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In this paper we develop a model for the spatial variability of apparent electrical conductivity, ECa, of soil formed
in relict patterned ground. The model is based on the continuous local trend (CLT) random processes introduced
by Lark (2012b) (Geoderma, 189–190, 661–670). Thesemodels are non-Gaussian and so their parameters cannot
be estimated just by fitting a variogram model. We show how a plausible CLT model, and parameters for this
model, can be found by the structured use of soil knowledge about the pedogenic processes in the particular en-
vironment and the physical properties of the soil material, along with some limited descriptive statistics on the
target variable. This approach is attractive to soil scientists in that it makes the geostatistical analysis of soil
properties an explicitly pedological procedure, and not simply a numerical exercise. We use this approach to
develop a CLT model for ECa at our target site. We then develop a test statistic which measures the extent to
which soils on this site with small values of ECa, which are coarser and so more permeable, tend to be spatially
connected in the landscape. When we apply this statistic to our data we get results which indicate that the CLT
model is more appropriate for the variable than is a Gaussian model, even after the transformation of the data.
The CLT model could be used to generate training images of soil processes to be used for computing conditional
distributions of variables at unsampled sites by multiple point geostatistical algorithms.

© 2013 Natural Environment Research Council. Published by Elsevier B.V. All rights reserved.
1. Introduction

‘Mais surtout nous insisterons sur la nécessité d'incorporer au
maximum la physique du problème et le contexte géologique de la
zone étudiée’.

[Chilès and Guillen (1984)]

In most geostatistical analyses of soil the data are assumed to be a
realization of a multi-Gaussian random function, perhaps after they
have been transformed so that their histogram represents a Gaussian
distribution. Furthermore, the random function commonly has a spatial
covariance function drawn from a limited subset of models (Webster
and Oliver, 2007), which are used because of their convenient
mathematical properties. In some of the earth sciences there has been
progress in the development of random functions with parameters
that are determined, or at least constrained, by parameters of underlying
processes which have a physical meaning (e.g. Chilès and Guillen, 1984;
Kolvos et al., 2004). This has advantages (Lark, 2012a); for example, the
efficiency of spatial sampling to model the spatial covariance function
could be improved if prior distributions for covariance parameters
ent Research Council. Published by E
could be specified from process knowledge. However, this has not
been achieved in soil science. Lark (2012a) suggested that this is probably
because the variables that soil scientists study are commonly influenced
by a more complex set of factors at more diverse spatial scales than is
the case for the variables where it has proved possible to specify the
covariance function from process information. For example, the
covariance function for diffusion processes is well-established
(Whittle, 1954, 1962), and diffusion is a source of spatial variation
in the concentration of nutrients in soil, but it is just one of many
sources of spatial variation, and is of limited importance at the spatial
scales most generally studied for practical purposes.

Lark (2012a, 2012b) suggested that progress might be made by
recognizing a number of distinct modes of soil variation, simple and
generalizable rules that capture how the effects of factors of soil
variation vary laterally, andwhichmap naturally on to particular spatial
random functions. For example, in conditions where soil variation is
strongly determined by differences between discrete domains in the
landscape (such as geological units, topographic units, fields etc.) then
a subdivision of space into random sets such as Poisson Voronoi
polygons may be appropriate (Lark, 2009) and properties of the spatial
model (such as the mean chord length of the polygons) may be given a
physical meaning.

Lark (2012b) proposed a mode of soil variation: continuous local
trends. Under this mode of variation soil varies laterally in space,
changing continuously rather than in a step-wise fashion; and these
lsevier B.V. All rights reserved.
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trends are local and repeating, so that they are essentially unpredictable
(in contrast to a large-scale trend in a variable that might be observed
across a study area). Examples of continuous local trends would be
concentration gradients around the rhizosphere, or around individual
plants, and catenary variation at landscape scale. Lark (2012b)
proposed a general family of random functions to describe continuous
local trends (CLT random functions). The value of a CLT variable at
some location is given by a distance function, whose argument is the
distance from the location of interest to the nearest event in a realiza-
tion of a spatial point process. This makes the CLT a random function.
The CLT variables considered by Lark (2012b), and in this paper, are
Poisson CLT (PCLT) variables because the spatial point process is
completely spatially random. Lark (2012b) estimated parameters of a
PCLT process from data on a soil variable. It was also pointed out that
the PCLT process might differ from a comparable Gaussian random
function with respect to its multiple point statistics (Strebelle, 2002).
This raises the possibility that PCLT models, as well as mapping closely
on to a particular mode of soil variation, might be practically useful for
applications where spatial connectivity plays a major role controlling
processes in soil and so the multiple point statistics of the variable are
important.

In this paper we use a PCLT random function to model the variation
of apparent electrical conductivity, ECa, of soil at a site where this
variable is strongly influenced by spatial patterns in the parent
material. These patterns arose from the development of ice wedges
in Eocene clay under permafrost conditions, and subsequent infilling
by coarser material which leads to strong textural contrasts in the
soil. The objective is to show how soil knowledge: general knowledge
about soil formation in the particular environment and its relationship
to ECa, and some simple descriptive statistics of the data (summary
statistics and empirical variograms), allow us to select and fit a
PCLT model. We then compare the PCLT model with a trans-Gaussian
(TG) model of the data, i.e. a model fitted by conventional geostatistical
analysis after thedata have been transformed to approximate normality.
Specifically we compare the models with respect to a statistic that
summarizes the spatial connectivity of the coarser material, which
might be relevant to simulations of transport processes in the soil.
We then evaluate which model appears best to represent the spatial
pattern in the data.

