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a b s t r a c t

Ensemble learning techniques are increasingly applied for species and vegetation distribution modelling,
often resulting in more accurate predictions. At the same time, uncertainty assessment of distribution
models is gaining attention. In this study, Random Forests, an ensemble learning technique, is selected
for vegetation distribution modelling based on environmental variables. The impact of two important
sources of uncertainty, that is the uncertainty on spatial interpolation of environmental variables and
the uncertainty on species clustering into vegetation types, is quantified based on sequential Gaussian
simulation and pseudo-randomization tests, respectively. An empirical assessment of the uncertainty
propagation to the distribution modelling results indicated a gradual decrease in performance with
increasing input uncertainty. The test set error ranged from 30.83% to 52.63% and from 30.83% to 83.62%,
when the uncertainty ranges on spatial interpolation and on vegetation clustering, respectively, were
fully covered. Shannon’s entropy, which is proposed as a measure for uncertainty of ensemble predic-
tions, revealed a similar increasing trend in prediction uncertainty. The implications of these results in
an empirical distribution modelling framework are further discussed with respect to monitoring setup,
spatial interpolation and species clustering.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The modelling of species and vegetation distributions based
on their relationship with environmental variables is important
for a range of management activities. Examples include manage-
ment of threatened species and communities, risk assessment of
non-native species in new environments, and the estimation of
the magnitude of biological responses to environmental changes
(Ferrier, 2002; Barry and Elith, 2006). The relationship between
environmental variables and species or vegetation distributions has
been described by a multitude of modelling techniques (Guisan
and Zimmerman, 2000), among which generalized linear (GLM,
McCullagh and Nelder, 1999), generalized additive (GAM, Hastie
and Tibshirani, 1990; Yee and Mitchell, 1991) and machine learn-
ing techniques such as Random Forests (Benito Garzón et al., 2006;
Lawler et al., 2006; Prasad et al., 2006; Araújo and New, 2007;
Peters et al., 2007), neural networks (Foody, 1999; Özemsi et al.,
2006; Westra and De Wulf, 2007), and support vector machines
(Guo et al., 2005). are frequently applied. In attempting to describe
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complex distributional patterns, however, distribution modelling
results will inevitably contain some degree of uncertainty (Barry
and Elith, 2006), and the assessment of this uncertainty is gain-
ing more and more attention in ecological modelling studies (e.g.
Phillips and Marks, 1996; van Horssen et al., 2002; Larssen et al.,
2007; Van Niel and Austin, 2007).

Uncertainty in vegetation distribution models is due to input
data limitations, caused by spatial and temporal underrepresen-
tation of observations, measurement and systematic errors on
observations, missing of key environmental variables constraining
the vegetation distribution, and subjective judgments such as judg-
ment on the type of environmental variables vegetation is sensible
to and their relative importance to classify vegetation types (Barry
and Elith, 2006; Ray and Burgman, 2006). Furthermore, distribu-
tion modelling techniques introduce uncertainty by their inability
to capture the entire complexity of ecological processes in relation
to vegetation distributions. That is, distribution models are a sim-
plified representation of the real world, and physical and biological
processes are related frequently on empirical, statistical grounds.
Finally, the model evaluation is susceptible to uncertainties.

Of the sources of error and uncertainty, this study exclusively
investigates two important sources of uncertainty: (i) the uncer-
tainty associated with the spatial interpolation of environmental

0304-3800/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2008.12.022
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Fig. 1. Location of the study area. Detailed reproduction of site topography [m above reference level] and vegetation distributions (based on cluster dendrogram).

variables and (ii) the uncertainty associated with species clustering
into vegetation types, and investigates its propagation in a vegeta-
tion distribution model based on Random Forests.

2. Materials and methods

2.1. Site description and monitoring network

A lowland river valley in Belgium called ‘Doode Bemde’ was the
research area of this study (Fig. 1). Doode Bemde is a nature reserve
which is part of a long term ecohydrological programme of the
Research Institute of Nature and Forest (Belgium) (e.g. Huybrechts
et al., 2000, 2002), and data from this long term investigation are
applied in this study. The site is an alluvial floodplain mire in the
middle course of the river Dijle, situated approximately 30 m above
mean sea level. Mineral soils with silty texture and organic peat soils
dominate the area. Large areas of the Doode Bemde are fed by nutri-
ent rich groundwater at rates of approximately 3 mm day−1(De
Becker et al., 1999; De Becker and Huybrechts, 2000). The area is
bordered by the river Dijle in the west, the Molenbeek, a tribu-
tary of the Dijle, in the north and the valley slope with a number
of permanent springs in the east (De Becker et al., 1999). The cli-
matic conditions at the site are typically temperate, with an average
annual precipitation of approximately 800 mm distributed evenly
over the year (Verhoest et al., 1997; De Jongh et al., 2006), an aver-
age annual pan evaporation of 450 mm, and an average annual air
temperature of 9.8 ◦C (Van Herpe and Troch, 2000).

During the summer of 1993 plant species occurrences (pres-
ence/absence) were mapped in the study area. The total area of
21.08 ha was subdivided into 519 regular and adjacent grid cells of
20 m × 20 m, and referenced according to a local coordinate sys-
tem. Presence/absence mapping was restricted to a selection of 56
plant species of which 45 were typically groundwater dependent
(phreatophytes, sensu Londo, 1988) and 11 were indicative for the
different vegetation types at the Doode Bemde.

