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Mapping complex soil patterns with multiple-point
geostatistics
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Summary

The commonly used variogram function is incapable of modelling complex spatial patterns associated with
repetitive, connected or curvilinear features, because it is a two-point statistic. Because this was strongly
limiting to petroleum- and hydrogeologists, they developed multiple-point geostatistics (MPG), an approach
that replaces the variogram by a training image (TI). However, soil scientists also face complex spatial patterns
and MPG might be of use to them as well. Therefore, this paper aims to introduce MPG to soil science and
demonstrate its potential with a case study of polygonal subsoil patterns caused by Weichselian periglacial
frost cracks in Belgium. A high-resolution proximal soil sensing survey provided a reference image from
which a continuous (655 sensor data) and a categorical (100 point observations) dataset were extracted. As
a continuous TI, we used the geophysical data of another part of the field, and as categorical TI we used a
classified photograph of an ice-wedge network in Alaska. The resulting MPG maps reconstructed the polygonal
patterns very well and corresponded closely to the reference image. Consequently, we identify MPG as a
promising technique to map complex soil patterns and suggest that it should be added to the pedometrician’s
toolbox.

Introduction

Multiple-point geostatistics (MPG) is a recently developed toolbox
of simulation algorithms replacing the traditional variogram
function as a model of the spatial structure by a training image
(TI). The experimental variogram γ (h) is calculated as

γ (h) = 1

2N(h)

N(h)∑
α=1

{z (xα + h) − z (xα)}2, (1)

with N (h) the number of data pairs {z (xα), z (xα + h)} separated
by the vector h. A variogram is a two-point statistic: it relates the
same variable Z at two locations. However, a two-point statistic
is not capable of modelling complex spatial patterns such as
repetitive, connected or curvilinear patterns. Reproducing such
complex patterns requires us to consider more than two locations
at a time, in other words multiple-point statistics (Goovaerts,
1997). Guardiano & Srivastava (1993) were the first to suggest
the derivation of multiple-point statistics from a TI instead of
computing them from observations as their number is mostly too
limited.

A TI is a conceptual image of the expected spatial structure
reflecting the spatial dependence between multiple points. It can
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be constructed from expert knowledge, a hand drawing, a model
output or an existing map or photograph that is assumed to be an
analogue of the phenomenon under study. Alternatively, a TI can
be constructed from more densely sampled zones (Goovaerts,
1997). Prerequisites for a good TI are that it represents both the
geometrical features and the global statistics (Hu & Chugunova,
2008). A TI does not need to carry any local information of the
studied phenomenon; it only needs to reflect a prior structural
concept (Strebelle et al ., 2003).

After the basic idea of MPG had been proposed in the early
nineties, the first MPG algorithm, snesim , was developed by
Strebelle (2002). During the last decade, MPG has become an
active research topic and several MPG algorithms have been
developed (see later) (Hu & Chugunova, 2008). Most MPG
applications can be found in petroleum- and hydro-geological
studies (Strebelle et al ., 2003; Zhang et al ., 2006a; Ronayne
et al ., 2008; Huysmans & Dassargues, 2009; Comunian et al .,
2011; Le Coz et al ., 2011). However, complex spatial patterns
that are hard to model with traditional two-point geostatistics also
occur in soil science. Soil-forming factors, including the human
factor, induce complex patterns in soils that can be observed
at scales ranging from landscape to microscopic. Examples are
dune patterns, palaeochannels, limestone pavement, desiccation
cracks, (relict) patterned ground, land-use patterns, sedimentary
rock layers and soil pores. As such, local estimation of these
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soil features or simulating them for probabilistic forecasting
(for infiltration rates for example) is an inherent part of soil
science.

This paper aims to introduce MPG to soil science. Therefore,
we first summarize the MPG theory and then provide a case study
based on real data to demonstrate the applicability of MPG in soil
science. A part (30 m × 30 m) of a geophysical image of polygonal
textural patterns was used as the exhaustively-known reference
image. From this reference image we extracted a continuous and
a categorical dataset and evaluated the continuous and categorical
MPG reconstruction of the complex soil patterns.

