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Topographic position index (TPI) is an algorithm increasingly used to measure topographic slope positions
and to automate landform classifications. We applied TPI to a geoarchaeological research project in north-
western Belgium but its use led to erroneous landform classifications in this heterogeneous landscape. We
asked whether deviation from mean elevation (DEV) was a better method for landform classification than
TPI. We found that it enabled more accurate geomorphological assessment when using northwestern
Belgium as a case study.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Over the last decade, geographical information systems (GIS) and
digital elevation models (DEMs) have been increasingly used to auto-
matically classify landforms (Burrough et al., 2000; Drăguţ and
Blaschke, 2006; Iwahashi and Pike, 2007; Hengl and Reuter, 2009).
Disparate techniques incorporate a range of topographic input vari-
ables and output a varying number of landform classes (e.g. Irvin et
al., 1997; Giles, 1998; Miliaresis and Argialas, 1999; MacMillan et
al., 2000, 2004; Hengl and Rossiter, 2003; Bolongaro-Crevenna et al.,
2005; Prima et al., 2006). These techniques have been applied to
earth surfaces, ocean floors (e.g. Wright and Heyman, 2008; Zieger
et al., 2009), and planets (e.g. Bue and Stepinski, 2006). However,
Drăguţ and Blaschke (2006) assert that geomorphometric classifica-
tions of terrains have focused on either homogeneous regions
(Schmidt and Dikau, 1999; MacMillan et al., 2000) or specific features
such as hills, mountains (e.g. Miliaresis and Argialas, 1999) and hill-
slope units (e.g. Irvin et al., 1997; Burrough et al., 2000; MacMillan
et al., 2000), thereby making heterogenous landscapes less studied.
Additionally, Pike et al. (2009) remarked that no DEM-derived map
is definitive, as the parameters can be generated by different algo-
rithms or sampling strategies and can vary with spatial scale.
32 93310297.
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Following Guisan et al. (1999),Weiss (2001) introduced a customised
GIS application for semi-automated landform classification; the so-
called topographic position index (TPI) or difference from mean eleva-
tion (DIFF) as defined by Gallant and Wilson (2000). TPI measures the
relative topographic position of the central point as the difference
between the elevation at this point and the mean elevation within a
predetermined neighbourhood. Using TPI, landscapes can be classified
in slope position classes. TPI is only one of a vast array of morphometric
properties based on neighbouring areas that can be useful in topographic
and DEM analysis (see Gallant and Wilson, 2000).

Since the creation of an ESRI ArcView 3.x extension by Jenness
(2006), TPI has been applied to the fields of geomorphology (Tagil
and Jenness, 2008; Liu et al., 2009; McGarigal et al., 2009); geology
(Mora-Vallejo et al., 2008; Deumlich et al., 2010; Illés et al., 2011);
hydrology (Lesschen et al., 2007; Francés and Lubczynski, 2011; Liu
et al., 2011); agricultural science (Pracilio et al., 2006); behavioural
ecology (Coulon et al., 2008; Podchong et al., 2009; de la Giroday et
al., 2011); forest management (Fei et al., 2007; Zhang et al., 2009;
Giorgis et al., 2011; Han et al., 2011; Weber, 2011; Clark et al.,
2012); wildlife management (Squires et al., 2008; Lacki et al., 2009;
Pinard et al., 2012); climatology (Etienne et al., 2010; Bunn et al.,
2011); archaeology (Patterson, 2008; Berking et al., 2010); health
care (Clennon et al., 2010; Moss et al., 2011) and risk management
(Platt et al., 2011; Wood et al., 2011). Additionally, the bathymetric
position index (BPI), which is derived from TPI, is frequently used in
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Fig. 1. Map of northwestern Belgium showing main landscape units (major cities: A: Antwerp, B: Bruges, Br. Brussels, G: Ghent and K: Kortrijk).
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seafloor mapping (e.g. Iampietro et al., 2005; Lundblad et al., 2006;
Verfaillie et al., 2006; Wilson et al., 2007; Wright and Heyman,
2008; Zieger et al., 2009; Young et al., 2011).
Fig. 2. DEM of northwestern Belgium (cuestas: CH: Hertsberghe, CO: Oedelem, CT: Tielt and
Flanders; major cities: A: Antwerp, B: Bruges, Br. Brussels, G: Ghent and K: Kortrijk).
Given TPI's ability to subdivide landscapes into morphological clas-
ses based on topography, the method is important for archaeological
landscape research, aiming to identifying the topographic preference
CW: Land van Waas; hilly regions: FA: Flemish Ardennes and HC: hills of Central West
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Table 1
Classification of the landscape into slope position classes.