A groundwater monitoring network consisting of 24 piezome-
ters was installed in 1989, of which 21 piezometers were located
within the borders of the Doode Bemde, and 3 were installed
on selected locations just outside the nature reserve. Groundwa-

ter depths (m) were measured every fortnight during the period
1/1/1991–31/12/1993, and used to calculate the average groundwa-
ter depth (AGD) and amplitude of the groundwater depth (Ampli).
Furthermore, all 24 piezometers were sampled on several ground-
water quality variables during two different sampling campaigns
in 1993 with respect to pH, Cl− (mg L−1) and SO4

2− (mg L−1). Soil
samples for organic matter content determination were taken at 59
locations at a depth of 0.05 m and 0.15 m and analysed using ther-
mal destruction of the soil sample at 600 ◦C in a muffle furnace and
expressed as a percentage (%). Management regime was assessed
for each grid cell separately. Management regime was the only cat-
egorical variable in this study (the others are continuous), with four
different regimes that could be distinguished:

• Yearly mowing in early summer, followed by grazing or mowing
of the aftermath.

• Both yearly and cyclic mowing within the same grid cell.
• Cyclic mowing (once every 5–10 years) or not mown at all since

at least 5, and up to 10 years.
• No management for at least 10 years.

The selection of the environmental variables is based on Peters
et al. (2008a), in which they were identified as the ecologically most
important variables in constraining the distribution of the wetland
vegetation at the study site.

The spatio-temporal density of field observations varied
between the different ecosystem compartments (Table 1). Man-
agement regime and soil organic matter content were described
for every grid cell of the study area (N = 519) on a single occasion,
while groundwater quality was measured twice and groundwater
depth observations were made 26 times each year (every 2 weeks)
in 24 piezometers (n = 24) scattered over the area. Brief summary
statistics (mean, range, variance) of the environmental variables
(Table 1) indicated marked hydrological differences within the
study area, with average groundwater depths and groundwater
amplitudes differences of more than 1.3 m between piezometers.
Further, groundwater quality as well as soil organic matter showed a
high variability, and the study area could be concluded to comprise
high variability in environmental conditions.
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Table 1
Spatio-temporal resolution of field observations made within different ecosystem compartments. Derived variables, abbreviations and summary statistics are included.

Ecosystem compartment Measurement
locations (n)

Measurement
times per year

Variable Abbreviation Unit Summary statistics

Mean Range Variance

Groundwater depth 24 26 Average groundwater
depth

AGD m −0.45 [−1.35 −0.03] 0.12

Groundwater depth 24 26 Amplitude of
groundwater depth

Ampli m 1.06 [0.39 1.73] 0.11

Groundwater quality 24 2 pH pH – 6.4 [5.7 6.7] 0.05
Groundwater quality 24 2 Chloride concentration Cl− mg L−1 24.1 [1.5 68.0] 223.1
Groundwater quality 24 2 Sulphate concentration SO4

2− mg L−1 53.5 [0.5 272.0] 3438.5
Soil 59 1 Soil organic matter

content
SOM mg L−1 20.7 [5.3 76.1] 290.1

Vegetation 519 1 Management regime – – – – –

2.2. Variation partitioning in species data

Spatial autocorrelation is a very general property of ecological
variables (Legendre, 1993). Spatial structures observed in ecologi-
cal communities arise from two independent processes (Legendre,
1993; Dray et al., 2006): (i) environmental variables that influ-
ence species distributions are usually spatially distributed and
(ii) ecological communities at any given locality are most often
influenced by the assemblage structure at surrounding localities,
because of biotic processes such as growth, reproduction, mortality
and migration. Variation partitioning (Borcard et al., 1992; Borcard
and Legendre, 2002; Borcard et al., 2004) can be used to assess
the importance of these two sources of spatial structure. Variation
partitioning allows to code the spatial information into spatial vari-
ables which can be used in a direct gradient analysis such as partial
canonical ordination (e.g. redundancy analysis, RDA Rao, 1964; van
den Wollenberg, 1977 or canonical correspondence analysis, CCA
Ter Braak, 1986), allowing for the partitioning of the total varia-
tion in the species data into the following four parts (Borcard et al.,
1992):

• The non-spatial environmental variation in the species data,
which is the fraction of the species variation that can be explained
by the environmental variables independently of any spatial
structure.

• The spatial structuring in the species data that is shared by the
environmental data.

• The spatial patterns in the data that are not shared by the envi-
ronmental data included in the analysis.

• The fraction of species variation explained neither by spatial nor
by environmental variables.

2.3. Spatial interpolation using sequential Gaussian simulation

Point observations of environmental variables were spatially
modelled using sequential Gaussian simulation (sGs, Goovaerts,
1997), mainly because of its ability to model local uncertainty.
Additionally, sGs preserves the characteristic roughness in the
data, not producing a smoothed estimate but a reproduction
of the real variability (Alfaro, 1979). The sGs algorithm for the
simulation of a single continuous random variable Z at N grid
nodes uj(j = 1, . . . , N) conditional to the observations of that
variable {z(v˛), ˛ = 1, . . . , n} amounts to modelling the condi-
tional cumulative distribution function (ccdf) of that variable
Fuj

(z|(l)) = Prob{Z(uj) ≤ z|(l)}. To ensure reproduction of the z-
semivariogram model, each ccdf is made conditional to local
information (|(l)) not only including the observations but also the
values simulated at previously visited locations. The sGs algo-
rithm is nicely described by Bourennane et al. (2007), and Fagroud
and Van Meirvenne (2002) provided a flow-chart. The sGs algo-

rithm is available in the public domain (Deutsch and Journel,
1998).