Theory

Two-point geostatistics

The two-point geostatistical (TPG) toolbox consists of estimation
and simulation techniques. A characteristic of TPG estimation,
known as kriging, is that each estimate Z * (x) is obtained
independently of any neighbouring estimate. Kriging provides
the best local estimate for each x in the least-squares sense
by minimizing the variance of the estimation error. However,
kriging maps are smoothed in their spatial variation and do not
represent the true spatial variation properly (Goovaerts, 1997).
Consequently, the local accuracy of kriged maps comes at the
cost of a poor reproduction of the spatial pattern.

The TPG simulation algorithms, on the other hand, aim
at a more realistic reproduction of the spatial pattern. They
generate multiple realizations that can be true to the conditioning
data and reproduce the sample histogram and variogram. Most
TPG simulation algorithms are sequential simulation algorithms,
such as sequential Gaussian simulation and sequential indicator
simulation.

The key to sequential simulation algorithms is building a
conditional probability distribution function (cpdf) for each
successively visited location to be simulated x:

f (x; z| (n)) = Prob {Z (x) = z| (n)} , (2)

where |(n) expresses the conditioning to local information (the
conditioning data and the previously simulated grid nodes;
Goovaerts, 1997). From this cpdf a simulated value for Z (x)
is drawn and the algorithm proceeds to the next x. The TPG
simulation algorithms build these cpdfs by considering the n
neighbouring data one by one: for each location a kriging system
is solved by using two-point variogram values.

Multiple-point geostatistics

To date, the MPG toolbox is restricted to simulation algorithms.
Comparable to TPG realizations in which the sample histogram
(a one-point statistic) and variogram (a two-point statistic)
are reproduced, MPG simulation algorithms aim to generate
realizations that honour the conditioning data and the multiple-
point statistics of the TI. In other words, MPG simulation

algorithms anchor the multiple-point patterns of the TI to the
conditioning data (Caers & Zhang, 2004). A few alternative
approaches to MPG are based on pattern classification (Zhang
et al ., 2006b; Arpat & Caers, 2007), but most MPG algorithms
are sequential simulation algorithms (Hu & Chugunova, 2008).

In contrast to TPG, the cpdfs f (x; z |(n)) in Equation (2) are
built by considering the n neighbouring data jointly. For each
successively visited x, a data event dn (x) of size n centred
at location x is defined. This data event consists of the n
neighbouring data values z (x + hα) and the neighbouring data
geometry, defined by the n vectors hα (α = 1, . . . , n). Then,
the TI is scanned for replicates of dn (x). The TI scan is
based on the principle that the conditional probability f (x; z |(n))
corresponds to the ratio of the number of replicates with their
central node equal to z , and the total number of replicates found
(Strebelle, 2002).

Guardiano & Srivastava (1993) proposed rescanning the entire
TI for each x to estimate f (x; z |(n)). Unfortunately, this strategy
was not practical to implement because it required a long
computing time. The snesim code offered a practical solution:
prior to sequential simulation, snesim scans the entire TI and
stores all possible TI replicates in a search tree (Strebelle, 2002).
For each x, f (x; z |(n)) is calculated from the tree structure. To
date, snesim is still a popular MPG algorithm that is implemented
in the freely distributed SGeMS software (Remy et al ., 2009).
An alternative is the impala code from the commercial Isatis
software (Geovariances, 2011) that stores the catalogue of possible
TI replicates in lists instead of tree structures (Straubhaar et al .,
2011). Because all possible TI replicates are stored beforehand
in a catalogue, memory use restricts both snesim and impala to
the simulation of categorical variables. The first MPG sequential
simulation technique that allows simulation of different variable
types, including categorical, continuous and multivariate variables,
is the direct sampling (DS) code (Mariethoz et al ., 2010). The DS
re-scans the TI for each x during sequential simulation, as was
proposed first by Guardiano & Srivastava (1993), but it samples
the TI directly without explicitly modelling f (x; z |(n)). As yet,
DS has not been implemented in a software package, but the code
is available for academic purposes. Because DS is used for the
case study presented in this paper, we discuss its implementation
in more detail.

