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The geochemical baseline concentration is used as a reference to determine the state of an area in relation to
soil pollution. Various methods have been developed to determine this concentration based on filtering
either the marginal or the spatial outliers. Marginal outlier identification (IMOI) classifies data as belonging to
the geochemical baseline or representing pollution using a globally defined single threshold value. As a result
it neglects the local scale variability of the geochemical baseline level that arises from possible differences in
parent material and the presence of multiple pollutants with variable degrees of influence. Hence it might
lead to the identification of enrichments below the globally defined threshold but still larger than the local
geochemical baseline level as belonging to the geochemical baseline. Spatial outlier identification (SOI)
focuses on detecting unusual values in a local neighbourhood. As SOI is strongly dependent on data
configuration, clusters of high values might wrongly be accepted as being geochemical baseline data that can
inflate geochemical baseline level in pollution risk areas. The limitations of MOI and SOI can be severe when
applied for a large scale study. To avoid these limitations and maximize the benefit of the two methods we
proposed a combined methodology: integrated outliers identification (IOI) using fuzzy and robust means to
determine the geochemical baseline measurements of Cr for Flanders, Belgium. Through the use of I0I it was
possible to identify both scattered and clustered outliers resulting in determination of Cr geochemical
baseline level that does not deny the local as well as the regional scale variability and display a higher degree
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of spatial structure as expected for the geochemical baseline data.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The concentration of heavy metals in soils is highly variable due to
a number of natural and anthropological reasons. The original level
from the parent material can be altered at different scales by bio-
geochemical process, anthropological activities and depositions of
aerially transported particles. When the concentration exceeds a given
reference value, the soil is considered to be contaminated. In soil
quality assessment studies, to determine the state of a specific area
with regard to soil pollution therefore a reference concentration,
mostly called ‘background concentration’, is required.

However, the definition of a background concentration is not clear
cut. Pfannkuch (1990) defined it as “the natural base load of an
element”, Porteous (1996 ) referred to it as “a concentration that would
exist without a local polluting source”, while the other definition in
Reimann and Garrett (2005) puts it as “the concentration that can no
longer be proven to originate from a polluting source”. An important
disagreement between these definitions is whether an enrichment
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that is caused by a diffused contamination should be considered as
background concentration or not.

As an alternative, scientists were prompted to use ‘geochemical
baseline concentration’ as a reference. This term was first introduced
by the international geochemical mapping programs to describe the
current variation in concentration of an element in the surficial
environment (Salminen and Tarvianen, 1997). It integrates the
geochemical background and diffuse contamination (Sierra et al.,
2007). The geochemical baseline measurements do not claim to be the
natural background because anthropological influences are accounted
for next to the influence of biogeochemical processes (Kabata-Pendias
and Pendias, 1984; Salminen and Gregorauskiene, 2000).

Since Europe has a long history of industrialization and agriculture
we believe that the anthropological factor needs to be considered to
characterize the variability in soil heavy metal geochemical concen-
trations of the region. This paper deals with the determination of the
geochemical baseline concentration to be used as reference for soil
pollution studies. Although the term ‘baseline’ can be sometimes
understood as a single threshold value (Reimann and Garrett, 2005)
that differentiates non-polluted from polluted soils for the whole
study area, in this paper the geochemical baseline concentration refers
to the concentration range that can vary at the regional scale but
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describes a more homogeneous distribution at a local scale. The
variability at a regional scale is a result of the large size of our study
area where the anthropological factor contribution and the presence
of multiple pollution sources with different degrees of influence can
be importantly variable.

The following model was used to describe the nature of our data:

Z(x) = G(x)(1-r(x)) + P(x)r(x) (1

where Z(x) is an observation of variable Z at location x, G(x) is a
random function describing a continuous autocorrelated process of
the geochemical baseline concentration, P(X) is a concentration that is
a result of contaminating process referred as pollution data and r(x) is
an indicator variable for the rate of contamination with a range of
values between [0,1]. The two extreme cases are obtained when r(x)
takes the value of one or zero. The first instance is a result of heavy
pollution where observations reflect no more the geochemical
baseline concentration of the area but rather pollution measurements.
In the absence of artificial deposition of the material in the en-
vironment r(X) takes a value of zero and observations reflect the
geochemical concentration. In reality however the change in con-
centration between the two extremes is gradual which is then
explained by r(x) values between 0 and 1.