The knowledge of the ccdf Fuj
(z|(l)) allows for local uncertainty

assessment. If validation z-observations are available at NV test
locations {z(uj), j = 1, . . . , NV }, comparison of the median simu-
lated value F−1

uj
(0.5) and the observed validation value z(uj) at the

test locations allows for the examination of the bias and accuracy
of the sGs algorithm. This examination is done by means of scatter
diagrams of observed versus median simulated values at each test
location, and by calculating error measurements, such as linear cor-
relation coefficient (r), mean absolute error (MAE), and root mean
square error (RMSE). Additionally, Goovaerts (2001) developed a
methodology to assess local model uncertainty visually. For a set of
validation z-observations at NV test locations uj together with their
corresponding, independently derived ccdfs Fuj

(z|(l)), j = 1, . . . , NV ,
the fraction of true values falling into the symmetric p-probability
interval (PI) bounded by the (1 − p)/2 and (1 + p)/2 quantiles of
their corresponding ccdf can be computed as:

�̄(p) = 1
NV

NV∑
j=1

�j(p) (1)

for any p ∈ [0, 1], with:

�j(p) =
{

1 if F−1
uj

(
1 − p

2

)
< z(uj) ≤ F−1

uj

(
1 + p

2

)
,

0 otherwise.
(2)

The accuracy plot, which is a scatter diagram of the estimated
(�̄(p)) versus expected fractions (p), reflects the model accuracy: the
model is accurate when the scatter points fall on or above the 1:1
line, and inaccurate when the points fall below the 1:1 line. In addi-
tion to model accuracy, one wants to know more about the model
precision. Therefore, a precision plot has been proposed (Goovaerts,
2001) in which, for a series of probabilities p, the average width of
the PIs that include the observed values are plotted. The average
width W̄(p) is computed as:

W̄(p) = 1

NV �̄(p)

NV∑
j=i

�j(p) ·
(

F−1
uj

(
1 + p

2

)
− F−1

uj

(
1 − p

2

))
(3)

and should be as small as possible.
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2.4. Species clustering

Cluster analysis of ecological data is an explicit way of identify-
ing groups in data to find structures (Jongman et al., 1995). There
are several clustering methods, and a major distinction can be made
between divisive and agglomerative methods. In order to cluster
species cover data into vegetation types, the TWINSPAN (Hill, 1979)
program is frequently used in community ecology (Jongman et al.,
1995). TWINSPAN produces a clustering of sites and species, by gen-
erating a two-way ordered table from a sites-by-species matrix.
Within the two-way ordered table, the relative cluster similarity
is given by a hierarchy of integer levels (Gauch and Whittaker,
1981). So, sites are clustered based on their species composition,
and species are clustered into different vegetation types.

Additionally, a posterior analysis of the TWINSPAN site cluster-
ing results can be performed using the Jaccard index of similarity
JS = c/(a + b + c) where c is the number of species shared by both
sites, and a and b are the numbers of species unique to each of
the sites (Jaccard, 1901, 1912). The Jaccard similarity of two sites
expresses their ecological resemblance concerning species compo-
sition, and ranges between 0 (when both sites have unique species)
and 1 (when both sites have equal species composition).

2.5. Random forests

Random Forests (Breiman, 2001)(with capitals: referring to
the technique) is an ensemble learning technique which gen-
erates many (k) classification trees (Breiman et al., 1984) that
are aggregated, based on majority voting, to classify. A neces-
sary and sufficient condition for an ensemble of classification
trees to be more accurate than any of its individual members,
is that the members of the ensemble perform better than ran-
dom and are diverse (Hansen and Salamon, 1990). Random Forests
increases diversity among the classification trees by resampling
the data with replacement, and by randomly changing the pre-
dictive variable sets over the different tree induction processes
(technical details of the Random Forests algorithm are given
on http://www.stat.berkeley.edu/∼breiman/RandomForests/or in
Cutler et al. (2007) and Peters et al. (2007, 2008b)). Each classifica-
tion tree is grown using another bootstrap subset Xi of the original
data set X and the nodes are split using the best split predictive
variable among a subset of m randomly selected predictive variables
(Liaw and Wiener, 2002). The number of trees (k) and the number of
predictive variables used to split the nodes (m) are two user-defined
parameters required to grow a random forest (without capitals:
referring to the distribution model based on Random Forests). The
number of trees (k) equals the number of bootstrap subsets used
to construct the random forest, since one classification tree is con-
structed based on one bootstrap subset. Predictive variables may
be continuous or categorical, circumventing the need to translate
the latter into design variables. Random Forests produces a limiting
value of the generalization error (Breiman, 2001). As the number
of trees increases, the generalization error always converges. The
number of trees (k) needs to be set sufficiently high to ensure for
this convergence. Consequently, Random Forests does not overfit.
An upper bound for the generalization error can be obtained in
terms of two parameters that measure how accurate the individ-
ual classification trees are and how diverse different classification
trees are (Breiman, 2001): (i) the strength of each individual tree and
(ii) the correlation between any two trees, where both parameters
are not user-defined. However, reducing the number of randomly
selected predictive variables to split the nodes (m) decreases both
strength and correlation. Decreasing the strength of the individual
trees increases the random forest error, whereas decreasing the cor-
relation decreases the random forest error. Therefore m has to be
optimized in order to get a minimal error.

Once appropriate parameter values are determined, Random
Forests constructs an ensemble of k classification trees during train-
ing. A unique class is assigned to a given data point by each of
the k classification trees. The proportion of votes for a certain class
cj ∈ C = {c1, . . . , cn} over all k trees is interpreted as the probability
of occurrence of that class:

P(cj) =
Ncj

Ntot
(4)

with Ncj
the number of trees classifying the data point into class cj ,

and Ntot (= k) the total number of classification trees in the random
forest. Thus, the random forest output is a discrete probability dis-
tribution over all classes cj ∈ C. The final classification is obtained
by majority voting: the class with the highest probability of occur-
rence (P(c)max) is the predicted one. The uniformity of the discrete
probability distribution allows to gain some information on output
uncertainty. Therefore, the Shannon entropy measure (H, Shannon,
1948), which has been applied in other ecological modelling stud-
ies (e.g. Van Broekhoven et al., 2006; Ricotta and Anand, 2006), can
be used:

H = − 1
log2n

n∑
j=1

P(cj) log2P(cj) (5)

with n the number of classes.
The value of H ranges between:

(i) 0: when an identical class results from the classification of a
given data point by every member of the random forest, i.e. the
output consists of probability values P(cj) = 1, with j ∈ {1, . . . , n}
and P(ck) = 0, with k = 1, . . . , n and k /= j; the P(c)max value
equals 1.