Figure 1 shows a flowchart of the DS algorithm. If there are
conditioning data available, these are first assigned to their closest
grid nodes in the simulation grid. Conditioning data are generally
point observations that can be either categorical or continuous,
but they can also be transect or (quasi) exhaustive samples. When
no conditioning data are available, DS will generate unconditional
simulations. Then, a path is defined through the remaining grid
nodes with unknown values x. This path is usually random, but
the user has the option to define a unilateral path.

For each sequentially visited x, DS finds the n closest
neighbours (including conditioning data and previously simulated
grid nodes) in order to define the data event dn (x). The user defines
the maximum number of neighbours (nmax) and the maximum
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Figure 1 Flowchart of the multiple-point geo-
statistics algorithm used for this case study: the
Direct Sampling algorithm.

search area (a rectangle). It is interesting to define a search area
that equals the size of the simulation grid. When nmax is the only
limiting factor, dn (x) gradually decreases when the number of
already simulated grid nodes increases, thus capturing patterns at
different scales (Mariethoz et al ., 2010).

Next, a TI scan is performed: for a random location y in
the TI grid, the TI pattern dn (y) is defined that has the same
data geometry as dn (x). The dissimilarity between the data

values of dn (x) and dn (y) is quantified by a distance measure
D{dn (x), dn (y)}. As soon as D is smaller than a user-defined
acceptance threshold t , the value at the central node of this TI
pattern z (y) is assigned to z (x) in the simulation grid. If D is
larger than t , the TI scan continues. For each variable type, one
has only to select the appropriate dissimilarity distance D , making
DS a flexible technique. The default distance type for categorical
variables is the fraction of non-matching nodes between dn (y) and
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dn (x). For continuous variables, it is the sum of the absolute value
of the differences between the corresponding data values in dn (y)
and dn (x). The latter is normalized, so both dissimilarity distances
range between 0 and 1 (Mariethoz et al ., 2010).

The user can determine the maximum fraction of the TI that
is scanned for each x by setting parameter f to range between
0 and 1. If this maximum fraction has been scanned and still no
TI pattern with D < t has been found, DS assigns the central
node of the TI pattern with the smallest D to z (x). After all
x values have been simulated, it is possible to resimulate the
locations (except for the conditioning data locations) for which no
TI pattern with D < t had been found, with an entirely informed
neighbourhood (not shown in the flowchart). Whether or not this
post-processing is performed should be decided by the user, but
it has been demonstrated that this additional step is beneficial
because it reduces the level of noise (the isolated pixels that
were wrongly simulated; Mariethoz et al ., 2010; Meerschman
et al ., 2013).

Dataset of polygonal textural patterns

The geophysical dataset that we used was discussed in detail
by Meerschman et al . (2011); therefore we limit ourselves
here to a brief description. We surveyed a 0.6-ha field in the
sandy silt region of Flanders, Belgium. This field was selected
because an aerial photograph showed polygonal crop marks
indicating textural patterns in the soil (Figure 2a). These textural
patterns were caused by thermal contraction cracking in periglacial
areas during the Weichselian glacial period and are known as
fossil ice-wedge polygons or pseudomorphs (Kolstrup, 1986).
At the end of the glaciation the soil cracks were filled up and
covered with sediments (French, 2007). Mapping these cryogenic
features is of interest because the abrupt changes in the subsoil
composition affect soil management. Further, the morphology of
their polygonal network is important for palaeo reconstructions
(Plug & Werner, 2002). Note that a former field track crossed the
field from north to southeast (Figure 2a).

To observe the polygonal textural patterns directly, we exca-
vated a part of the field (approximately 6 m by 6 m) to a depth of
90 cm and uncovered an ice-wedge pseudomorph with a diameter

of about 6 m. The host material had a sandy clay texture, whereas
the younger wedge infilling contained a larger percentage of sand.