Since the geochemical baseline concentration is the result of the
combination of the native metal content in the soil parent material
and the deposition of diffuse contamination, at a local scale it
describes the concentration range that is commonly found (Tack et al.,
1997). Pollution data originating from point sources like industries, in
contrast, are characterized by a few numbers of observations often
with extremely high concentrations. These limited number of high
concentration measurements form contaminated patches with a finite
spatial extent around the source (Lark, 2002).

As a result the geochemical baseline and the pollution data are
different in both their statistical distribution and spatial behaviour.
The pollution data behave as marginal outlier with respect to the
overall data distribution (Rawlins et al., 2005). But due to the unusual
value they have within their local neighbourhood the pollution data
can also be considered as spatial outliers (Lark, 2002).

Based on these differences methods have been developed to deter-
mine the geochemical baseline concentration. The available methods
are built on the principle of filtering out either the marginal or the
spatial outliers.

A measurement is considered as a spatial outlier if it has a value
that is eccentric in its local neighbourhood. Such a local outliers can be
a result of faulty measurements or it can also be the actual value of an
unrepresentative sample such as from relocated soil. Marginal outliers
are observations of highly polluted areas; these measurements can be
actual values but do not represent the geochemical baseline concen-
tration of the study area. By the term “outlier” we therefore are not
directly questioning the genuineness of the value but whether it is
coherent with the local as well as the regional data distribution.

Methods that are based on marginal outlier identification (MOI)
usually classify data into geochemical baseline and pollution data
using a globally defined threshold derived from the overall statistical
distribution. This is mostly conducted using a graphical representa-
tion, such as a probability plot, where the inflexion on the graph is
considered as a separation point of the two populations (Fleischhauer
and Korte, 1990; Tobias et al., 1997; Tack et al., 2005; Sierra et al.,
2007).

Spatial outlier identification (SOI), on the other hand, focuses on
detecting records with unusual values in their local neighbourhood.
Variograms are used to model the spatial autocorrelation and with a
cross-validation procedure of ordinary kriging an estimated value is
generated for every measurement. Bardossy and Kundzewich (1990)
and Laslett and McBratney (1990) then used the standardized
estimation error as a criterion to identify the spatial outliers.

At a regional scale, which is the situation addressed in this paper,
on top of the natural variability of the element, the fluctuation of man-
induced contributions and presence of multiple pollution sources
with variable degrees of influence resulted in variable geochemical
baseline levels. Under such circumstances the marginal outlier
identification based on the global distribution of the data does not
guarantee a unique definition of the geochemical baseline concentra-
tion at a local scale. Traceable sources leading to enrichments below
the dividing threshold value but beyond the local geochemical base-
line levels will still be included for the establishment of the geo-
chemical baseline concentrations.

Data used for a regional scale study often have important dif-
ferences in sampling density. It is a common practice to collect large
number of samples in pollution risk zones that result in the formation
of clusters of high values. This is a challenge for the implementation of
the SOI procedure to determine the geochemical baseline concentra-
tion correctly. Since the identification of the spatial continuity
depends on the sampling density there is a risk of accepting clusters
of extremely large values as the geochemical baseline measurements.
As a result the geochemical baseline concentration in pollution prone
areas can be exaggerated.

The determination of the regional geochemical baseline concen-
tration has to be however efficient regardless of scale, local versus
regional, and sampling density. To achieve this objective we propose
to integrate MOI and SOI. Our approach is called integrated outliers
identification (IOI). Through filtering both the marginal and the spatial
outliers the risk of accepting clustered high values is avoided while the
definition of the geochemical baseline level at a local scale remains
valid. Our approach is demonstrated using a soil chromium (Cr)
database from Flanders, Belgium. The main objective of this paper is to
evaluate different approaches for outlier identification and removal
prior to further processing (like the delineation of polluted areas).