Morphologic class Weiss (2001) Northwestern Belgium

Ridge z0>SD z0>SD
Upper slope SD≥z0>0.5SD SD≥z0>0.5SD
Middle slope 0.5SD≥z0≥−0.5SD, slope>5° Pos. values: 0.5SD≥z0≥0
Flat area 0.5SD≥z0≥−0.5SD, slope≤5° Neg. values: 0>z0≥−0.5SD
Lower slope −0.5SD>z0≥−SD −0.5SD>z0≥−SD
Valley z0b−SD z0b−SD
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of specific types of archaeological sites (e.g. settlement and burial
sites). Indeed, local topography and topographic positions are often
described as important parameters determining the location of an
archaeological site (e.g. Tilley, 1994). However, most archaeologists
do not apply analytical tools such as GIS to assess the relationship,
and interpretations are mostly based on their observations and ex-
periences. Notable exceptions can be found in the work of Kvamme
(1992), Warren and Asch (2000), Llobera (2001), Roughley (2001),
Bevan (2002), Christopherson (2003), Bevan and Conolly (2004)
and Fairén-Jiménez (2007).

In a geoarchaeological research project in northwestern Belgium,
TPI was used to analyse the topographic location of prehistoric settle-
ments (Crombé et al., 2011) and Bronze Age burial mounds (De Reu
et al., 2011). However, the results based on the landform classification
method of Weiss (2001) did not correspond to real topography. This
was due to the complex heterogeneous shape of the landscape
under investigation. This paper discusses TPI and its limitations in a
study area of northwestern Belgium. An additional parameter, the
deviation from mean elevation (DEV), is assessed to improve the
classifications of slope positions and landforms.

2. Study area

The study area is situated in the provinces of East andWest Flanders,
northwestern Belgium. The area can be subdivided into three traditional
Fig. 3. DEM-derived slope map of northwestern Belgium (cuestas: CH: Hertsberghe, CO: Oe
hills of Central West Flanders; major cities: A: Antwerp, B: Bruges, Br. Brussels, G: Ghent an
landscape units: (i) the sandy area (Sandy Flanders), (ii) the polder
area and (iii) the loamy and silty area (Fig. 1). The central part of
Sandy Flanders is the Flemish Valley (Fig. 2), a Pleistocene valley
formed by successive periods of fluvial incision and infilling during
glacial and interglacial periods (De Moor and Heyse, 1978; Heyse,
1979). It is a low-lying area, mainly covered with sandy sediments
that rarely exceed heights above 10 m and vary by a few metres. Al-
though it is considered flat, the general topography is characterised
by a subtle topography composed of hundreds of small, low and elon-
gated ridges, shallow depressions and stream valleys. One ridge, the
so-called Great Ridge, rises up to 5 m above the surrounding land-
scape. Towards the east and the west, the Flemish Valley is enclosed
by cuestas, Tertiary outcrops as high as 30 m. Sandy Flanders is bor-
dered to the north and west by the polder area, an expanse covered
with marine and alluvial sediments of the coastal polders and the
polders of the River Scheldt. Towards the south, Sandy Flanders is
bordered by the loamy and silty area, topographically characterised
by the hills of Central West Flanders and the Flemish Ardennes, with
heights up to 150 m. This region is incised by streams of varying size
throughout.
3. Material and methods