(ii) 1: when the classification of a given data point results in any of
the n different possible classes by equal numbers of members of
the random forest, i.e. the output consists of the following prob-
ability values P(cj) = 1/n, with j = 1, . . . , n; the P(c)max value
equals 1/n.

Within the context of vegetation distribution modelling, a value
of H close to 0 indicates that, based on the environmental condi-
tions of location i described in measurement vector xi, the random
forest provides a strong evidence for a certain vegetation type. Con-
versely, a value close to 1 indicates that, based on the environmental
conditions, the random forest is not able to distinguish between the
different vegetation types.

2.6. Evaluation of distribution modelling results

The lack of an independent test data set forced us to apply
cross-validation for the random forest testing. In threefold cross-
validation, a data set of N elements is randomly and uniformly split
into three parts of N/3 elements, and three distribution models are
constructed, each on data sets made up by two parts, and tested on
the third part (Appendix A, Algorithm 1). Consequently, each ele-
ment of data set is once used as a training instance, once as a test
instance.

Several measures of classification accuracy are used through-
out this study: the out-of-bag (oob) error, which is defined as
(1-accuracy of the classification of oob elements) ×100 (%) and
the test set error, which is defined as (1-accuracy of the classifi-
cation of cross-validation test elements) ×100 (%), where accuracy
is the number of correctly classified instances divided by the total
number of instances. The oob error is obtained during the Ran-
dom Forests application and technical details and pseudo-code
are given in Breiman (2001), Cutler et al. (2007) and Peters et al.
(2007). Additionally, Cohen’s � test (Cohen, 1960), which corrects
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the percent correctly classified for agreement that could be due
to chance, was also used. The value of � is negative if the agree-
ment between observations and predictions is worse than expected
by chance, and reaches 1 in case of perfect agreement. Finally, a
threshold-independent evaluation using multi-class receiver oper-
ating characteristic (ROC) graphs was performed (Hosmer and
Lemeshow, 2000; Fawcett, 2006). For each ROC curve the area under
the curve (AUC) was calculated and averaged over the different
classes using class weights based on class prevalences in the test
data (Provost and Domingos, 2001):

AUCtotal =
∑
cj ∈ C

AUC(cj) · w(cj), (6)

where AUC(cj) is the area under the ROC curve for class cj , and w(cj)
a weighing factor based on class prevalences.

3. From field observations to a spatially distributed data set

3.1. Variation partitioning in species cover data

To quantify the spatial component of ecological variation at the
Doode Bemde, variation partitioning (Borcard et al., 1992; Borcard
and Legendre, 2002; Borcard et al., 2004) was applied to 21 grid cells
within the study area. Within these grid cells field observations
of groundwater dynamics and quality were made directly from a
piezometer (from the 24 piezometers, 3 are located just outside the
boundaries of the Doode Bemde). Three data sets (species, environ-
mental and spatial) were constructed. The species data set consisted
of inventory results of species occurrences (presence/absence)
within each of the 21 grid cells. The environmental data set con-
tained observations of AGD, Ampli, pH, Cl− and SO4

2− made from
a piezometer within each of these 21 grid cells. Soil organic matter
content of the nearest observation point, and management regime
were added to the environmental data set. The spatial data set
contained the 16 eigenvectors of the positive eigenvalues of the
decomposed distance matrix. The species were assumed to show
unimodal responses to the gradients in the study area, and there-
fore the analysis was made using partial CCA. The whole variation
of the species data set could be partitioned into the following parts:
(i) non-spatially structured environmental variation, 20.8%; (ii) spa-
tially structured environmental variation, 37.6%; (iii) spatial species
variation that is not shared by the environmental data, 41.8%; and
(iv) unexplained variation, 0.0%.

The environmental variables explained 58.4% (37.6% + 20.8%)
of the species variation, of which approximately two-thirds was
explained by a similar spatial distribution of species and environ-
mental variables, resulting partly from the same response of species
and environmental variables to some common underlying causes.
One-third of the explained species variation could be related to the
environmental variables as such, and involved the local effect of
these variables on plant species, without any spatial trend. 41.8%
of the species variation was assessable by the spatial data set, and
could not be related to any of the measured environmental vari-
ables. This means that unmeasured, but important environmental
variables and processes, such as biotic processes of competition,
predation and dispersal, were synthetically captured within the
spatial data.

Variation partitioning indicated that the species distribution at
the study area results from spatial distributions of both measured
and unmeasured features. This result stresses the importance of an
accurate spatial interpolation when species occurrences in relation
with environmental is under investigation. Furthermore, it indi-
cates that there is uncertainty on the causality of the vegetation
distribution, which makes the interpretation of the distribution
modelling results harder. Finally, based on the variation partitioning

Table 2
Summary of semivariogram models.

Variable n Model a Nugget (C0) Sill (C0 + C1) Range (m) (a)

AGD 24 sph 0.14 0.94 320
Ampli 24 exp 0.2 1 329
pH 24 sph 0.2 0.93 330
Cl− 24 sph 0.1 0.95 348
SO SO4

2− 24 exp 0.14 1.11 319
SOM 59 sph 0.17 1.08 297

Spherical (sph): �(h) = C0 + C1[3/2(|h|/a) − 1/2(|h|/a)3] if 0 < |h| ≤ a; �(h) = C0 +
C1 if |h| > a. Exponential (exp): �(h) = C0 + C1[1 − exp(−3|h|/a)] if |h| > 0.

a Models (�(0) = 0).

result, the vegetation distribution model would probably benefit
from the incorporation of spatial dependence (Miller et al., 2007),
which was beyond the study objectives.