2. Materials and methods
2.1. Study area and soil samples

The study area covers the entire region of Flanders (13,522 km?)
being the northern part of Belgium. The soil is dominantly developed
in eolian or marine sediments of Holocene and Pleistocene age (Van
Meirvenne and Van Cleemput, 2005). The northern part of the region
is dominated by acid, humus rich sandy soils. Finer wind-blown
sediments were deposited in the southern parts, resulting in loamy
and silty textures.

The Cr data used in this study were obtained from the Public Waste
Agency of Flanders (OVAM), the regulatory institute responsible for
waste management and soil remediation in Flanders. OVAM requires a
soil evaluation during the transfer of land or when an area is suspected
of being polluted. Due to the obligation to analyse Cr in every soil
sample, even if no pollution by heavy metals is expected, this database
contains both Cr concentrations below and above the geochemical
baseline. In Belgium, emissions of Cr from ferrous industries were
documented by Thiessen et al. (1988).

The Cr data were collected between 1996 and 2005. During this
time OVAM has been giving assignments for different laboratories to
collect and analyze soil samples for heavy metals. The samples were
analyzed according to the standard procedure of OVAM and the
required procedure for total Cr analysis involves microwave destruc-
tion of 0.5 g of the air dry fine-earth fraction (<2 mm) of soil with 6 ml
37%HCl, 2 ml 65% HNO5 and 2 ml 40% HF (OVAM, 1992; method CMA/
2/lI/A.3). In the digest Cr was analyzed by ICP-AES (OVAM, 1992;
method CMA/2/1/B.1). Although all laboratories followed this standard
procedure some differences in the detection limit of used measuring
equipments was observed. The majority of the measurement equip-
ment has a detection limit around 5 mg kg™ ! of Cr while some have a
limit as low as 0.02 mg kg™ .
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Every measurement was located by its geographical coordinates,
upper and lower sampling depth and sampling date. Due to the
presence of samplings with identical coordinates and due to variations
in sampling depth, the database had to be screened carefully. In the
case where repeated data were taken at the same location, the most
recent was retained. For reasons related to arable soil use, in this study
we targeted the top 50 cm of the soil profile. After screening, 14,458
observations were available to represent the Cr concentration in the
top 50 cm of the soil of Flanders (Fig. 1). The entire region was covered,
but more intense sampling occurred around large urban and industrial
areas (like Antwerp, Gent and Kortrijk). Because of the uneven spatial
density, the need for declustering the data to obtain an unbiased
population distribution was checked using a cell declustering algo-
rithm (Deutsch and Journel, 1998).

2.2. Marginal outlier identification

Geochemical baseline data are largely influenced by the geological
parent material and are commonly observed concentration levels at a
local scale within the study area. Pollution data on the contrary often
contain a limited number of extremely large concentrations (Hirotaka
and Goovaerts, 2000). As a result these two datasets show differences
in statistical distribution, the latter behaving as marginal outliers in
the overall statistical distribution. Some authors claim that the
geochemical baseline measurements follow a lognormal distribution
(Fleischhauer and Korte, 1990; Salminen and Gregorauskiene, 2000)
and accordingly they used a normal probability plot using the
logarithmically transformed data to identify the two datasets. The
probability plot is chosen since on such a plot a normal distribution is
presented as a straight line while the skewed tail creates a deviation
from linearity and forms a bend on the curve. So the identification of
the marginal outliers can be done by removing observations sub-
sequently, starting with the largest concentration, until the remaining
part of the distribution is linear (i.e. normal). As a measure of
normality the coefficient of skewness, which is zero for normally
distributed data, has been used. This procedure has been applied in
several studies, including Fleischhauer and Korte (1990), Tobias et al.

(1997) and Tack et al. (2005). However, the assumption of a lognormal
distribution for the geochemical baseline data is criticized (Reimann
and Filzmoser, 2000; Sierra et al., 2007). The use of the point of least
skew as a dividing threshold is also considered to be biased.