3.1. Elevation data

A DEM based on high-density airborne LiDAR (light detection and
ranging) data registered between 2001 and 2004, was used for the
whole study area (Fig. 2) (AGIV, 2003; Werbrouck et al., 2011). The
data were generated in grid formats with cell sizes of 5, 25 and
100 m through the inverse distance weighting (IDW) interpolation.
In this study, the 5 m DEM was used, where vegetation and buildings
are filtered before delivery (AGIV, 2004). Other artificial structures
such as road banks and waste dumps were not filtered (Werbrouck
et al., 2011).
delem, CT: Tielt and CW: Land van Waas; hilly regions: FA: Flemish Ardennes and HC:
d K: Kortrijk).
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Table 2
Classification of the landscape into landform classes.
After Weiss (2001).

Landform Small
neighbourhood size

Large
neighbourhood size

(1) Deeply incised streams z0b−SD z0b−SD
(2) Local valley in plain z0b−SD −SD≤z0b0
(3) Middle slope drainage z0b−SD 0≤z0≤SD
(4) Upland drainage z0b−SD z0>SD
(5) U-shape valleys −SD≤z0≤SD z0b−SD
(6) Open slopes, flat areas (LNSb0) −SD≤z0≤SD −SD≤z0b0
(7) Open slopes, flat areas (LNS≥0) −SD≤z0≤SD 0≤z0≤SD
(8) Upper slopes −SD≤z0≤SD z0>SD
(9) Local hills/ridges in valley z0>SD z0b−SD
(10) Local hills/ridges in plain z0>SD −SD≤z0b0
(11) Middle slope ridges z0>SD 0≤z0≤SD
(12) Hill tops, high ridges z0>SD z0>D
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3.2. TPI

TPImeasures the difference between elevation at the central point
(z0) and the average elevation (�z) around it within a predetermined
radius (R) (Gallant and Wilson, 2000; Weiss, 2001):

TPI ¼ z0−�z ð1Þ
Fig. 4. Slope position classification based on TPI for (A) 100 m, (B) 300 m, (C
�z ¼ 1
nR

∑i∈Rzi: ð2Þ

Positive TPI values indicate that the central point is located higher
than its average surroundings, while negative values indicate a posi-
tion lower than the average. The range of TPI depends not only on ele-
vation differences but also on R (e.g. Grohmann and Riccomini, 2009).
Large R-values mainly reveal major landscape units, while smaller
values highlight smaller features, such as minor valleys and ridges.

3.3. DEV

DEV measures the topographic position of the central point (z0)
using TPI and the standard deviation of the elevation (SD) (Gallant
and Wilson, 2000):

DEV ¼ z0−�z
SD

ð3Þ

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nR−1

∑i¼1 zi−�zð Þ2
s

: ð4Þ

DEV measures the topographic position as a fraction of local relief
normalised to local surface roughness. Again, the output value is
) 600 m, (D) 1000 m, (E) 1500 m and (F) 2000 m neighbourhood sizes.
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Fig. 5. Percentages of the slope position classes based on TPI for different neighbourhood sizes.
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positive when the central point is situated higher than its neighbourhood
and negative when it is situated lower. The output values mostly range
between+1 and−1, and values outside this rangemay indicate anom-
alies within the DEM.
3.4. Landform classification

There are awide range of geomorphologicalmethods andalgorithms
to classify the landscape into morphological classes (e.g. Burrough et al.,
2000; Deng, 2007; Iwahashi and Pike, 2007; Hengl and Reuter, 2009).
We applied the method of Weiss (2001) that classifies the landscape
into discrete slope position classes using the standard deviation of TPI.
Fig. 6. Landform classification based on TPI for combined neighbourhood sizes: (A) 100 and 6
tion of the landforms is in Table 2.
Six classes were defined using the criteria shown in Table 1. In applying
the method of Weiss (2001), threshold values to distinguish slopes dif-
ferent from the original have been frequently used (e.g. Tagil and
Jenness, 2008; Deumlich et al., 2010). For the study area, flat areas
and middle slopes were not differentiated, as large slope values only
appear in a small part of the study area (Flemish Ardennes; Fig. 3).
We distinguished between middle slopes/flat areas that are higher
than their surroundings (TPI/DEV≥0) and those that are lower than
their surroundings (TPI/DEVb0).

