synergies between 

multiple ecosystem services, such as economic and commercial purposes, human health, 

recreation and regulating functions, are strived for (Führer 2000). Such integrated smart 

management may thus provide the most effective measure to optimize multiple ecosystem 

services, including human health and well-being. The results from this thesis could be 

extrapolated to other forest types, if taken into account the biotic (hosts) and abiotic 

conditions (temperature, humidity) that determine tick density. However, the interaction 

between the vegetation and the host community composition appears to determine the 

prevalence of Borrelia genospecies in the ticks, which influences the severity of Lyme 

borreliosis in humans. More research is needed to elucidate the exact impact of vegetation 

on the host use by ticks. 

Verheyen and Ruyts (2016) explained how smart management of forests can effectively 

decrease Lyme borreliosis risk. The risk for human exposure to Lyme borreliosis not only 

depends on the density of infected ticks (acarological risk) but also on the human-tick 

contact rate (Jaenson et al. 2009). Therefore, Verheyen and Ruyts (2016) defined Lyme 

borreliosis risk as the probability of a person making contact with at least one host-seeking 

tick infected with Borrelia along a 100 m forest trail. At low densities of infected ticks 

(smaller than two per 100 m²), a reduction in the density of infected ticks can lower the 

disease risk (Fig. 7.1). For higher densities of infected ticks (above two per 100 m²), the 

Lyme borreliosis risk can only be substantially decreased by decreasing the human-tick 

contact rate (Fig. 7.1). The mean density of infected nymphs in the forest stands studied in 

this thesis (cf. Chapter 2) was 5.9 per 100 m². Therefore, for our study region, decreasing 

the human-tick contact rate is a more effective, and probably also less expensive, 

management strategy than decreasing the density of infected ticks.  

The human-tick contact rate in a forest depends on the number of visitors and the 

probability of making contact with questing ticks (Verheyen and Ruyts 2016). As recreation 

and education are important ecosystem services of forests, forest management should not 
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aspire to decrease the amount of people visiting a forest site. Guiding the visitor flow, on 

the other hand, can be a useful management action. Effective measures to direct the visitors 

are, for example, points of attraction such as parking lots and bird observation towers, 

marked out routes that visitors have to follow and the presence of well-maintained trails 

versus trails of much poorer quality (van Marwijk et al. 2010).  

 

 

Fig. 7.1 The contact probability with at least one infected tick along a 100 m forest trail section 

(Y-axis) as a function of different densities of infected ticks (X-axis) and for different 

combined visitor passage and contact probabilities (coloured lines). The probability of a 

person making contact with at least one Borrelia-infected tick along a 100 m forest trail is 

calculated as (v*c)*[1 – exp(-p*DT)]. v: the probability of at least one visitor passage per 

hour; c: the contact probability with questing ticks; p: the prevalence of Borrelia; DT: the 

density of Ixodes ricinus nymphs and adults along a 1m wide and 100 m long forest trail 

section. Figure taken from Verheyen and Ruyts (2016). 
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The greatest numbers of questing nymphal and adult ticks can be found at 50 to 70 cm 

above ground level (Mejlon and Jaenson 1997). The probability of contact with questing 

(infected) ticks when walking on a forest trail is thus strongly related to the height of the 

vegetation along the trail. When vegetation is kept low, or when paths are wide, the risk of 

a tick bite is expected to be limited (Verheyen and Ruyts 2016). Providing information and 

education for the public can be an effective tool to reduce the human-tick contact rate and 

the probability of Lyme borreliosis after a tick bite. The knowledge on how to recognize 

ticks and efficiently remove them from the body, for example, can be provided on 

information panels, on a website or via a mobile app (Beaujean and Sprong 2016; Eisen 

and Gray 2016). There is seasonal variation in the density of (infected) nymphs, with a peak 

in late spring – early summer (Tälleklint and Jaenson 1996a; Perret et al. 2000; Randolph 

et al. 2002), which coincides with a peak in the number of tick bites in Belgium (TekenNet: 

tekennet.wiv-isp.be). In this period, people often take advantage of the good weather to 

recreate in forests. Therefore, Lyme borreliosis prevention campaigns could be aimed 

predominantly at this period. The seasonal pattern of tick activity and Borrelia prevalence 

in Belgium, however, has not yet been thoroughly investigated. 