Mostly there are many and often superimposed factors responsible
for the distribution of heavy metals in soil. Thus, the evolution from the
geochemical baseline to the pollution data could be expected to be
gradual, which is a phenomenon explained in the model when r(x)=(0,1)
(Eq.(1)). Therefore it is unlikely to assume all observations to fall into one
of the two groups. With available techniques however there is no room to
address observations that are neither geochemical baseline nor pollution
data. For the statistical tools to be used it is therefore necessary not to be
dependent on the assumption of lognormal distribution for the geo-
chemical baseline data and to be able to address observations that do not
fit in to one of the two datasets. To serve this purposes our choice of the
tool was the Fuzzy k-means with extragrades where the membership
information can be used to assess the degree of belongingness of every
observation for a specific class and outliers that are outside the different
classes can also be identified (McBratney and de Gruijter, 1992).

The fuzzy k-means classification method has been used successfully
to classify soil properties (McBratney and Moore, 1985; Vitharana et al.,
2008). This algorithm assigns a partial membership value, p, for every
measurement, i, to be a member of an individual class, ¢, by mini-
mizing iteratively the objective function, J(M,C) (Odeh and McBratney,
1992). For data that contain n objects (i=1,...,n) with p-attributes
(v=1,...,p) which must be classified into k-classes (c=1,...,k), the
minimization of the objective function can be expressed as:

n k
JM.C)= ¥ Z] iz (x4, cc) 2)

i=1 c=

where M= is the matrix of membership values and C is the centroid
of class c for variable v, x; is the vector representing object i, c. is the
vector representing the centroid of class c, is the square distance
between x; and ¢, according to an Euclidian, Mahalonobis or diagonal
distance metric. ¢ is the fuzziness exponent which controls the degree
of fuzziness of the classification. It can take a value between 1 and «. A
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Fig. 1. Belgium with identification of Flanders (top) and the 14458 available Cr sampling locations (bottom), coordinates are in m according to the Belgian Lambert72 projection.
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crisp classification results from ¢=1, which results in membership
values being either O or 1. On the other hand, a large ¢ value results in
clusters with an almost identical members.

By making the memberships directly depend upon the distances to
the class centroids the objective function ] was modified to accounts
for extragrades (McBratney and de Gruijter, 1992) as follows:

M=

n k k
JM.O)=p Y ¥ pdi(xic)+(1+B) X o™ X di? 3)

i=lc=1 i

where p* is the membership to a fuzzy class of extragrades and 3 is a
parameter that determines the mean value of p*.

Fuzzy k-means with extragrades was chosen for its capacity to
identify and assign the extragrades in a special class. Extragrades are
observations that are outside the conventional classes (McBratney and
de Gruijter, 1992), which are then observations that belong to neither
the geochemical baseline nor the pollution data.

The iterative minimization of J(M,C) demands a decision on the
number of classes, k; the fuzziness exponent, ¢; a distance metric for
d?; and a stopping criteria, e. For the determination of optimum
number of classes and the fuzziness exponent, combinations of
Fuzziness Performance Index (FPI), Modified Partition Entropy (MPE)
and the negative derivative of J(M,C), with respect to ¢ are used
(Triantafilis et al., 2003). For the optimal number of classes however it
is also a common practice to use the user's knowledge of the data
(Gorsevski et al., 2003). Since our objective is to classify our data in the
way that they explain the major controlling factors of soil heavy metal
distribution, i.e., either the instances of the geochemical baseline or
the pollution data we defined the value of k to be 2. Since the number
of classes are defined, the determination of the value of ¢ was done
following the scheme proposed by McBratney and Moore (1985), by
calculating J(M,C) values for a series of ¢ and plotting the curve of the
negative derivative of J(M,C), i.e., —[(5]/6d)k%] versus ¢ where the
optimal ¢ value was obtained at the maximum of this curve. The
function of §//6¢ was defined by Bezdek (1980) as:

ﬂ= n k " V2
5 " L, L, Hclog(tic)dic @

For dZ the diagonal distance matrix was used and the stopping
criterion was set at 0.0001 to end the iteration when the difference
between consecutive membership matrixes dropped below this value.

After determining the optimum fuzziness exponent the Cr data
were processed with fuzzy k-means with extragrades where every
observation obtained membership values for each of the three
different classes: the geochemical baseline data class, the pollution
data class and the extragrade class. An observation was finally assigned
to a class for which its membership was largest.