The field was surveyed with a mobile electromagnetic induc-
tion soil sensor (EM38-DD, Geonics, Mississauga, Canada) that
measures the apparent electrical conductivity (ECa) of an under-
lying soil volume down to approximately 1.5 m (Cockx et al .,
2006). The inter-line distance was 0.75 m and the within-line dis-
tance between sensor response registrations was 0.15 m. Because
the ECa data were generally larger at the former field track,
we subtracted a moving spatial average (radius = 3 m) from each
measurement to highlight the polygon boundaries. The resulting
residuals were expressed as �ECa = ECa - trend. Negative �ECa

values corresponded to the sand-rich wedge infilling and positive
�ECa values to the host material. The �ECa data were interpo-
lated by ordinary kriging (OK) to a regular grid with a resolution
of 0.1 m by 0.1 m (Figure 2b). Despite the connectivity of the
low values, estimation with OK produced good results because
the sampling density was sufficient to reveal the complex spatial
patterns.

Results

Continuous data

Continuous reference image and conditioning data. The lower
left part of the �ECa map (30 m × 30 m) (Figure 2b) was used
as the continuous reference image (Figure 3, top right). Ten
measurement lines within this area, having an inter-line distance of
3 m and a within-line distance of 0.4 m, were used as conditioning
input data (655 data points) (Figure 3, top left).

Variogram modelling and mapping with traditional two-point
geostatistics. Before reconstructing the image with MPG, we first
applied a standard TPG approach of fitting a variogram model to
the experimental variogram and used this model to generate an
estimation and simulation map. The experimental variogram of
the continuous data is given in Figure 3 (centre left). It shows
no nugget effect and an almost linear increase to a sill that
displays a hole effect, indicating a fairly regular repetition in the

Figure 2 (a) Aerial photograph showing polygonal
crop marks and a former field track (north-southeast
oriented) with delineation of the surveyed area
(black rectangle) (© J. Bourgeois, Department of
Archaeology, Ghent University, Belgium: photo,
J. Semey) and (b) resulting proximal soil sensor
image (�ECa/mS m−1) (Meerschman et al ., 2011):
the left bottom part of this image was used as
continuous reference image (white rectangle) and
the right bottom and left upper part as continuous
training images (white dashed rectangles).
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Figure 3 Reconstruction of the continuous ref-
erence image with two-point and multiple-point
geostatistics starting from 655 conditioning data.
The two-point estimation (ordinary kriging) and
simulation (first Gaussian simulation realization)
maps were based on a non-periodic (cubic) and a
periodic (cubic + cardinal sine) variogram model.
The two multiple-point estimation (E-type of 100
direct sampling (DS) realisations) and simulation
(first DS realization) maps were based on two dif-
ferent continuous training images.

process (Webster & Oliver, 2007). To evaluate the contribution
of the hole effect, we fitted both a non-periodic and a periodic
variogram model. The non-periodic variogram model was a cubic
function:
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with c = 1.11 m and a = 4.1 m. Similar to a Gaussian function, a
cubic function is a bounded model with reverse curvature near

the origin (Webster & Oliver, 2007). We incorporated periodicity
in the variogram model by fitting a combination of a cubic and
cardinal sine variogram:
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with c1 = 0.48, a1 = 3.2 m, c2 = 0.52 and a2 = 0.9 m. The
cardinal sine function is a simple periodic function that is valid
in one, two and three dimensions (Webster & Oliver, 2007).

The estimation maps were created by ordinary kriging (OK)
and the simulation maps by sequential Gaussian simulation (SGS)
(Goovaerts, 1997) (Figure 3, centre right). The �ECa data distri-
bution followed a standard normal distribution, making a normal
score transformation unnecessary. Both the variogram modelling
and the two-point geostatistical mapping were performed with the
Isatis software (Geovariances, Avon Cedex, France). The search
area was set to the size of the study area (30 m × 30 m) and the
maximum number of neighbours to 50.