2. Case study

2.1. The study area and data collection

We surveyed an area of Pleistocene patterned ground in the sandy
silt region of Belgium. The patterned groundwas identified by polygonal
crop marks on an aerial photograph and interpreted to be the result of
ice wedge formation during the last glacial period. The study area and
data collection were discussed in detail by Meerschman et al. (2011),
therefore we limit ourselves here to a brief presentation of it. More
general information on ice-wedge polygons constitutes part of the
soil-knowledge base that we use in this study, and is presented in
Section 2.3.2. below as it is required.

The study area (0.6 ha)was located in an agriculturalfield in Deinze,
Belgium (central coordinates: 51°01′16″N, 3°29′41″E). Excavation of a
small part of the study area (6 × 6-m) to a depth of 0.9 m uncovered
an ice-wedge pseudomorph with a diameter of about 6 m. The wedges
were formed in clay-rich Tertiary marine sediments that were covered
with a 0.6 m layer of silty-sand Quaternary deposits. Texture analysis
on 94 subsoil samples (0.6–0.8 m) showed a clear contrast between
the Eocene host material (on average 21% clay) and the superficial
material (on average 6% clay).

Previous studies (Cockx et al., 2006; Saey et al., 2009) have shown
that ECa is a useful covariate to study textural variability at profile and
polygon-scale in soils formed in these conditions. The study area was
surveyed with a mobile proximal soil sensor measuring the ECa
(mS m−1) of an underlying soil volume down to approximately
1.5 m. The sensor was mounted on a sled pulled by an all terrain
vehicle. The vehicle drove along parallel lines with an in-between
distance of on average 0.75 m. The within-line distance between
sensor response registrations was 0.15 m.

2.2. Initial data analysis

Meerschman et al. (2011) noted that the ECa measurements clearly
reflected the polygonal patterns: small ECa values indicated the former
ice wedges filled with lighter material. In addition to the short-range
variation in ECa, there were large values of ECa near an old field track
in the north-east of the surveyed region. To avoid any assumptions
about the form of this trend we decided to restrict our analyses to the
lower left quadrant of the surveyed area, a region of approximately
40 × 40-m, with 17792 observations, which excludes this area
with elevated ECa. Fig. 1 shows a post-plot of these data.

Fig. 2 shows the histogram of the data. Summary statistics are
presented in Table 1. Note that the data are mildly skewed. In the
analyses reported below the PCLT model was fitted in all cases to
the raw data, and all analyses with the TG model were done with
the data after a transformation which is described in Section 2.3.1
below.

2.3. Spatial analysis

In this sectionwedescribe the analysis of the ECa data tofit a TGmodel
and a PCLT model. The first task (Section 2.3.1) was straightforward after
a data transformation, which is described. In Section 2.3.2 we describe
how soil knowledge was used to fit the PCLT model.

2.3.1. Trans-Gaussian model
Theobjective of the case study is to compare a continuous local trend

(PCLT)model of the data with a trans-Gaussian (TG)model, as might be
used in standard geostatistical analysis. Although the data are only
mildly skew, since the objective of this exercise is to compare aGaussian
or Trans-Gaussian model with a stochastic geometric alternative, it was
decided to transform the data so that the histogram and summary
statistics were as close as possible to those expected for data drawn
from a Gaussian random variable. We therefore used a Box-Cox
transformation of the data to normality for the TG modelling:

y ¼ zζ−1
ζ

ζ ≠ 0;

¼ loge zð Þ ζ ¼ 0;
ð1Þ

where z is a value on the original scale and y is a transformed value.
We used the BOXCOX procedure from the MASS package (Venables and
Ripley, 2002) for the R platform (R Development Core Team, 2012) to
find the likelihood profile of the ζ parameter, and selected the value
with maximum likelihood. The data were then transformed with the
maximum likelihood estimate of ζ, substituted into Eq. (1) and then
standardized to zero mean and unit variance. The estimate of ζ and
summary statistics for the data after transformation, and standardization,
are presented in Table 2.

An isotropic empirical variogram of the transformed and standard-
ized data was then computed using the method of moments estimator
due to Matheron (1962) as implemented in the FVARIOGRAM directive in
GenStat (Payne, 2010). An authorized model was then fitted to the
estimated variogram by weighted least squares (Cressie, 1985) using
the MVARIOGRAM procedure in GenStat (Harding et al., 2010). Alternative
models were considered and the stable or powered exponential
model was selected on the basis of the Akaike information criterion
(McBratney and Webster, 1986). This variogram model takes the form