3.2. Uncertainty on spatial interpolation of environmental
variables

The sGs algorithm was applied to the observation data set of each
of the continuous environmental variables z (AGD, Ampli, pH, Cl−,
SO4

2− and SOM) containing point measurements made at n loca-
tions v˛, z(v˛), ˛ = 1, . . . , n. The normal score transformed z data
were used to construct and model experimental omnidirectional
semivariograms �̂(h), with h the lag distance. Model parameters
of the different semivariogram models are given in Table 2. The
simulations resulted in 500 back-transformed realizations for each
variable for each of the 519 grid cells included in this study, based
on which empirical non-parametric ccdfs were calculated (Fig. 2,
example of groundwater depth). Median values (F̂−1(0.5)) and con-
ditional variances of these ccdfs were calculated. The conditional
variance equaled 0 for grid cells where observations were made
(F̂−1(·) = observedvalue). For other grid cells, values higher than
0 were calculated, and differences in values could be attributed
to two main sources: (i) a spatial underrepresentation of nearby
observations in the conditioning data set and (ii) the presence of
strong gradients in the conditioning data set, both resulting in
highly variable estimates within the simulation algorithm. With
respect to average groundwater depth, a spatial pattern could be
observed in the conditional variance (Fig. 2). In the vicinity of the
grid cells where observations were made, variance was generally
low. Nevertheless, high variance values on the western levee with
high average groundwater depths and in the central depression
with superficial groundwater depths could be observed even in grid
cells adjacent to the ones where observations were made, probably
due to a lack of observation points within these areas. Similar vari-
ance patterns were found for the other continuous variables (not
shown).

The lack of an independent validation data set forced us to
apply leave-one-out cross-validation to assess local uncertainty
(Van Meirvenne and Goovaerts, 2001). Data sets (containing all
but one observations) of the continuous variables AGD, Ampli, pH,
Cl−, SO4

2− and SOM were applied to the sGs algorithm resulting
in 500 realizations for each of the left-out elements. The median
simulated values were plotted versus the observed values in
scatter diagrams (Fig. 3) to investigate the local uncertainty. The
error measurements indicated poor simulation results for most of
the variables (AGD, Ampli, Cl−and SO4

2−), to moderate and good
results for pH and SOM, respectively. Similar conclusions could be
drawn from the accuracy plots. Scatter points were (partly) on or
above the 1:1 line for pH and SOM, indicating accurate simulation
results. The precision of the simulation results for these variables
was also good. The width of the 0.5 probability interval was 0.22
units and 13.84 (% org), for pH and SOM, respectively. The high local
uncertainty of the simulation results of the other environmental
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Fig. 2. Groundwater depths were monitored by piezometers (black dots, n = 24) scattered over the study area (a). Sequential Gaussian simulation using these observations
resulted in 500 equiprobable groundwater depth realizations for each grid cell (N = 519). Empirical non-parametric conditional cumulative distribution functions (ccdfs)
were computed from these realizations (b). Median (c) and variance (d) values were calculated based on the unique ccdf of each grid cell.

variables could be attributed to the limited spatial coverage of
observations.

For each grid cell i, the median value over all 500 realizations
computed by sGs on the entire observation data set (n = 24 for
all environmental variables, apart from SOM where n = 59) was
taken for each continuous variable, and by adding management
type which was identified for each of the grid cells separately,
519 measurement vectors xi = (xi1, xi2, . . . , xi7) constituted of the
values of the seven spatially distributed environmental variables
AGD, Ampli, pH, Cl−, SO4

2−, SOM and management type were
constructed. To each measurement vector xi, a unique vegeta-
tion type li ∈ {c1, . . . , c7} was assigned to construct the data set

L = {(x1, l1), . . . , (xN, lN)} with N = 519. The data set L will be used
as a reference data set throughout the text.

Furthermore, data sets with increasing uncertainty on the con-
tinuous environmental variables were constructed by applying
Latin hypercube sampling (McKay et al., 1979; Imam and Conover,
1980) on the realizations of the sGs simulation. Latin hyper-
cube sampling is a stratified random procedure that provides
an efficient way of sampling variables from their cumula-
tive probability distributions (Minasny and McBradney, 2006),
and five different probability intervals were choosen to sam-
ple from. These probability intervals were symmetrical around
probability 0.5, and are represented as [0.5 − a; 0.5 + a] with
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Fig. 3. Local uncertainty assessment by means of leave-one-out cross-validation: scatter diagram (1), accuracy plot (2) and precision plot (3) for the simulation results of the
variables AGD (a), Ampli (b), pH (c), Cl−(d), SO4

2− (e), SOM (f).
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Table 3
Jaccard index of similarity between the vegetation types in the Doode Bemde.

Ar Cp Ce Fi Ph MP Ma

Ar 0.40
Cp 0.18 0.37
Ce 0.11 0.17 0.46
Fi 0.24 0.21 0.20 0.39
Ph 0.09 0.19 0.35 0.22 0.55
MP 0.10 0.19 0.30 0.23 0.44 0.51
Ma 0.11 0.24 0.30 0.33 0.38 0.42 0.54

Abbreviations: Ar, Arrhenatherion; Cp, Calthion palustris; Ce, Carici elongetae–
Alnetum glutinosae; Fp, Filipendulion; Ph, Phragmitetalia; MP, Magnocaricion with
Phragmites; Ma, Magnocaricion.

a ∈ {0.005, 0.05, 0.1, 0.25, 0.5}. From these probability intervals
samples were drawn, using Latin hypercube sampling. The number
of samples was made proportional to the width of the probabil-
ity interval, and 1 sample was taken from F̂−1([0.495; 0.505]), 10
samples from F̂−1([0.45; 0.55]), 20 samples from F̂−1([0.4; 0.6]), 50
samples from F̂−1([0.25; 0.75]), and 100 samples from F̂−1([0; 1]).
Each sample was linked with the categorical variables manage-
ment and vegetation type, and as such data sets constructed were
constructed, which are represented as Le

a(s), where e refers to the
uncertainty on environmental variable estimations which is quan-
tified by these data sets, and s to the number of Latin hypercube
samples drawn from the probability interval [0.5 − a; 0.5 + a].