In addition, the parameters from two neighbourhood sizes are
combined in order to identify complex landscape features, because
such a combination provides more information about topography
(Weiss, 2001). Table 2 summarises 12 produced landform classes.
00 m, (B) 300 and 1000 m, (C) 300 and 2000 m and (D) 600 and 2000 m. The descrip-
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Fig. 7. Slope position classification based on DEV for (A) 100 m, (B) 300 m, (C) 600 m, (D) 1000 m, (E) 1500 m and (F) 2000 m neighbourhood sizes.
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3.5. Data processing and neighbourhood size

TPI and DEV were calculated using the focal operators of ESRI's
ArcGIS 9.3 and by using Reuter's ArcGIS script elevres.aml (Reuter and
Fig. 8. Percentages of the slope position based
Nelson, 2009). For both TPI andDEV, themost insightful neighbourhood
sizeswere identified from20 candidate radii from100 to 2000 mwith a
100 m interval. Results for six neighbourhood sizes (100, 300, 600,
1000, 1500 and 2000 m) are presented in this paper.
on DEV for different neighbourhood sizes.
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Fig. 9. Landform classification based on DEV for combined neighbourhood sizes: (A) 100 and 600 m, (B) 300 and 1000 m, (C) 300 and 2000 m and (D) 600 and 2000 m. The
description of the landforms is in Table 2.
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4. Results

The generated TPI maps (Fig. 4) showed the influence of neigh-
bourhood size on the landform classifications; smaller radii better
represented small features. Fig. 5 illustrates the percentage of the
slope position classes for each radius. The middle slope/flat area was
the largest category, with percentages ranging between 63.28%
(100 m) and 69.97% (1500 m). Each of the other four categories (valley,
lower slope, upper slope and ridge) represented between 5% and 10%.
However, for all neighbourhood sizes, the distribution of these classes
was mainly related to the extent of certain landscape features (Figs. 2
and 4). The category ridge was often associated with the higher parts
of the Tertiary cuestas and the hills in Central West Flanders and the
Flemish Ardennes. Also the category valley was almost only identified
in these more hilly regions, where it can be associated with deeper in-
cised streams, and in the major river valleys of the Scheldt and the
Lys. The area in and around the Flemish Valley was largely identified
as middle slope/flat area. The subtle topography characteristic for this
area was not recognised. For example, the small, elongated sand ridges
along small stream valleys were either unidentified or only to a very
limited extent. As such, the results were unsatisfactory, as they did
not correspond to actual topography. Moreover, the combination of
two neighbourhood sizes provided no significant outcome (Fig. 6).

The generated DEV maps (Fig. 7) also showed the influence of
neighbourhood size. Fig. 8 illustrates the percentage of the slope posi-
tion classes for different radii, showing a pattern considerably different
from the TPI classification. Each class comprises 12% to 23% of the area,
and their trend was influenced by neighbourhood size. The most vari-
able classes were the upper slope, increasing from 13.88% (100 m) to
19.81% (2000 m), and the middle slope/flat area (TPIb0), decreasing
from 22.32% (100 m) to 17.39% (2000 m). The most stable classes
were ridges and valleys, both ranging between 13.25% and 14.50%.
Despite these variations, the generated output corresponded more
with the local topographic reality because more landscape features
were recognised. Ridges and valleys were also recognised in the subtle
topography of the Flemish Valley, where these correspond to elongated
sand ridges and valleys in between. Also in the areas around the Tertiary
cuestas and the hills of Central West Flanders and the Flemish Ar-
dennes, the result was more realistic. Ridges correspond to the crests
of hills, while valleys were only assigned to the lowest areas between
the ridges. Upper slopes, middle slope/flat areas and lower slopes
were more accurately recognised. Similar results were obtained when
different neighbourhood sizes were combined (Fig. 9).