In a Dutch study, most people (43%) were bitten by ticks in the forest, but an unexpected 

large number of people (31%) reported tick bites from their gardens (Mulder et al. 2013). 

Since humans can encounter (infected) ticks not only in forests, but also in (sub)urban green 

areas, management action should be taken in these environments as well. The above-

mentioned management actions for forests (mowing paths, giding visitors) can be applied 

to city parks as well, but are often not possible in gardens and smaller green areas. Providing 

information will especially be an important tool, because the public is often not aware of 

the possibility tick bites in (sub)urban areas. 

7.2.1 A one Health approach 

The results presented in this thesis are relevant for human health issues in that we show that 

the risk for Lyme borreliosis can be predicted by the density of nymphs. The density of 

infected nymphs is a well-established disease measure, and it is reasonable that this variable 

will predict the risk adequately. However, molecular tests to identify infection in ticks are 

very resource demanding: they are expensive, labour intensive and time consuming. 

Collecting ticks, on the contrary, is less expensive and does not require a lot of time. 

Therefore, monitoring the density of ticks (nymphs) is a valuable method to predict Lyme 
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borreliosis risk. Since we show in Chapter 3 that the density of nymphs fluctuates from 

year to year, such monitoring campaigns should best be done each year, to predict the risk 

more accurately. We did not examine seasonal variation, which is also an important aspect 

to investigate (Randolph et al. 2002). Moreover, in this thesis, we emphasize the 

relationship between vegetation features and tick densities, as in previous studies. Since we 

suggest that the contact rate between humans and ticks is the most important variable 

determining human health risk, the results we provide can be used to reduce risk, or human-

tick contact, in high-risk areas (such as mixed oak forests with a substantial shrub layer) as 

discussed above.  

Tick-borne diseases may be difficult to control due to their complex epidemiology. An 

integrated, interdisciplinary approach for the management of Lyme borreliosis (a one 

Health approach, see Dantas-Torres et al. (2012)) requires an increased communication 

between different fields such as ecology, zoology, epidemiology, molecular biology, 

medical and veterinary sciences, climatological and social studies and forestry.  

The results from this thesis can be integrated in a one Health framework, for example by 

improving communication between ecologists and physicians. It is crucial to not only 

inform the public about Lyme borreliosis ecology through prevention campaigns but also 

to provide physicians with the latest research results. Diagnosis of Lyme borreliosis, or 

other tick-borne infectious diseases, if often challenging (Stanek et al. 2011). However, 

proper diagnosis can be increased, for example, by asking the patient not only if they visited 

forests (and if so, which type of forests) but also if they visited city parks or often work in 

their garden, or if they have a pet. The role of domestic animals and some wildlife species 

in the Lyme borreliosis enzootic cycle has yet to be determined. Certainly the role of the 

different host species in (sub)urban areas is an aspect that requires further attention. For 

example, dogs or cats could carry infected ticks closer to humans, or even act as reservoir 

hosts for Borrelia genospecies and infect uninfected ticks. This aspect requires the 

combined knowledge of ecologists, veterinarians and physicians: a veterinarian that finds 

an (infected) tick on a dog may alert the pet’s owner to seek medical assistance when he 

feels ill.  

Mapping Lyme borreliosis risk is an important tool in disease prevention and management. 

The model that we present in Chapter 6 is not suitable to directly estimate health risk and 

tick-borne disease incidence, because of the variables that we used to build the model. 
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Instead, you can perfectly integrate a BBN based on the model and the results we present 

in this thesis in a one Health framework. For example, variables that can predict human-

tick contact rate in a forest such as population density, recreation opportunities in a forest 

and number of visitors can be added to the model. With such a model and GIS tools, a map 

can be build that can assess Lyme borreliosis risk in any forest type in Flanders/Belgium. 