γ rð Þ ¼ c0 þ c1 1−expð− r=af gκ� �
; ð2Þ



Fig. 1. ECa data, coordinates are in metres relative to a local datum.
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where c0 and c1 are, respectively, the variances of the nugget and
spatially correlated components of the variable, r is lag distance, a
is a distance parameter and к is a shape parameter where 0 b κ ≤ 2.
The estimates of these parameters are presented in Table 2, and the
estimates of the variogram of the TG variable, and the fitted model are
shown in Fig. 3.
2.3.2. Stochastic geometric model
Estimates of the isotropic variogram of the raw data on ECa were

obtained using the method of moments estimator due to Matheron
(1962) as described for the transformed data in Section 2.3.1 (these
are the solid symbols in Fig. 6). The identification and fitting of an
appropriate stochastic geometric model for the soil variable will allow
us to plot a continuous variogram function for these estimates.
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Fig. 2. Histogram of ECa data.
WhenaTGmodel isfitted it is assumed that, after any transformation,
the data y ¼ y x1ð Þ; y x2ð Þ;…; y xnð Þf g from the n locations x1, x1, … xn
canbe regarded as a realization of ann-variateGaussian randomvariable,
Y. Under this assumption the variogram of Y entirely summarizes the in-
formation that the data contains about its spatial variability, and the task
of estimating model parameters, under the assumption of a stationary
mean, reduces to the task of estimating variogram parameters. This is
not the case withmodels for random variables, such as the PCLTmodels,
which have non-zero odd moments of order three or larger, and
therefore are not Gaussian. The fitting of a PCLTmodel cannot, therefore,
simply reduce to the computation of parameters which minimize the
weighted sum of squared residuals between the empirical and fitted
variograms.

In this study our approach to the selection and estimation of a PCLT
model is to constrain it by soil knowledge. Soil knowledge consists of
general understanding of the underlying processes that influence soil
formation and so the variation of the target variable, and also of general
quantitative information about the variable in the study site or a homol-
ogous site, represented by summary statistics, empirical variograms or
similar information. In the following sections we go through a semi-
formal process of model identification based on inferences from soil
knowledge and culminating in the estimation of parameters for an
appropriate model. Each subsection is headed with a question, and
with the general source of soil knowledge used to address it. The
individual elements of soil knowledge are then summarized in brief
labeled sentences, expanded in a short paragraph. Inferences from this
soil knowledge are then set out.
Table 1
Summary statistics of the raw data on ECa.

Statistic mS m−1

Average 31.37
Median 31.13
Standard deviation 2.2
Skewness 0.36
Quartile 1 29.9
Quartile 3 32.76
Octile 1 29.03
Octile 7 34.08

image of Fig.�1
image of Fig.�2


Table 2
Summary statistics of the data on ECa after the Box-Cox transformation and for the
transformed data after standardization. Variogram parameters for the standardized data
are also given.

Statistic Transformed data Transformed and standardized data

Average 1.508 0
Median 1.507 −0.056
Standard deviation 0.01 1
Skewness 0 0
Quartile 1 1.501 −0.646
Quartile 3 1.514 0.668
Octile 1 1.497 −1.085
Octile 7 1.52 1.216
ζa −0.57
Variogram parametersb

c0 0.12
c1 0.84
a 1.91
к 1.49

a Maximum likelihood estimate of the parameter of the Box-Cox transform, see Eq. (1).
b Powered (stable) exponential model, see Eq. (2).
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2.3.2.1. Question: ‘What mode of soil variation?’ Soil knowledge about the
underlying pedogenetic process.

The identification of a general mode of soil variation is based on two
items of soil knowledge which are listed below.

SK1 The dominant source of soil variation at metre scales in this landscape
is the presence of Pleistocene ice-wedge polygons. These are de-
scribed in more detail by Meerschman et al. (2011). Ice-wedge
polygons form in periglacial conditions on surfaces with slopes
less than a critical value. Over much of central Europe ice-wedge
polygons formed in periglacial conditions during the Quaternary,
they are detectable at the study site from airphotography. It has
been shown (Cresto Aleina et al., 2012) that the comparable
polygonal patterns in ground of contemporary tundra can be
modelled as a Poisson Voronoi Tessellation (PVT), that is to
say one may postulate an underlying homogeneous spatial point
process of completely spatially random seed points, and any one
polygon consists of all locations nearest to one associated seed
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Fig. 3. Empirical variogram of transformed and standardized ECa data with a fitted model.
point than to any of the others. See Lark (2009) for a summary of
some of the properties of PVT spatial processes and Okabe et al.
(2000) for a more complete account. Note, in particular, that
the polygons generated by this process are not of uniform size
or shape. By analogy we infer that a PVT model would be a plausi-
ble descriptor of the ice-wedge polygons at the study site.

SK2 Wemay expect more or less continuous variation in depth-integrated
soil properties from the centre to the edge of any polygon. Much of the
polygonal patterned ground formed in Europe and North America
during the Quaternary was covered by aeolian or glacio-fluvial
sand or silty deposits. These have an important role in subsequent
pedogenesis (Catt, 1979; Walters, 1994) imposing local lateral
trends. At the centre of a polygon there is typically a relatively
thin layer of sandy or silty superficialmaterial over the hostmaterial
in which the ice wedges originally formed. After thawing, the space
previously occupied by ice in thewedges that delineate thepolygons
was typically filled with the superficial material. Any depth-
integrated soil property, such as ECa, can therefore be expected
to vary laterally (although not necessarily linearly) from the
centre of the polygon to its edge if there is a texture contrast between
the host material and the superficial material. There is such a
contrast at the Deinze study site where the overlying material
is silty-sand Quaternary deposits, and the host material is
Eocene sandy clay (Meerschman et al., 2011).