3.3. Uncertainty on species clustering

Based on the species cover data, TWINSPAN (Hill, 1979) was
applied in order to define vegetation types. Seven different veg-
etation types were distinguished at the study site. A simplified
representation of the TWINSPAN dendrogram and the spatial distri-
bution of the seven different vegetation types can be seen in Fig. 1.
A more detailed description of these vegetation types is given by
De Becker et al. (1999) and Peters et al. (2007).

Uncertainty concerning the species clustering results from the
many hard, arbitrary choices that had to be made. First of all, which
clustering strategy is to be used: an agglomerative strategy or a
divisive strategy? And if an agglomerative method is chosen, which
(dis)similarity measure is to be used to base the clustering upon?
Furthermore, what is the appropriate number of clusters? All these
choices have to be made and influence the solution (Ter Braak et al.,
2003). Additionally, the stability of the TWINSPAN solution is often
of concern (Vangroenewoud, 1992; Oksanen and Minchin, 1997;
Ter Braak et al., 2003).

A posterior analysis of the TWINSPAN grid cell clustering was
performed using the Jaccard index of similarity (JS). Averaged JS val-
ues are given in Table 3 for the seven different vegetation types. The
values of the diagonal elements in Table 3 are a measure of similarity
between grid cells of the same vegetation type, and do not necessar-
ily equal 1 since species composition between grid cells clustered
in the same vegetation type may differ considerably. Based on these
values, patches of Phragmitetalia, Magnocaricion with Phragmites
and Magnocaricion could be concluded to be more homogeneous
in species composition compared to the other vegetation types
which have lower values. Between the different vegetation types,
marked differences in similarity could be observed. Magnocari-
cion with Phragmites has high similarities with P hragmitetalia and
Magnocaricion. Between the other vegetation types, similarities
are generally lower, but nevertheless differences can be observed.
Arrhenatherion for example, has twice as much species in common
with Filipendulion than with M agnocaricion.

Based on this analysis, six new data sets were constructed by
pseudo-randomization of the response variable (vegetation type) of
1%, 5%, 10%, 20%, 50% and 100% of the N elements to assess the effect

of uncertainty on the response variable. Pseudo-randomizations
were based on the Jaccard similarity between grid cells of the
seven different vegetation types (Table 3). This strategy reflects
the likelihood of erroneous clustering of a grid cell based on its
species composition. An Arrhenatherion grid cell for example, had
on average approximately twice as much species in common with F
ilipendulion as with Magnocaricion; their respective JS values were
0.24 and 0.11. Therefore the likelihood is higher to classify the veg-
etation type of this grid cell as Filipendulion than as Magnocaricion.
This difference was (linearly) taken into account during response
pseudo-randomizations. The new data sets are referred to as Lv

b
where superscript v refers to the uncertainty in species clustering
into vegetation types and subscript b to the percentage of pseudo-
randomized elements used to quantify this source of uncertainty.

4. Model construction, calibration and evaluation

The number of trees (k) and the number of predictive vari-
ables used to split the nodes (m) are two user-defined parameters
required to grow a random forest. Both parameters have to be cal-
ibrated to minimize the random forest error. In addition to the
built-in out-of-bag model generalization error estimator, threefold
cross-validation was applied for the random forest testing. Conse-
quently, each measurement vector xi was classified by k trees as
a unique vegetation type, and these results were used to compute
the final classification based on majority voting. Oob error and test
set error were averaged over the three random forests in threefold
cross-validation using different values of m. Fig. 4 shows conver-
gence of the random forests constructed with different numbers of
m (m = 1 (minimal value), m = 3 (optimal value, in accordance with
Breiman’s rule of thumb (

√
number of variables, Breiman, 2001),

and m = 7 (maximal value)) when more trees are added (i.e. k
increases). Based on this calibration, the values 1000 and 3 were
used for the two user-defined parameters k and m, respectively.

Using these parameter values, the random forest performed a
classification of the 519 grid cells included in this study, of which
359 (69.17%) grid cells were classified correctly, and 160 (30.83%)
grid cells incorrectly. A value of � (Cohen, 1960) of 0.633 was
calculated, indicating a substantial agreement between observa-
tions and predictions. A threshold-independent evaluation using
multi-class ROC graphs was performed. For each vegetation type
a ROC curve was produced (Fig. 5) and its AUC was calculated

Fig. 4. Out-of-bag (oob) error and test set error converge when more trees are added
to the random forest (when k increases). The numbers of variables (m) used to split
the nodes are m = 1, 3 and 7. Average error values of the threefold cross-validated
random forest are plotted.
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Fig. 5. Receiver operating characteristic (ROC) curves visualizing the classification
performances of the threefold cross-validated random forest for the seven vegetation
types.

and averaged over the different classes using class weights based
on class prevalences in the dataset (Eq. (6)). The AUCtotal value
equaled 0.943 and the random forest was concluded to perform
well.

The random forest output for each grid cell is a discrete prob-
ability distribution over the seven vegetation classes (see Eq. (4)).
Looking into this probability distribution by means of Shannon’s
entropy measure H (Eq. (5)) allowed to gain some information on
the output uncertainty. H values are between the minimal value
0 and the maximal value 1. Other important H values are 0.356,
0.565, 0.712, 0.827 and 0.921, values obtained when the classifica-
tion results include j dominant vegetation types with probabilities
of occurrence 1/j, where j = 2, . . . , 6, respectively. When frequency
counts were plotted against values of H computed for every grid cell
in the study site (Fig. 6(a)), a decrease in frequency counts could be
seen with increasing H values. This means that the random forest
output distribution was generally quite narrow, with a clear domi-
nance of one, two or — to a lower extent — three different vegetation
types.