Predictions would still be uncertain to some extent, but BBN can take this into account. 

7.3 Suggestions for further research 

The findings in this thesis have contributed to the current knowledge concerning Lyme 

borreliosis ecology in a European setting. Nevertheless, several issues remain to be 

addressed in further research. 

We demonstrated that forest composition and structure influence the density of nymphs and 

the nymphal infection prevalence of Borrelia genospecies, and that the effect of tree species 

on the density of nymphs is consistent through time. However, the time series used in this 

thesis only consists of four years, interrupted by two years. A longer, uninterrupted 

investigation of tick densities and the prevalence of tick-borne pathogens can more 

thoroughly elucidate the spatiotemporal patterns in tick-borne disease risk. Moreover, 

research investigating the within-year variation in the density of (infected) ticks in Belgium 

is lacking and is an important aspect in predicting Lyme borreliosis risk. In addition, as the 

densities of different host species can affect the densities of ticks and the prevalence of the 

different Borrelia genospecies, it is essential to quantify the exact host community 

composition. The prevailing weather conditions and the seed crop of tree species in the 

studied years can influence host densities and should also be taken into account.  

We found that hedgehogs and squirrels can contribute to the transmission cycle of some 

common tick-borne pathogens, including the Lyme borreliosis pathogen B. afzelii. The 

exact role of these hosts in the human health risk remains unclear. Further research is 

necessary to elucidate the interaction between host density, tick burden and tick infection 

prevalence and to assess the precise role of hedgehogs and squirrels in the enzootic cycle 

of the various tick-borne human pathogens and the associated human health risk in forests 

as well as in (sub)urban areas. The role of some other widespread host species in the 

maintenance of ticks and the transmission of pathogens, in forests and (sub)urban areas, is 

also unclear. For example, data on the tick burden and the reservoir competence for many 
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common tick-borne pathogens of the common/crowned shrew complex (Sorex 

araneus/coronatus), pygmy shrew (S. minutus Linnaeus, 1758), stone marten (Martes foina 

Erxleben, 1777), red fox (Vulpes vulpes Linnaeus, 1758) and wild boar (Sus scrofa 

Linnaeus, 1758) are scarcely available (Hofmeester et al. 2016). We also showed that, 

besides the pathogens causing Lyme borreliosis, other pathogens such as B. miyamotoi, A. 

phagocytophilum and R. helvetica, which cause similar disease symptoms and may be 

transmitted together (Jahfari et al. 2016), share the same enzootic cycles including the same 

tick and host species. Our data did not allow us to fully investigate the spatiotemporal 

dynamics of all the observed tick-borne pathogens or of all Borrelia genospecies. We 

therefore stress the need to identify the different components of the enzootic cycle of the 

different common tick-borne diseases and shed more light on the mechanisms of their 

transmission cycles.  

There are some limitations attached to the molecular methods we used in this thesis to 

detect the presence of Borrelia genospecies and other pathogens. First, in this thesis, we 

did not the variation within Borrelia genospecies, but only compared different genospecies. 

In a broader genospecies community, the different Borrelia genospecies will possibly 

display higher within-genospecies variation (Begon et al. 2006). At this moment, we have 

insufficient knowledge in how far the genetic diversity within a Borrelia genospecies 

correlates with the population size of the genospecies. Second, because of the difference in 

sensitivity between the qPCR and the conventional PCR that we used to detect presence of 

Borrelia and identify Borrelia genospecies, respectively, not all Borrelia-positive samples 

could be assigned to a genospecies. Further research could design and use a more sensitive 

test that would assign all Borrelia-positive samples to a genospecies. Third, we did not 

determine infection intensity of ticks. The amount of propagules of a pathogen per tick (or 

host) could affect the infectivity and virulence of the tick (see e.g. Råberg (2012)) which 

may influence transmission dynamics of the pathogen and human health risk. Moreover, 

co-infection of pathogens in a tick could influence the virulence of the tick or host (Brown 

et al. 2002). These aspects of the transmission pathogens between ticks and hosts have not 

been addressed in this thesis, but should be investigated in further research. 