From these two elements of soil knowledge we may infer that the
spatial variation of a depth integrated soil property such as ECa, in
these conditions, can plausibly be regarded as a Poisson Continuous
Local Trend random process as defined by Lark (2012b). In the next
section we consider what distance function might be proposed.

2.3.2.2. Question: ‘What type of distance function is plausible?’ Soil
knowledge about pedogenetic processes and summary statistics.

SK3 Wemay expect ECa to decline from the polygon centre to the rim. It
is generally found that measurements of ECa made by electro-
magnetic induction are positively correlated with the clay
content of the soil (e.g. Kachanoski et al., 2002; Saey et al.,
2009). For this reason we should expect ECa, as a depth-
integrated variable, to decline from the polygon centre, where
the thickness of sandy and silty material over the heavier host
material is thinner, to the edge of the polygon where the former
icewedge is filledwith the lightermaterial. This was found to be
the case by Meerschman et al. (2011).

SK4 The data on ECa are mildly positively skewed. This can be seen in
Table 1.

The simplest PCLT model, as used by Lark (2012b), has a linear
distance function D kð Þ ∝ k. If the distance function has a positive
slope, i.e. {k′ N k} → {D(k′) N (k)}, then it can be seen that the corre-
sponding PCLT random function has a moderate positive skewness
(about 0.65). A linear distance function with a negative slope, needed
for consistency with SK3, would therefore give rise to a random
function with a moderately negative skewness. This is not compatible
with SK4.

Of the distance functions examined by Lark (2012b) one in which
the distance function is proportional to the reciprocal of distance is
compatible with SK3 and SK4. The reciprocal of distance declines with
distance (SK3), and the example of such a random function given by
Lark (2012b) has mild positive skewness (SK4). On this basis it was
decided to proceed with further analysis on the assumption that the
data on ECa could be regarded as realizations of a PCLT process with a
distance function linearly proportional to

D kð Þ ¼ 1
kþ α

; ð3Þ

image of Fig.�3
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where k is distance to the nearest event of the underlying spatial point
process, and α is a parameter which must take some value α N 0 to
ensure that the distance function is defined for all positive k. We refer
to this PCLT as the inverse-distance PCLT in the remainder of this
paper. Note that the distance function in Eq. (3) defines what we shall
call the standard PCLT variable. The random variable that models the
target soil variable is linearly proportional to the standard PCLT variable,
sofitting themodel entails the estimation of parameters of the standard
PCLT along with a scale parameter which is the a priori variance of the
random variable.

The inverse-distance functionwas selected because it was seen to
be a simple function, at least potentially compatible with available
soil knowledge. In due course its parameters are estimated and this
gives some further indication of its plausibility, and in Section 2.3.3
we evaluate statistics to compare its plausibility with the TG
model.

We call the standard inverse-distance PCLT random function Zid. We
shall model the ECa data as a realization of a random function Y where

Y ¼ βZ ¼ β Zn þ Zidð Þ; ð4Þ

where β is a constant of proportionality and Zn is an independently and
identically distributed Gaussian nugget component of mean zero. This
nugget component is included in the randommodel for the target vari-
able to account for any variation spatially correlated at scales finer than
the sampling interval. This is common practice in geostatistical model-
lingwith standard covariancemodels such as the spherical, exponential
or Matérn.

We now obtain the cumulative distribution and density functions of
Zid. We first define the inverse of the distance function in Eq. (3), Ḋ zidð Þ,
such that

zid ¼ D kð Þ ¼ 1
kþ α

� �
⇄ Ḋ zidð Þ ¼ k
� �

:

Then

Ḋ zidð Þ ¼ 1
zid

−α: ð5Þ

SinceD kð Þ is monotonic and decreasing with increasing k for admis-
sible (non-negative) values of k, the marginal cumulative distribution
function of Zid, F id zð Þ can be written as

F id zidð Þ ¼ 1−Fk Ḋ zð Þ� �
; ð6Þ

where Fk kð Þ is the marginal cumulative distribution function of k. In
Eq. (14) of Lark (2012b) it is shown that, for a Poisson point process in
2-D with intensity λ,

F kð Þ ¼ 1−exp −λπk2
n o

; ð7Þ

and so

F id zidð Þ ¼ exp −λπ
1
zid

−α
� 	2� �

; ð8Þ

which is defined for 0≤zid≤1=α , which shows that the random
function Zid has an upper and a lower bound.
By differentiation of F id zidð Þwith respect tozid we can obtain a prob-
ability density function (PDF):

f id zidð Þ ¼
2λπ 1

zid
−α


 �
z2id

exp −λπ
1
zid

−α
� 	2� �

; 0bzid≤
1
α

¼ 0; otherwise:

ð9Þ

A soil variable modelled as an inverse-distance PCLT random func-
tion is assumed to have a spatially correlated component that is lin-
early proportional to zid for some values of the parameters α and λ.
As noted above, the soil variable is assumed to be a realization of a
random function Z that includes an independent Gaussian nugget
component ofmean zero. If the PDFof the nugget component is denoted
by f n znð , then the PDF of Z, f(Z), can be obtained by the convolution
operation

f zð Þ ¼
Z ∞

−∞
f n xð Þ f id z−xð Þ dx; ð10Þ

since Zid and Zn are independent random variables (Dudewicz and
Mishra, 1988).