5. Uncertainty propagation to the modelling results

Model input data sets inevitably contain uncertainties. Two
major sources of uncertainty, namely: (i) uncertainty associated
with spatial interpolation of environmental variables and (ii) uncer-
tainty on species clustering, and their propagation to the modelling
results are assessed in this study.

5.1. Uncertainty on spatial interpolation of environmental
variables

Threefold cross-validation was applied to construct random
forests and to test them on the propagation of uncertainty due
to uncertain environmental variables. The construction was based
on two folds from the reference data set L. Grid cells of the third
fold were identified by means of their local coordinates, and drawn
from the Latin hypercube test data sets (Le

a(s)). Random forest test-
ing was repeated for each sample (s) from each probability interval
[0.5 − a; 0.5 + a], with a ∈ {0.005, 0.05, 0.1, 0.25, 0.5} (Appendix A,
Algorithm 2). So, each element of Le

a(s) was once used as test ele-
ment. For each uncertainty level a, s (s = 2 · a × 100) probabilities
of occurrence for all seven vegetation types were modelled for

Fig. 6. Histogram of frequency counts of the Shannon entropy (H) values of the entire
study site (N = 519) for the random forest cross-validated on L (a), and tested on the
Latin hypercube samples (averaged) Le

0.50 (b), and the gradually deviating test data
sets Le

a with a = 0.005, a = 0.05, a = 0.1 and a = 0.25 (c). Legend: j* indicates the
values of H obtained when a grid cell is classified as j vegetation types with equal
probability of occurrence (P(cj) = 1/j).

each grid cell in the study area. Results indicated increasing test
set errors, and decreasing � and AUCtotal values when a increased
(Table 4). However, the increase in test set error and decrease in �
and AUCtotal was limited when a ≤ 0.1, and much more pronounced
when this threshold was exceeded. Indeed, the vegetation type of
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Table 4
Uncertainty on environmental variables propagating to the random forest results.
Results are averaged over the number of samples for L̄e

0.05, L̄e
0.1, L̄e

0.25 and L̄e
0.5.

Data set oob error (%) Test set error (%) Cohen’s � AUCtotal Average H

L 28.03 30.83 0.633 0.943 0.420
Le

0.005 28.03 30.64 0.635 0.943 0.422
L̄e

0.05 28.03 31.25 0.628 0.939 0.438
L̄e

0.1 28.03 31.95 0.619 0.932 0.470
L̄e

0.25 28.03 39.76 0.523 0.901 0.550
L̄e

0.5 28.03 52.63 0.367 0.828 0.661

only 1.12% of the test elements drawn from the [0.4; 0.6] probability
interval (approximately 6 test grid cells) were incorrectly predicted
by the random forest which was constructed and calibrated on ref-
erence (median, see Section 3.2) values. Contrarily, the evaluation
statistics for the Latin hypercube samples covering the entire proba-
bility interval (a = 0.5) indicated inaccurate performance; from the

100 (s) test data sets containing 519 elements, on average only 229.7
elements (47.37%) were classified correctly (compared to 69.17% on
the reference training set), and a � value of 0.367 and AUCtotal value
of 0.828 were obtained.

A more detailed investigation of these modelling results was
made by a grid-wise comparison of variances (Fig. 7). It was hypoth-
esised that grid cells with low variances in sGs outcomes for the
continuous environmental variables (i.e. grid cells where observa-
tions were made, for which simulated values equaled the observed
value, F̂−1(·) = observedvalue, as an extreme example) have a low
variance in the maximal probability of occurrence. Therefore six
scatter plots were constructed, one for each continuous variable,
in which the variance of the simulation results is plotted against
the variance of P(cmax) for all 100 Latin hypercube test runs. Four
different groups were created within each plot based on classifica-
tion accuracy, and by applying Spearman’s �, correlations between
variances were calculated. Significant positive correlations at the

Fig. 7. Variable variance versus variance in modelled probability of occurrence of the predicted vegetation type (P(cmax)) when the random forest is applied to 100 Latin
hypercube test data sets drawn from the entire probability distributions. Different colours group the scatter points (N = 519) based on classification accuracy: a yellow × is
a grid cell classified correctly in ≤ 25 Latin hypercube testing runs (out of 100), a green × is a grid cell classified correctly in ≤ 50 and > 25 testing runs, a blue × is a grid
cell classified correctly in ≤ 75 and > 50 testing runs, and a black × is a grid cell classified correctly in ≤ 100 and > 75 testing runs. Spearman’s rank correlations (�) and
significance at the 0.05 significance level are indicated for each group separately.
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Table 5
Uncertainty on species clustering propagating to the random forest results.

Data set oob error (%) Test set error (%) Cohen’s � AUCtotal Average H

L 28.03 30.83 0.633 0.943 0.420
Lv

b
b = 1% 29.48 29.29 0.652 0.942 0.417
b = 5% 30.83 32.56 0.613 0.919 0.456
b = 10% 37.96 37.76 0.551 0.860 0.523
b = 20% 49.04 49.71 0.413 0.791 0.626
b = 50% 76.40 74.76 0.123 0.580 0.785
b = 100% 83.62 85.55 -0.006 0.518 0.822

0.05 significance level were found for grid cells that were classi-
fied correctly in > 75 of the 100 test runs. These include 19 grid
cells where observations were made (located in the origin of the
scatter plots). For the other groups, no significant correlations were
found.

The entropy (H) of the random forest output for all grid cells i,
averaged over all s Latin hypercube samples Le

a(s) for each uncer-
tainty level a, resulted in a histogram of frequency counts. The
first subfigure (Fig. 6(a)) shows the entropy distribution among
the 519 grid cells for the modelling based on the reference data
set, while the second subfigure shows the average results when
modelling was tested on Le

0.5(s) (Fig. 6(b)). Where a maximum was
found at entropy values between 0 and 0.356 for the reference
set, a maximum between 0.565 and 0.712 was observed when the
probability of occurrence of the vegetation types was based on
highly uncertain environmental information. Grid cells were mostly
classified as three or four different vegetation types with similar
probabilities of occurrence. None of the grid cells was classified
with a H value <0.356. In comparison with the histogram based
on the cross-validated results of the random forest on the refer-
ence data set, a clear shift toward higher H values was observed,
indicating that uncertainties on the spatial interpolation are prop-
agated to the random forest results. This trend was confirmed by
the moderately uncertain test data sets (Fig. 6(c)), where a shift
toward higher entropy values could be observed for increasing
values of a, reflecting the increasing uncertainty of the random
forest.