A limitation of our study on the effect of the host community on Lyme borreliosis risk is 

the relatively small size of the investigated forest stands. Forest stands of approximately 1 

ha are adequate to study spatiotemporal patterns in the populations dynamics of mice and 



Chapter 7 

112 

 

voles, which are important feeding hosts for larval ticks (Hofmeester et al. 2016). Larger 

host species, such as foxes or martens, have a larger home range and may cross different 

habitats while ranging. To study spatiotemporal dynamics of such hosts and to assess their 

effect on the spatiotemporal dynamics of Lyme borreliosis risk, larger study sites should 

be considered. In addition, we showed that the habitat type can also influence Lyme 

borreliosis risk by influencing the host use by ticks. The effect of different habitat types on 

tick behaviour, host behaviour and the occurrence of the dilution effect has not received 

much attention so far, but deserves to be more thoroughly investigated. Moreover, we did 

not investigate how different herb layer compositions influence tick abundance and the 

prevalence of Borrelia genospecies in tick. Further research on the dilution effect in Europe 

should therefore take into account not only the host community composition, but also the 

effect of vegetation features, herb layer composition and microclimate on the larval burden 

on hosts, in order to elucidate the relationships between potential and realized dilution. 

Besides looking at the density of (infected) ticks and Borrelia genospecies prevalence 

between forest types and different vegetation features, the surveillance of Lyme borreliosis 

risk, or the risk for other tick-borne diseases, should compare sites at a larger scale such as 

regions, provinces and countries. This has not been addressed in this thesis but could be 

integrated by using tools such as TekenNet, which collects data of tick bites and subsequent 

medical observation from Belgium (tekennet.wiv-isp.be). 

The greater part of Lyme borreliosis research has focused on the Lyme borreliosis risk in 

forests. However, we showed that also (sub)urban green spaces can pose a human health 

risk. While most tick bites reported in a Dutch survey occurred in forests (43 %), almost 

one third of the tick bites were reported from gardens (Mulder et al. 2013). Moreover, 

hedgehogs and squirrels, two host species that carry multiple human pathogens, are well 

adapted to urbanization and often reach higher densities in cities than in forests (e.g. see 

Hubert et al. 2011; Rézouki et al. 2014). Therefore, we emphasize the need to study Lyme 

borreliosis risk in (sub)urban green areas and investigate the contribution of urban-dwelling 

hosts to the transmission cycle of tick-borne pathogens and the maintenance of a tick’s life 

cycle. 

 



113 



114 



 

115 

 

Summary 

 

Tick-borne diseases are a growing public health concern globally as their incidence is 

rising. However, the spatiotemporal dynamics of questing ticks infected with human 

pathogens such as the Lyme borreliosis bacteria, remain largely unclear. We investigated 

the transmission dynamics of common tick-borne pathogens, focusing mainly on Borrelia 

burgdorferi sensu lato (‘Borrelia’) and the impact of ecological interactions between ticks, 

hosts and forest types on Lyme borreliosis risk. Forest composition and structure have been 

shown to affect the density of ticks, but their impact on the prevalence of Borrelia in the 

ticks has not been investigated so far. The study of the impact of forest type on Lyme 

borreliosis risk is particularly important in the context of the ongoing conversion of 

homogeneous coniferous forests to more natural, mixed forests dominated by indigenous 

broadleaved trees in many regions in Europe. 

According to the dilution effect hypothesis, postulated in North America, a forest with a 

high diversity of hosts for ticks contains more hosts that are poorly capable of transmitting 

Borrelia to ticks compared to a forest with a species-poor host community, consisting 

mostly of transmission-competent host species. This hypothesis has not yet been tested in 

Europe, where different types of hosts transmit different Borrelia genospecies. 