Themore accurate assessment of landforms usingDEV instead of TPI
was also conducted based on the relation between the soil drainage
classes and slope position classes. The drainage classes were derived
from the digital soil map of Flanders (AGIV, 2001) and grouped in four
categories: dry, moderately dry, moderately wet, and wet. The distribu-
tion of classes for each slope position class was then analysed. Fig. 10
shows that the distribution is similar between DEV and TPI. The wet
soil was overrepresented in the valleys, depressions and the lower
slope areas, while underrepresentation occurred in higher areas partic-
ularly on the middle slopes/flat areas (TPI/DEV≥0), the upper slopes
and the ridges. The dry ground showed a reverse distribution: overrep-
resentation on the ridges and upper slopes and underrepresentation in
lower areas particularly themiddle slopes/flat areas (TPI/DEVb0), lower
slopes, valleys and depressions.

However, if the spatial relation between the soil drainage classes
and slope position classes is considered, large differences between
TPI and DEV were observed. Fig. 11 shows the correlation between
the wet soils along valleys and depressions as well as on lower slopes,
and that between dry soils on ridges and upper slopes. When TPI was
used, correlations between the drainage and slope classes were
shown only in the hilly regions around the hills of Central West
Flanders and the Flemish Ardennes. If DEV was used, correlations ap-
pear in the whole study area, which is more realistic. The comparison
of the present-day hydrological network and the generated slope
classes (Fig. 11) also illustrated amore accurate classification usingDEV.
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5. Discussion and conclusions

TPI, as defined byWeiss (2001), proved to be a useful tool for clas-
sifying slope positions and landforms. This was previously illustrated
by Weiss (2001) for Mt Hood in Oregon, USA, and Tagil and Jenness
(2008) for the Yazoren Polje, Turkey. However, both regions have rel-
atively homogeneous landscapes (Drăguţ and Blaschke, 2006) with
similar landforms (i.e. mountains and deep valleys). Our study in
northwestern Belgium illustrates the shortcomings of TPI for complex
landscapes characterised by a combination of (i) subtle landforms
Fig. 10. Percentages of the drainage classes based on DEV or TPI for different
with height differences of only a few metres (Flemish Valley) and
(ii) a more pronounced topography around the Tertiary outcrops
and the hills of Central West Flanders and the Flemish Ardennes,
with height differences of several metres or more. The range of TPI
is strongly influenced by surface roughness, which resulted in an in-
correct classification of slope positions and landforms in these com-
plex and heterogeneous landscapes. To reduce the influence of the
surface roughness on the detection of slope classes at the local scale,
DEV was applied. This allowed us to analyse the heterogeneous
landscapes more accurately, and prominent locations, flat areas and
slope position classes and neighbourhood size (300, 600 and 1000 m).
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Fig. 10 (continued).
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depressions were identified in regions characterised by both low and
high relief levels.

TPI is an example of a topographic metric that became insti-
tutionalised by its integration into widely used tools such as the
ESRI products. This resulted not only in the popularity of this metric
parameter, but also in the uncritical application by users without a
solid geomorphological background. Like other topographic parame-
ters including DEV, TPI has advantages and disadvantages as well
as appropriate and inappropriate uses. This was illustrated by a
geoarchaeological study on the distribution of Bronze Age barrows
in northwestern Belgium (De Reu et al., 2011; De Reu, 2012). The TPI
analysis indicated that the barrows were mainly located on middle
slopes/flat areas, although they are actually located on higher ridges in
an area with a subtle topography (De Reu, 2012). This subtle topogra-
phy was not recognised using TPI. The use of DEV corrected this, illus-
trating that the difference between TPI and DEV can clearly influence
geoarchaeological interpretations.

Although the use of DEV provided more realistic landform classifi-
cations, there is no definitive DEM-derived map (Pike et al., 2009).
Using other parameters such as curvature, aspect, slope, wetness
and soil texture along with DEV (and/or TPI) may lead to better land-
form classification.
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