5.2. Uncertainty on species clustering

The data sets with pseudo-randomizations in the response vari-
able (Lv

b
) were used for random forest construction and testing

(Appendix A, Algorithm 3). The reason why the calibrated random
forest constructed on the reference data set L was not used here, is
that Random Forests constructs its classifiers taking response vari-
ables into account (supervised learning), and hence the uncertainty
related to species clustering should be taken into account during
model construction as well.

Random forests constructed on data sets with an increasing
proportion of elements pseudo-randomized in the response vari-
able, showed increasing oob errors (Table 5): an increase of 1.45%,
9.93% and 55.59%, with 1%, 10% and 100% of the elements pseudo-
randomized, respectively. The test set error values revealed that
performances did deteriorate gradually with increasing percent-
ages of the elements pseudo-randomized. For the other evaluation
statistics, similar conclusions hold.

6. Discussion and conclusion

Vegetation distribution models tend to describe vegetation pat-
terns based on environmental variables. A variety of uncertainty
sources can, however, affect vegetation distribution modelling
results. A first source of uncertainty under investigation was the
uncertainty associated with the spatial interpolation of environ-

mental variables. To preliminary assess the relative importance of
the environmental variables and their spatial variation in constrain-
ing the wetland vegetation at the study site, variation partitioning
was applied. 20.8% of the variation in vegetation distribution
could be explained by the environmental variables as such, while
37.6% could be attributed to environmental gradients (i.e. the
spatial variability in environmental conditions). Most frequently
in distribution modelling, however, area covering estimates of
environmental gradients are obtained by geostatistical interpo-
lation techniques, based on a (limited) number of observations.
These estimates inevitably contain a certain degree of uncer-
tainty.

Sequential Gaussian simulation was applied to estimate the
environmental gradients based on point observations, thereby
enabling the quantification of local uncertainty. Simulation results
were not accurate for most of the environmental variables, and
conditional cumulative density functions showed a high variabil-
ity for most grid cells. The two main reasons for this inaccuracy
are the spatial underrepresentation of observations and the pres-
ence of strong environmental gradients in the conditioning data.
Groundwater observations were already made in a quite densely
arranged piezometer network (approximately 1.1 piezometer/ha),
and increasing the piezometer density may not be feasible from
a practical point of view. A potential way to increase interpola-
tion accuracy without increasing monitoring densities is the use
of secondary data (e.g. topography) for spatial interpolation. One
could argue only to include the observed point measurements
in order reduce environmental uncertainty. However, learning
techniques (as other statistical techniques) on which distribution
modelling is based, demand for environmental data covering a
substantial environmental amplitude of the vegetation types for
the model to gain generalizabilty and applicability. The inclusion
of an environmental gradient in the distribution data is therefore
necessary.

The conditional cumulative density functions generated by sGs
were further used to investigate the propagation of uncertain envi-
ronmental descriptions to the distribution modelling results. The
conditional cumulative density functions were therefore gradu-
ally sampled to construct data sets with increasing uncertainty.
Random Forests was applied to these data sets, and evaluation
measures indicated a decreasing performance when an uncer-
tainty threshold was exceeded. In this study, the uncertainty
threshold was identified as the [0.4; 0.6] probability interval; if
variable values ranged between F̂−1(0.4) and F̂−1(0.6), the ran-
dom forests performed satisfactorily. The fact that the model
performs well with variable values within a certain range from
training values, is probably the reason why the model constructed
and tested on the reference data set performed well (see Section
4), given the inaccuracies on continuous variable estimates (see
Section 3.2).

This uncertainty assessment emphasized that environmental
variables with limited uncertainty are important for accurate dis-
tribution modelling. At the site scale, this amounts to increasing the
monitoring density allowing accurate and precise spatial interpo-
lation. The inclusion of stable environmental variables with limited
spatial and temporal variability would lower the uncertainty on
spatial interpolation as well, and could therefore be justified within
an empirical distribution modelling context. The ability to explain
vegetation patterns by such environmental variables, however, is
questionable.

A second source of uncertainty under investigation was associ-
ated with species clustering into vegetation types. Vegetation type
delineation based on species composition is a commonly used prac-
tice in ecology, and therefore it is highly relevant to assess the
effect of introduced uncertainty in a vegetation distribution mod-
elling context. Random Forests was applied to pseudo-randomized
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data sets accounting for the likelihood of erroneuos species clus-
tering. This assessment allowed to get insight in the decreasing
performance with increasing uncertainty on the response variable,
and results stressed the importance of accurate species map-
ping and vegetation type determination. A possible way to get
rid of the uncertainty associated with species clustering is to use
a selection of dominant species instead of vegetation types for
distribution modelling (Guisan and Zimmerman, 2000). However,
dominant species are not necessarily the most ecologically rele-
vant in distribution modelling. Furthermore, as vegetation types
are frequently used in nature conservation, management and leg-
islation (e.g. Landolt, 1994; Wood, 2000; Dias et al., 2004; Kleinod
et al., 2005), the application of vegetation distribution models will
remain important.
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Appendix A

Algorithm 1. Pseudo-code for random forest construction and
testing using threefold cross-validation.

Algorithm 2. Pseudo-code for random forest testing with gradu-
ally deviating test data sets.
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Algorithm 3. Pseudo-code for random forest testing with uncer-
tainty on species clustering.
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