2.3. Spatial outlier identification

The identification of spatial outliers (i.e. a large value compared to
the local observation surrounding it) can be done using the
standardized estimation error, €(Xg), as criterion (Bardossy and
Kundzewich, 1990; Laslett and McBratney, 1990):

7*(%0)- 2(Xo)
O(%o)

()

Es (Xo) =

where z¥(X) is the estimated value at X, and 0%(Xo) is the kriging
variance at Xo. This method requires modelling the spatial auto-
correlation by the variogram and the kriging estimation at every
sampling location in turn, assuming not to know the measurement
(known as the cross-validation procedure). For a spatial outlier the
difference between the estimated value and the true value can be
expected to be strongly negative, due to the large difference with

neighbouring observations. Additionally, in such situations it is also
likely that the variance is underestimated by 0%(xo) (Lark, 2002).
Consequently, a large standardized error can be expected at the
localisation of spatial outliers. As evaluation criterion, Bardossy and
Kundzewich (1990) and Laslett and McBratney (1990) labelled an
observation as a spatial outlier if £5(X) is smaller than -1.96.

For the modelling of the variogram, typically the Matheron
variogram (Matheron, 1962) is used. This classical variogram considers
the squared difference between two measured values:

1 Nb ,
Yu(h) = magl {2(%a)~2(%a +h)} (6)

where <yy(h) is the Matheron variogram, z(x,) and z(x,+h) are
observations separated by a distance vector h and N(h) is the number
of pairs (z(Xy), Z(Xo +h)).

In the presence of outliers in the data, due to the possible large
differences in values, the Matheron variogram estimator is limited for
proper modelling of the spatial correlation; it can become unstable
(Cressie, 1993). Therefore, to work with a large dataset that contains
spatial outliers, Lark (2000) suggested the use of the more robust
Dowd variogram (Dowd, 1984). The Dowd estimator takes the median
of the absolute pair differences of z(x) and z(x +h) as a basis for the
variogram estimator:

2yp(h) =2.198*{median(| ya(h)|)}* ()

where yp(h) is the Dowd variogram and y,(h)={z(Xy)~z(Xo +h)}. The
value 2.198 is a correction factor that scales the median absolute
deviation to correspond with the standard deviation of normally
distributed data.

Using the robust variogram is an appropriate way to find spatial
outliers. However, the robust estimators are less efficient than the
Matheron's in the absence of outliers. Thus, the decision of which
estimator to use needs to be first made after checking the presence of
outliers in the data. For this purpose Lark (2000) introduced a
statistics 6(x) that can be used to test the median of the standardized
squared kriging errors.

()'ZXO

6(x) ®)
where z*(Xg)—z(Xo) is the difference between estimated and measured
values using a cross-validation and 0?x, is the kriging variance.

Lark (2002) showed that if we krige an intrinsic data using a proper
variogram, the 6(x) will have a x? distribution with one degree of
freedom and hence the median has a value of 0.455. If there are no
spatial outliers in the data, the median of 6(x) using the Matheron
variogram estimator will not be significantly different from 0.455 and
if that is not the case the best variogram estimator to be selected will
be the one with median 6(x) closest to 0.455.

2.4. Integrated outlier identification

The integrated outlier identification (IOI) which we propose com-
bines the MOI and SOI methods to identify both the marginal and
spatial outliers in this sequence. Although the Dowd variogram is
quite robust to the influence of outliers in the dataset, local extreme
values still have their impact. Therefore, we propose I0I where first
the marginal outliers were identified with MOI. Next, the SOI pro-
cedure was applied on the remaining data. The &4(Xo) statistic was
finally used to exclude the spatial outliers.

2.5. Modelling the variogram

For all variograms the model fitting was done separately based on
an iterative minimization of the sum of the squared differences
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between the experimental values and the theoretical model, taking
into account the number of data pairs and the lag distance (Pardo-
Iglizquiza, 1999). A double exponential model (Eq. (9)) was found to fit
to the data best:

ZEZ;EC@"(?))C(“’(?)) MR

where Cp is the nugget variance representing unstructured or short-
distance variability, the sum of Cy, C; and C, represents the total
variability, called the sill, and a; and a; are the two range parameters.
The nugget-to-sill ratio, NSR=Cy/(Co+C;+C5), was used as an indica-
tion of the strength of autocorrelation of variable Z.