In the Kempen, northern Belgium, we studied forest stands of four forest types: oak or pine 

stands, with or without a substantial shrub layer. These forest types are representative for 

the different stages in the process of forest conversion. In this part of the study, we focused 

on Borrelia afzelii, the most common Borrelia genospecies in Lyme borreliosis patients in 

Western Europe and transmitted to ticks by small rodents. We found that the density of 

Ixodes ricinus ticks or the infection prevalence of Borrelia in ticks from our study sites did 

not increase from 2009 to 2014, similar to the reported stable incidence of Lyme borreliosis 

and tick bites in Belgium. The density of ticks, rather than the infection prevalence of B. 

afzelii, was more important in explaining variation in the density of infected ticks and can 

thus be used as a predictor of disease risk. The density of ticks was higher in oak stands 

than in pine stands, but the prevalence of B. afzelii was highest in pine stands. We could 

not confirm the dilution effect hypothesis; the density of infected ticks, a commonly used 
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risk measure in the literature, was not correlated with host diversity, and the host diversity 

did not differ between the forest types. Our results indicate differential host use by ticks in 

different habitats, with larvae feeding more often on small rodents in pine stands and more 

on other types of hosts, such as birds, which transmit genospecies other than B. afzelii, in 

oak stands.  

Besides in forests, the favourable habitat of I. ricinus, humans are also exposed to ticks and 

human pathogens in (sub)urban green spaces. We found many common human pathogens, 

such as Borrelia genospecies, Borrelia miyamotoi and Anaplasma phagocytophilum, in 

squirrels and ticks from hedgehogs collected in urban settings. Hence, humans are likely to 

encounter ticks infected with one or several pathogens while gardening or recreating in 

parks. 

We conclude that focusing on the dilution effect to reduce Lyme borreliosis risk is not an 

effective management option in our study region, and possibly in other European regions 

with similar forest communities. Instead of decreasing Lyme borreliosis risk, adding host 

species to the host community can even increase disease risk, by increasing the prevalence 

of Borrelia genospecies that give rise to clinical manifestations of Lyme borreliosis such 

as neuroborreliosis that are more severe compared to skin manifestations (mainly caused 

by B. afzelii). Lyme borreliosis prevention should therefore aim to reduce tick densities and 

the contact rate between ticks and humans. The risk for human exposure to Lyme 

borreliosis not only depends on the density of infected ticks but importantly also on the 

human-tick contact rate. Our results suggest that decreasing the density of (infected) ticks 

will rarely lead to a substantially lower Lyme borreliosis risk. Forest management can 

decrease the human-tick contact rate and the subsequent Lyme borreliosis risk by directing 

visitor flows, e.g. along points of attraction or marked-out routes, and by mowing the 

vegetation along trails. 
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Samenvatting 

 

De toenemende incidentie van ziekten overgedragen door teken is - wereldwijd - een bron 

van zorgen en er is nog maar weinig kennis over en inzicht in de ruimtelijke en temporele 

dynamieken in de densiteit van geïnfecteerde teken. Daarom onderzochten wij de 

transmissiedynamieken van veel voorkomende pathogenen overgedragen door teken, met 

speciale aandacht voor Borrelia burgdorferi sensu lato (‘Borrelia’), en de impact van de 

ecologische interacties tussen teken, hun gastheren en bostypes op het risico op de ziekte 

van Lyme. We weten dat de samenstelling en structuur van bossen een invloed hebben op 

de densiteit van teken, maar de impact van verschillende bostypes op de infectiegraad van 

teken met Borrelia was tot dusver niet onderzocht. In verschillende regio’s in Europa 

worden homogene naaldbossen omgevormd naar meer natuurlijke, gemengde bossen 

gedomineerd door inheemse loofboomsoorten. In het kader van deze bosomvorming is 

onderzoek naar de impact van bostype op het risico op de ziekte van Lyme erg belangrijk. 

De ‘dilutiehypothese’ werd beschreven in Noord-Amerika en stelt dat een bos met een hoge 

diversiteit aan tekengastheren meer gastheren bevat die inefficiënt zijn in het overdragen 

van Borrelia naar teken (‘dilutiegastheren’) in vergelijking met een soortenarme 

gastheergemeenschap, die voornamelijk bestaat uit transmissie-competente gastheren. 