The next question that we consider is a plausible range of values for
the α parameter.

2.3.2.3. Question: ‘What is a plausible range of values for, λ, the intensity of
the process and for the parameter α of the distance function?’ Soil
knowledge from field observations and an estimate of the proportion
of variation of ECa that is attributable to the nugget component.

SK5 Meerschman et al. (2011) report a detailed excavation of a polygonal
cell with diameter about 6 m, which they regard as typical from
airphoto evidence. If all cells have a diameter of d m then the
average intensity of an underlying spatial point process is the
reciprocal of the cell area which may be approximated (treating
the cells as circular) by 4/πd2. On the basis of the observation of
Meerschman et al. (2011) it was decided to consider a range of
possible values of λ for the spatial point process in the interval
[0.02m−2, 0.08m−2] which corresponds to a range of polygon
diameters from 4 to 8 m (i.e. 2 m either side of the value proposed
as representative).

SK6 The nugget variance of the (untransformed) ECa data is about 10% of
the correlated variance. This information is used to calculate mo-
ments for the variable Z, given values of α and λ, by evaluation of
the PDF in Eq. (10). It should be noted that in the final model the
nugget variance is estimated separately, and is not constrained by
this assumption. To obtain this proportion we fitted a powered
exponential model, Eq. (2), to the empirical variogram of the
ECa data (not shown here) using the MVARIOGRAM procedure in
GenStat (Harding et al., 2010).

Themeanand variance of an inverse-distance PCLT random function,
Zid, for some values of the parameters α and λ were obtained from the
PDF in Eq. (9), the QDAG algorithm in the IMSL library (Visual Numerics,
2006) was used for numerical integration. It was then possible to
compute the variance of an independent Gaussian nugget component,
Zn, such that the variances of Zid and Zn were in the same ratio as SK6
suggests pertains for the ECa data. The coefficient of skewness for the
sum of these two random variables could then be calculated from
moments obtained by numerical integration of the convolution of
the distributions of Zid and Zn, as described in Eq. (10).

Fig. 4 is a plot of values of the skewness coefficient of variable Zid for
the values of the parameters α and λ, the range for λ obtained from SK3.



Fig. 4. Values of the coefficient of skewness for an inverse-distance PCLT process with different values of the parameters λ and α. The two contours bound the regionwherewe regard the
variable as mildly positively skewed.
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Note that over much of the range of values of λ it is α that has the
strongest effect on the skewness. The two contours drawn on the figure
bound a region within which the skewness is in the interval [0.25, 0.5].
We regard this as mild positive skewness, compatible with SK4, and so
we assume that jointly plausible values of α and λ lie within these
limits. The figure shows, for example, that values of α less than 2 m
seem unlikely to be compatible with SK4 since coefficients of skewness
for such variables are larger than 0.5. Similarly, if λ = 0.05 then a plau-
sible range of values of α indicated by the figure is 2.5–3.8 m.

2.3.2.4. Model fitting given the soil knowledge. Estimates of the isotropic
variogram of the raw data on ECa were obtained using the method of
moments estimator due to Matheron (1962) as implemented in the
FVARIOGRAM directive in GenStat (Payne, 2010). An inverse-distance
PCLT model was then fitted to the estimates by weighted least squares,
but subject to the condition that α and λ fall jointly within the range
defined by the two contours shown in Fig. 4. The variogram for the
standard PCLT variable Zid variable depends only on the parameters
α and λ. In order to fit the PCLT model to the empirical variogram
of the soil process it is also necessary to estimate the proportionality
constant β which scales the standard PCLT variable to the variable
assumed to be realized in the soil data, as shown in Eq. (4). This is
done indirectly here by direct estimation of the a priori (sill) variance
of the correlated component of the variogram of Y (defined in Eq. (4))

c1 ¼ β2var Zid½ �

along with a nugget component

c0 ¼ β2var Zn½ �

where var [Z] denotes the a priori variance of random variable Z. The
fitted variogram for the target random variable, Y, was specified by:

γ rð Þ ¼ c0 þ c1gid r α;λj Þ;ð ð11Þ

where gid r α;λj Þð is the variogram of the PCLT process with parameters
α and β and the a priori variance scaled to 1.0 thus:

gidjα;λ rð Þ ¼ 1− Cidðrjα;λÞ
Cid 0 α;λj Þð ð12Þ
where Cid r α;λj Þð is the covariance function for lag r for the standard
inverse-distance PCLT process with parameters α and λ. The covariance
function for a variable in 2-D is given by

Cidðr α;λj Þ ¼
Z

R2
S k; krð Þ þ F kð Þ þ F krð Þ−F kð ÞF krð Þ−1f g

− 1
kþ αð Þ2

( )
dk − 1

kr þ αð Þ2
( )

dkr;

ð13Þ

where S k;krð Þ is the joint survival function for the underlying spatial
point process, as defined by Lark (2012b). This equation is obtained
directly from Eq. (20) of Lark (2012b) and the reader is referred to
that paper for details.