3. Results and discussion
3.1. General statistics of Cr data

The result of declustering showed that the mean reduces with
increasing cell dimension indicating the presence of preferential
sampling in areas with high values of Cr concentration. Considering
the declustering weight assigned for every observations the regional
mean Cr concentration was found to be 36.4 mg kg™ ! with a median of
29.2 m kg™ ! (Table 1). The data showed a characteristic skewed dis-
tribution with a wide range, from 0 to 29300 mg kg !, where 95% of
the readings having a value of less than 80 mg kg™ .

3.2. Marginal outlier identification

The Cr data were classified into outliers, the geochemical baseline
and the pollution data by a fuzzy k-means with extragrades algorithm
using the FuzMe software (Minasny and McBratney, 2006). To identify
the optimal fuzzy exponent value, the objective function was cal-
culated for &= 1.1,..., 2.8 in steps of 0.1. The curve of the derivative of
the objective function versus ¢ (Fig. 2) indicated that for k=2 the
optimal ¢ value was 2.5.

Finally, 11 155 observations with a range of 5-45 mg kg™ ' Cr
concentration were assigned to the class which was considered as the
MOI geochemical baseline. According to the geochemical atlas of
Europe by Salminen et al. (2005) for Flanders the maximum of the top
soil geochemical Cr concentration varies between 28 and 44 mg kg™ .
The Vlaamse Gemeenschap (1996) gives the background concentra-
tion of Cr for a standard soil of Flanders, defined as a soil containing
10% of clay and 2% of organic matter, to be 37 mg kg™ .. The result we
obtained from the fuzzy k-means classification is quite similar with
the atlas information. The difference between the average value of the
regional background concentration given by Vlaamse Gemeenschap
and the fuzzy k-means result is also acceptable considering a
prevailing soil variation in the region.

The summary statistics of these 11155 data are shown in Table 1. As
a result of excluding the marginal outliers the regional mean, the
quartiles and the median of the data reduced markedly. Since ob-

Table 1
The summary statistics of the whole data set and those resulting after the different steps
of removing outliers

Whole data MOI SOl 101
Number of data 14458 11155 13590 10697
Mean 36.4 25.1 32.7 24.7
Variance 16256.3 108.2 852.6 106.0
Maximum 29300 45.0 1603.6 45.0
Upper quartile 42.9 33.0 40.8 33.0
Median 29.2 25.0 28.2 24
Lower quartile 19.0 17.0 18.9 16.4
Minimum 0.02 5.0 0.02 5.0

6000 —
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Fig. 2. Determination of the optimal fuzziness exponent ¢ for k=2.

servations with high Cr measurements are excluded from the data
obviously, the variance reduced dramatically.

3.3. Spatial outlier identification

In order to choose the proper variogram that describes the spatial
autocorrelation best, the Matheron as well as the Dowd variograms
were modeled from the 14447 Cr measurements. The median 6(x) of
the Matheron variogram was found to be 0.19, which is significantly
different from the ideal 0.455 value. The Dowd estimator on the other
hand had a median 6(x) of 0.40 hence this variogram was used to
identify spatial outliers.

Subsequently, all the Cr measurements were used to calculate the
Dowd variogram with Eq. (6) and a double exponential model was fit
to it. The result is given by Fig. 3. With the parameters of the Dowd
variogram, ordinary kriging was used to estimate Cr values at every
observation location, neglecting every measurement in turn (cross-
validation). Next the standardized estimation error, &4(Xg), was
computed to identify spatial outliers. In total 857 data were identified
as spatial outliers. After removing them the remaining 13590 ob-
servations constituted the SOI geochemical baseline dataset. With this
procedure the change in summary statistics of the data in general is
weaker as compared to the result of MOI (Table 1). This result indicates
that applying SOI does not focus on a removal of high or low values but
on values that are unusual in their neighbourhood.

v(lh()

0 e B IS BN S E— —
0 1000 2000 3000 4000 5000
lh| (m)

Fig. 3. The Dowd variogram calculated with the whole Cr dataset, modelled with double
exponential structure with Co=0.07, C;=0.15, ;=279 m, C;=0.1 and a,=4500 m.
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In Flanders, the maximum critical sanitation threshold of Cr
requiring remediation measures to be implemented in industrial areas
is 800 mg kg . However, after excluding the spatial outliers, Cr con-
centrations above this threshold, and up to 1603 mg kg™ !, were retained
among the geochemical baseline measurements. These large values
were located in industrial site where there are clusters of extreme high
values and so they were not recognized as spatial outliers. This clearly is
unacceptable and illustrates the shortcoming of this approach.