TI construction and mapping with multiple-point geostatistics.
Whereas 655 observations are generally considered as sufficient
to infer two-point statistics, this number is not enough to infer
multiple-point statistics. Therefore, we applied an alternative
strategy and used another part of the �ECa map (Figure 2b)
as a continuous TI (TI 1) (Figure 3, bottom left). This mimics
a situation in which a field is partially sampled at a very high
resolution to infer multiple-point statistics and partially at a lower
resolution (larger inter-line distance) to minimize cost. To get an
idea about how sensitive the MPG maps are to the TI, we repeated
the reconstruction using another part of the field as TI (TI 2)
(Figure 2b).

The estimation maps were obtained as the E-type (conditional
mean) of 100 DS realizations and the simulation maps were
obtained as the first DS realizations (Figure 3, bottom right). We
used the default distance type for continuous data and selected
the post-processing option. Parameter t was set to 0.02, f to 0.75,
nmax to 50 and the maximum search area equal to the size of the
study area (30 m × 30 m).

Evaluation of the two-point and multiple-point maps. Both the
TPG and MPG estimation maps corresponded reasonably well
to the reference image (Figure 3). The mean absolute estimation
error (MAEE) was 0.51 for the TPG map based on the cubic
variogram, 0.52 for that based on the periodic variogram, 0.64
for the MPG map with TI 1 and 0.54 for the MPG map
with TI 2. However, pattern reconstruction was better for the
MPG maps: the connectivity of the smaller values was better
reproduced.

The TPG estimation maps were very similar (r = 0.99) and
thus rather insensitive to the hole effect of the variogram model,
whereas the two MPG estimation maps differed more (r = 0.77).
This demonstrates that changing the TI has larger consequences
than changing the variogram: a TI has greater control over the
spatial structure (Boisvert et al ., 2007). To interpret this correctly,
the fundamental distinction between two-point and multiple-point
techniques should be understood. For MPG simulations, the user
provides a prior multiple-point structural model, the TI. This
model allows us to link the n neighbouring data jointly to Z * (x).
For TPG simulations, the user provides only a prior one-point
(the histogram) and two-point structural model (the variogram),

linking the n neighbouring data pairwise to Z * (x). Beyond
the histogram and variogram, TPG algorithms use their own
intrinsic prior structural model that is beyond the control of the
user. For SGS this model is multivariate Gaussian, a model that
imposes maximum entropy for the high-order statistics (Journel &
Zhang, 2006).

The different multiple-point structural models are to some
extent visualized in the simulation maps (Figure 3). The TPG
simulation maps show a spatial distribution of greater entropy:
the extremes are more spatially fragmented. The spatial patterns
in the MPG simulation maps can be considered as better structured
and correspond more closely to those in the reference image.
This is of course due to the lower entropy (spatially connected
small values) prior multiple-point models we defined by means
of the TIs. Note that the conditioning data strongly guide the
pattern reconstruction. The differences between the TPG and MPG
simulation maps would have been more profound for a smaller
number of conditioning data.

Categorical data

Categorical reference image and conditioning data. To obtain a
categorical reference image, the continuous one was classified by a
k -means classification after running a contrast enhancement filter
(Figure 4, top right). We chose k = 3 to have a strict categorical
dataset and not a binary one. The three classes represent wedge,
host and intermediate materials. From this classified reference
map 100 data points were extracted according to a stratified
random sampling scheme, mimicking a soil sampling campaign
where the subsoil textural class was estimated by field texturing
(Figure 4, top left).

TI construction and estimation with multiple-point
geostatistics. The experimental set-up of the categorical
case study required an alternative approach to construct the
TI. We assumed that the only information that we had about
the spatial structure came from the small excavated area and
that there was no exhaustively measured neighbouring field to
derive a TI from directly, as was done in the continuous case.
Hence, we chose an existing photograph from the literature
and rescaled it using the information that we gathered from
the excavation because it is beneficial when the size of the
TI patterns corresponds more or less with the true pattern
size.