Deze hypothese werd nog niet eerder getest in Europa, waar de verschillende soorten 

gastheren geassocieerd zijn met verschillende genotypes van Borrelia. 

We bestudeerden vier bostypes die verschillende stadia in het proces van bosomvorming 

vertegenwoordigen: eiken- of dennenbestanden met of zonder goedontwikkelde struiklaag, 

in de Kempen (Noord-België). We focusten op Borrelia afzelii, het meest voorkomende 

Borrelia-genotype in patiënten met de ziekte van Lyme in West-Europa en overgedragen 

door kleine knaagdieren zoals muizen. We zagen geen verandering in de densiteit van teken 

en de infectiegraad met Borrelia tussen 2009 en 2014, wat overeenkomt met de stabiele 

incidentie van tekenbeten en de ziekte van Lyme in België in de laatste decennia. De 

variatie in densiteit van geïnfecteerde teken in de bestudeerde bossen werd voornamelijk 

beïnvloed door de variatie in tekendensiteit, niet door de variatie in infectiegraad. We 
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kunnen het risico op de ziekte van Lyme hier dus voorspellen aan de hand van de 

tekendensiteit. De tekendensiteit was hoger in eikenbestanden, maar de infectiegraad van 

B. afzelii was het hoogst in dennenbestanden. De dilutiehypothese was niet geldig in de 

bestudeerde bossen; de densiteit van geïnfecteerde teken was niet gecorreleerd met de 

diversiteit aan gastheren. En hoewel de infectiegraad verschilde tussen de bostypes was de 

gastheerdiversiteit gelijk in de verschillende bostypes. Onze resultaten tonen dat teken de 

gastheren op een andere manier gebruiken in de verschillende bostypes. Larven voeden 

zich vaker op kleine knaagdieren in dennenbestanden terwijl ze zich in eikenbestanden 

vaker voeden op andere gastheren (bv. vogels), die andere genotypes dan B. afzelii 

overdragen. 

Bossen zijn de geprefereerde habitat van I. ricinus, maar mensen kunnen ook blootgesteld 

worden aan teken en hun pathogenen in (sub)urbane groene ruimtes. In eekhoorns en in 

teken vanop egels die werden ingezameld in stedelijke gebieden vonden we verschillende 

veelvoorkomende pathogenen (Borrelia-genotypes, Borrelia miyamotoi, Anaplasma 

phagocytophilum). Het is dus mogelijk om in aanraking te komen met een teek die 

geïnfecteerd is met één of meerdere pathogenen in een stadspark of tuin. 

Vertrouwen op het ‘dilutie-effect’ om het risico op de ziekte van Lyme te verlagen in ons 

studiegebied (of vergelijkbare regio’s in Europa) blijkt dus geen effectieve 

beheermaatregel. Een hogere diversiteit van soorten in de gastheergemeenschap kan zelfs 

leiden tot een hoger ziekterisico, door de hogere infectiegraad van Borrelia-genotypes die 

leiden tot ernstigere klinische manifestaties van de ziekte van Lyme (bv. neurologische 

stoornissen) dan B. afzelii, die voornamelijk huidaandoeningen veroorzaakt. Preventie van 

de ziekte van Lyme wordt dus beter gericht op het verlagen van de tekendensiteit en het 

contact tussen teken en mensen. Het risico op de ziekte van Lyme hangt immers niet enkel 

af van de densiteit van geïnfecteerde teken, maar wordt in belangrijke mate ook beïnvloed 

door de waarschijnlijkheid van het oplopen van een tekenbeet: het contact tussen mensen 

en teken. Het verlagen van de densiteit aan (geïnfecteerde) teken leidt slechts zelden tot een 

verlaagd ziekterisico. Bosbeheerders kunnen de mate van contact tussen mens en teek, en 

dus het ziekterisico, verlagen door de vegetatie langs de paden kort te houden (frequent 

maaien) en bosbezoekers gericht te sturen (gemarkeerde routes en aantrekkelijke centrale 

voorzieningen). 
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