The inverse distance model was fitted as follows.

i) The value of the parameter α was set at a fixed value, in turn
α = 2.0 m, 2.25 m, 2.50 m…

ii) The parameter λ was then set at values over some range
λα;min;λα;max
� 


where 0:02≤λα;minbλα;max≤0:08 such that for
specified α and any λ∈ λα;min;λα;max

� 

the expected value of
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the skewness coefficient, as read off Fig. 4, was within the
interval [0.25, 0.5].

iii) For the set values of α and λ values of co and c1 were found so that
theweighted sumof squareddeviations of the variogram function
in Eq. (11) and the empirical variogram (Cressie, 1985) were
minimized. These values were found with the IMSL optimization
subroutine BCPOL (Visual Numerics, 2006).

iv) Repetition of step (iii) for successive values of λ∈ λα;min;λα;max
� 


produced a ‘profile plot’ of the weighted sum of squares, WSS,
against λ. Such plots were produced for successive values of α,
as designated in step (i). Estimates of α, λ, c0 and c1 were found
from the profile plot for which the minimum WSS was the
smallest of all observed values.
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Fig. 7. Marginal distribution function of the standardized inverse-distance PCLT random
function with α = 2.5 m and λ = 0.07 m−2 (line). The points are from the empirical
cumulative distribution function of the standardized ECa data.
The resulting estimates of α and λ were 2.5 m and 0.07 m−2

respectively. The estimates of c0 and c1 were 0.49 and 4.03
respectively. Fig. 5 shows the profile plot of the weighted sum
of squares with α = 2.5 m and Fig. 6 shows the empirical variogram
for the untransformed data and the fitted inverse-distance PCLT
model. In Fig. 7 is shown (line) the corresponding distribution function
for the random function Z ¼ Zid þ zn standardized to zero mean and
unit variance according to the values of the mean and standard
deviation obtained from the PDF in Eq. (10). Also plotted on Fig. 7 are
points from the empirical CDF of the standardized ECa data. The the-
oretical and empirical distribution functions are in reasonable agree-
ment, although the median of the former seems to be rather smaller
than the latter.

2.3.3. Comparing the TG and PCLT models
It is well known that Gaussian (and trans-Gaussian) models of

spatial variation, in which all information on variability is expressed
by two-point statistics such as the covariance function, are not able
to reproduce all important features of natural spatial fields, which
must be represented by higher-order moments (e.g. Guardiano and
Srivastava, 1993). This has been the motivation for the development
of multiple point statistics. In this section we investigate whether the
PCLT model allows better characterization of the spatial structure of
the ECa data than does the TG model.

One feature of the Gaussian and trans-Gaussian random variables
that often limits their applicability is the fact that large values of
the variable tend to be spatially isolated from other large values;
the same holds for small values (e.g. Gómez-Hernández and Wen,
1998; Strebelle, 2002). In this case study we may consider locations
with small values of ECa. These locations are likely to be dominated
by lighter sandy and silty Quaternary material, rather than the
heavier-textured Eocene host material, and so will have larger porosity
and hydraulic conductivity, than sites where the ECa is larger. If the TG
model does not adequately represent the connectivity of such areas
then any modelling based on TG simulation will fail to represent
processes where this lateral connectivity matters. This could include
processes such as lateral movement of a pollutant plume in saturated
conditions, the response of the water table to drainage schemes or
the lateral spread of root pathogens. Fig. 8 shows sets of realization
of each of the fitted PCLT and TG models for ECa. The inverse-
distance PCLT realizations were generated directly following the
procedure used by Lark (2012b). The TG realizations were obtained
by Sequential Gaussian Simulation using the SGSIM subroutine from
the GSLIB library (Deutsch and Journel, 1997) modified to use the
powered exponential variogram function. On visual inspection it can
be seen that, while some large patches with smaller ECa values are
seen in the TG realization, there are fewer isolated small patches with
small ECa values in the inverse-distance PCLT realization, which has
large and connected regionswith small conductivity around the bound-
aries of the Voronoi cells of the underlying point process. However, this
visual inspection is of limited usefulness and a more objective measure
is needed.

To this end we consider a simple test statistic, which can be readily
evaluated on the ECa data which are more or less regularly sampled
but which do not constitute a comprehensively observed ‘image’. We
define the statistic P τ;Δð Þ as the expected proportion of observations
within a square window of width Δ, centred at a randomly selected
location x which is ≤τ, conditional on the value at x being ≤ τ. We
may expect these values to be smaller for a TG random function
than for a function which better-represents the spatial structure of
a variable in which small values tend to be spatially connected.

We estimated P τ;Δð Þ for the TG and PCLT random functions fitted to
the ECa data by simulation. These are denoted by PTG τ;Δð Þ and PPCLT

τ;Δð Þ respectively. We considered windows of width 2 m or larger
(because approximately 40 ECa observations occur within a 2-m
window). Each simulation program generated a single independent
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Fig. 8. Realizations of (a) the inverse-distance PCLT random function and (b) the TG random function (back transformed to original units) on a 0.25-m square grid.
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realization of the random function at 25 equally-spaced locations in a
window of width Δ one of which was at the centre of the window. If
the simulated value at the centre was ≤ τ, the conditioning criterion,
then the realization was retained and P τ;Δð Þwas estimated as the pro-
portion of the observations in the window for which ≤ τ. This was
repeated until 10000 independent realizations which met the criterion
that the central value was≤ τ had been obtained. The PCLT realizations
were generated using the procedure described by Lark (2012b). The TG
realizationswere obtained by LU decomposition (Goovaerts, 1997). The
mean value of PTG τ;Δð Þ and the standard deviation of the 10 000
independent values, were computed for different values of Δ and for τ
set to the median, first quartile and first octile of the ECa data. This
was also done for PPCLT τ;Δð Þ. The difference between the mean values
of PPCLT τ;Δð Þ and PTG τ;Δð Þ for these different thresholds and for
windows of different size, are plotted in Fig. 9.