We selected a near-infrared aerial photograph of a present-day
ice-wedge network in Alaska (Plug & Werner, 2002), assuming
that a similar genetic process was at the basis of both ice-
wedge patterns. The photograph was rescaled, equalling its
average polygon size to that of the textural polygon that was
observed in the Belgian field by excavation (Figure 5a). Then,
we applied a pixel-wise (7 × 7 kernel) adaptive Wiener low-pass
filter for noise removal (Lim, 1990) and classified the image
into three classes with a k -means classification using MATLAB
R2011a (Mathworks, Natick, MA, USA) (Figure 5b). We chose
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Figure 4 Reconstruction of the categorical ref-
erence image with multiple-point geostatis-
tics starting from 100 conditioning data. The
multiple-point estimation (conditional mode of
100 direct sampling (DS) realisations) and sim-
ulation (first DS realization) maps were based
on a categorical training image.

Figure 5 (a) The original, rescaled near-
infrared aerial photograph of an ice-wedge
network on the floor of a drained lake
near Espenberg, northwest Alaska (Plug &
Werner, 2002), used to construct (b) the
categorical training image.

a photograph from Alaska, and not from Belgium, to illustrate
better the strong concept of the TI as a database of representative
patterns, independent of its origin.

The estimation map was the most probable category (condi-
tional mode) of 100 DS realizations and the simulation map was
the first DS realization. We used the default distance type and set
t to 0.05, f to 0.5 and nmax to 50. As for the continuous case,
the maximum search area was set to be equal to the size of the
study area and after each simulation one post-processing step was
performed for noise removal.

Evaluation of the multiple-point maps. Figure 4 compares the
multiple-point categorical reconstruction with the categorical

reference image. Most of the polygons were correctly identified.
The categorical estimation map had a correct classification rate of
54%. The largest source of error between the estimation map and
the reference image was due to the difference in spatial pattern
between the chosen TI and the reference image. The TI contains
polygons with smoother boundaries, and slightly over-estimates
the connectivity of the wedge material and under-estimates the
connectivity of the intermediate material.

Note that we did not make the comparison with TPG here
because the number of observations was too small to reveal the
spatial pattern, and the patterns themselves, especially the pattern
of the intermediate material, were too complex to be modelled
with a two-point variogram function.
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Discussion and conclusions

Variogram-based geostatistics is mostly data driven (Heuvelink
& Webster, 2001), whereas the construction of a multiple-point
structural model usually requires extra information. Therefore, an
often-mentioned constraint of MPG is that the construction of a
TI requires a larger effort than variogram modelling.

Today there is, however, an increasing availability of soil
covariates that help the soil scientist to model spatial variation
accurately. This soil covariate information, like aerial photographs
or proximal soil sensor images, might be used to construct TIs
that can be more generally applied (because they do not need to
contain any local information). As illustrated in the continuous
case, additional high-density proximal soil sensor data were used.
Using such high-resolution spatial datasets as a model of the
spatial structure to interpolate less densely sampled data is an
elegant approach.

Moreover, soil scientists often have some prior conceptual
knowledge about the studied phenomenon. Although attempts
have been made to translate this prior knowledge into a variogram
function (Truong et al ., 2012), it is easier to translate these
concepts into an image (Journel & Zhang, 2006), as has been
illustrated in the categorical case study.

A second perception is that TI construction is more subjective
than variogram modelling. Indeed, constructing a TI forces the
user to make decisions about the multiple-point statistics instead
of just accepting them implicitly. However, we believe that the
explicit visualization of multiple-point statistics in a TI should
be seen as an advantage rather than inducing some degree
of subjectivity. Multiple-point maps are very sensitive to the
chosen TI, but it should be realised that this sensitivity is not
stronger than the sensitivity to the combination of a variogram
model and implicit high-order assumptions (Journel & Zhang,
2006).

Soil scientists frequently face periodic, connected or curvilin-
ear patterns. We believe that MPG is a promising and accessible
technique to model these complex spatial soil patterns. Con-
sequently, MPG deserves to be added to the pedometrician’s
toolbox.
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