Fig. 9 shows three things. First, themean value ofPPCLT τ;Δð Þ is larger
than that of PTG τ;Δð Þ for the given τ and δ. That is to say, given that a
value falls below a threshold, there is a larger proportion of
neighbouring values which do so for the PCLT process than for the TG
process. Second, the effect depends on the threshold, and increases as
the threshold becomes more extreme relative to the overall distribu-
tion. Third, the effect depends on the window size. It is small for a
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large window, but it is also notable that the difference is larger for the
windowwidth 4 m than thewindowwidth 2 m. This reflects the spatial
scale of the random function.

The P τ;Δð Þ statistic was then estimated from the ECa data for the
same three threshold values used in the simulations, and for Δ = 4m
given that this window showed the largest differences between the
two processes in the simulation. An independent random subsample
of 250 observations for which ECa≤τ was obtained, the proportion of
ECa observations within a square window, width Δ about each of
these observations was computed. The results are shown in Fig. 10.
The mean value of PTG τ;Δð Þ and PPCLT τ;Δð Þ from the simulations are
plotted, and for each of these the 95% confidence interval for the mean
of a sample of 250 independent observations is also shown, based on
the variances of the values obtained by simulation. The estimates from
the ECa data are also plotted. Note that for all three thresholds the values
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Fig. 10. P τ;Δð Þ with Δ = 4 m plotted against τ set to the median, first quartile or first
octile. The solid disc, ●, is the mean value from 10000 realizations of the PCLT random
function, the solid square,■, is themean value from 10000 realizations of the TG random
function. The horizontal bars show the 95% confidence interval for the mean of based on
250 independently and randomly selected locations that mean the conditioning criteria.
The crosses, × show the mean values for 250 independently and randomly selected sites
in the ECa data set.
of P τ;Δð Þ for the data are larger than the upper limit of the confidence
interval for the TG process. For τ equal to the median and the first
quartile the values from the data are within the confidence interval for
the PCLT process, for the first octile the estimate is slightly smaller
than the confidence interval for the PCLT process, but closer to the
expected value for the PCLT process than it is for the TG process.

3. Discussion

The overall objective of this study was to identify a stochastic model
for a soil property that varies according to some mode, and to base this
identification as far as possible on knowledge of the underlying soil pro-
cess and, at most, some simple descriptive statistics of the variable such
as the empirical variogramand summary statistics. Thiswas achieved in
this study by employing general soil knowledge in a structured way.
This is proposed as a framework for similar studies on soil variation in
contrasting modes.

The PCLT model used here is a stochastic model of soil variability
selected because it represents a particular model of soil variation.
This places it in between the most common approach to stochastic
modelling, where a Gaussian or TG model is selected for conve-
nience, and approaches based on direct specification of the form of
the covariance function from a mechanistic model of the process.
The latter has been achieved only for a limited set of processes over
a limited range of spatial scales, e.g. Whittle (1954, 1962), Kolvos
et al. (2004). Essentially the PCLT model is selected because it is in
some sense an analogue of the soil process of interest. A similar ap-
proach has been used elsewhere. For example, Brown et al. (2000) se-
lected a ‘blur’ process based on convolution to model the space–time
covariance of atmospheric pollutants, the convolution process was an
analogue of pollutant dispersal. Similarly, Brochu and Marcotte (2003)
selected a generalized Cauchy variogrammodel for observations on hy-
draulic head on the grounds that this process had physical analogies
with a gravimetric field, which is mechanistically linked to the Cauchy
model.

The use of stochastic geometric analogues of soil processes to gener-
ate stochastic models is attractive. It remains to be seen how wide a
range of soil processes can be represented that way, and it is accepted
that lateral textural variations in patterned ground are at once likely
to be represented by simple geometric models and rather
unrepresentative of soil variation in most conditions. Nonetheless, the
approach to the identification of models based on finding operators
that are analogues for processes in the soil is likely to bemore successful
than the search for stochastic models based on strictly mechanistic
models. It must also be noted that the stochastic geometric approach
naturally reproduces non-Gaussian variation which must be character-
ized bymoments of order higher than two,whereas themechanistic ap-
proaches to spatial modelling are often explicitly based on two-point
statistics, the covariance function (e.g. Whittle, 1954, 1962).

The particular advantage of the stochastic geometric approach in
this case study is how the inverse-distance PCLT model was better
than the TG model in terms of the test statistic on the connectivity of
valueswith small ECa. If onewanted to generate conditional simulations
of the soil in this environment as a basis for computing, for example,
distributions of upscaled processes such as pollutant transport across
a block of land, then the inverse-distance PCLT model would produce
superior representations of the connectivity of material with large
conductivities, and so of preferential flow pathways.

There is considerable scope for further development of this
approach. Other distance functions could be considered for this
variable, and for others. In this study we looked for the simplest
distance function that seemed to be compatible with soil knowl-
edge, and there may be scope further to refine a framework for
selecting a function. More specific soil knowledge could be used.
For example, in the case study considered here, one could generate
a simple conceptual 3D model of a polygon, with material with
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different dielectrical properties, and compute the expected trend func-
tion frommodels of the EM properties of the soil. While the objective of
this particular studywas to restrict the use of direct observations on the
target variable to simple descriptive statistics, one might also conduct
specific surveys at fine scale on transects across polygons in order to
identify plausible distance functions for further studies. It should also
be noted that the homogeneous Poisson process, while a default spatial
model, is not the only one available and might not be generally appro-
priate. While it was selected in this case on the basis of recent work
on patterned ground (Cresto Aleina et al., 2012), it is likely that, at the
limit, a more overdispersed spatial process would be more appropriate
for this problem, with fewer close-spaced points than in the homoge-
neous Poisson case.

The model-fitting framework in this study made combined use of
point estimates of the variogram, and aweighted least squares criterion
for parameter estimation, subject to constraints identified from soil
knowledge which imposed constraints on the modelled parameters
based, in this case, on the coefficient of skewness. This remains a
somewhat arbitrary procedure for parameter estimation. Ideally a
likelihood-based estimator should be derived. This is unlikely to be
straightforward, not least because the joint distribution function of
any PCLT process is complex and requires geometrical functions for
which analytical expressions are not known. In other settings,
when the likelihood function is expensive to evaluate, parameters
may be estimated by an extension of the method of moments to
include higher order moments than the usual first and second. An
example of this is given by Iskander and Zoubier (1999), and it is
suggested that a method of higher-order moments is most likely to
be a tractable solution to fitting stochastic geometric models.

There is scope for further work on the comparison of realizations of
the PCLT and TG processes with respect to multiple point statistics and
for weighing the evidence that one model rather than the other best
represents particular data. We used a relatively simple statistic in this
paper, given that our data are not-quite regularly sampled and so do
not constitute an image. However, it would be interesting to see how
statistics developed for images (e.g. De Iaco and Maggio, 2011) might
be used to evaluate alternative stochastic models. That said, the statistic
which we used in this paper was not a general measure of spatial struc-
ture but rather was focussed on a particular problem of direct interest
(i.e. the connectedness of areas likely to have larger hydraulic conduc-
tivities). This is arguably more relevant than a generalized measure. It
would be interesting to develop methods to quantify the spatial
structure of random fields as this affects particular processes. For
example, one might compare the outcomes of a process model for
the dispersal of contaminant plumes when it is run with input data
on conductivity or similar model parameters which are realizations
of contrasting random processes.

Any PCLT model could be used in conventional spatial prediction by
kriging since the variogramor, equivalently, the covariance function can
be specified. However, since the PCLT covariance function is not
available in closed form, it would generally be more efficient to use
a standard variogram function for kriging; and since kriging uses
only the two-point statistics of a variable there is unlikely to be any
benefit in using the PCLT model rather than a standard spatial
model for this purpose. The value of the PCLT model is not to provide
an alternative form of the covariance function, but rather for spatial
prediction of non-Gaussian variables whose multivariate distribu-
tion is not entirely characterized by the covariance function. Spatial
prediction in such cases may be done by codes such as SNESIM

(Strebelle, 2002) or the direct sampling (DS) algorithm of Mariethoz
et al. (2010) which allow one to obtain conditional distributions at
unsampled sites from multiple realizations of a non-Gaussian process.
These procedures require training images of the variables of interest,
and the availability of sufficient training images of adequate quality is
a potential limitation on the use of multiple point geostatistical methods
in soil science. For this reason Pyrcz et al. (2008) developed a library of
training images for a particular geological setting (fluvial and deepwater
reservoirs) by a combination of stochastic and object-based simulation
methods. If an appropriate PCLT process could be identified for a particu-
lar soil variable, then it might be used similarly to generate training
images, either for a library or as required for a multiple point conditional
simulation. It is easy to generate multiple training images from a PCLT
model. This would be particularly advantageous for the DS algorithm,
because it has been noted (e.g. Meerschman et al., 2013) that multiple
realization generated by the DS algorithm sometimes all include exact
copies of significant patches of the (single) training image. This could be
avoided by modifying the DS algorithm to sample multiple training
images in random order, when these can readily be generated.

4. Conclusions

We have shown how a structured use of soil knowledge allows us to
fit an appropriate stochastic geometric model to data on a soil property
in a particular environment. Furthermore, we have shown that this
model appears to capture features of the spatial variation of our target
variable better than the standard Gaussian model, even after transfor-
mation of the data to marginal normality. There is more work to be
done in the development of this approach, and exploring its practical
implications butwe believe this case study shows that there is consider-
able potential. In particular, realizations of PCLT processesmay be better
than standard TG simulations for predicting outcomes of non-linear
processes such as contaminant transport, and for quantifying the uncer-
tainty of such predictions. If PCLT models succeed in capturing the
multiple point behaviour of soil variables, then PCLT simulation can be
used to provide an inexhaustible supply of training images for existing
multiple point prediction code. This removes one major limitation on
the application of this emerging geostatistical methodology.
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