When the spatial distribution of the observations retained as the
geochemical baseline data by MOI and SOI are compared, some
interesting differences appear. Observations which were rejected as
marginal outliers by MOI but accepted as the geochemical baseline data
by the SOI method occurred in clusters of high values. As a result of the
dependency of the spatial outlier identification method on the sampling
configuration, even clustered high values were accepted as geochemical
baseline data. Thus for data with an important difference in sampling
density the SOl method is inadequate. It is however important to note the
effectiveness of the SOI technique for excluding scattered high valued
data which deviate strongly from the values in their neighbourhood.

Observations which were accepted after excluding the marginal
outliers, but which were rejected as spatial outliers, were found
scattered over the region containing relatively elevated Cr concentra-
tions as compared to observations in their neighbourhood. As a con-
sequence, local enrichments below the globally defined threshold value
were included in the geochemical baseline dataset. However, MOI was
efficient in excluding outliers independent of the sampling density.

3.4. Integrated outlier identification

After removing the marginal outliers, the presence of outliers in the
remaining 11155 observation was again checked by calculating the
median 6(x) both for Matheron and Dowd estimators, which resulted
in 0.23 and 0.43, respectively. As a result the Dowd estimator was used
to model the spatial autocorrelation of these observations and a double
exponential model was fit to it (Fig. 4). Ordinary kriging was used to
estimate the Cr values at every observation location, neglecting every
measurement in turn and the standardized estimation error was
computed. In this way 458 data were identified as spatial outliers, so
with I0I method 10697 observations were accepted as the geochem-
ical baseline data. The summary statistics of these data is also given in
Table 1. In general there is a slight difference between the results of I0I
and MOI where the mean, median, and lower quartile values of the
later are somewhat smaller. On the contrary the difference between 101
and SOI is quite large.

To examine the degree of autocorrelation, the Matheron variograms
(Eq. (5)) of the data identified as the geochemical baseline by the three
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Fig. 4. The Dowd variogram of the 11155 data which were retained after removal of the
marginal outliers and used to identify further the spatial outliers with IOl method; modeled
with double exponential structure, Co=0.04, C;=0.09, a; =339 m, (,=0.04 and a,=6010 m.

Table 2
The parameters of the Matheron variograms using the data accepted as the geochemical
baseline by the different methods

MOl sol 101
GCo 0.09 0.07 0.04
G 0.09 023 013

a; (m) 400 550 470

G 0.03 0.04 0.03
a (m) 5000 7000 8210
NSR 0.44 021 0.20

methods (MOI, SOI and IOI) were calculated. Table 2 provides the
parameters of the double exponential model which was used to model
these variograms. After removing the marginal outliers, the data
resulted from MOI has the NSR of 0.44. The result of SOI shows a strong
decrease in the NSR, 0.21. A stronger reduction in the proportion of the
unstructured variability of the data was the result of the identification
and removal of outliers from the dataset in terms local information. As
compared to the SOI, the integrated approach, I0I, although does not
further reduce the NSR, it resulted in a clear increase of the long-range
(a;) parameter. So after excluding the spatial and the marginal outliers,
the remaining data displayed a stronger spatial structure as could be
expected for geochemical baseline data since they are expected to
behave according to gradual patterns related to geological processes
and diffused pollution within the study area.

In order to asses the risk of not removing the outliers on the esti-
mation; the three datasets were analyzed further using their respective
Matheron variograms parameter. Since our objective was to compare
between estimated values that can be obtained from the three
techniques a straightforward interpolation method, ordinary kriging,
was chosen. The resulting maps (not shown since mapping was not our
main objective) show differences at a local scale mainly. To compare the
result, 45 mg kg~ ! Cr was used as a threshold to determine the area with
estimations above this value. With MOI over 280 km? area received
estimates above this threshold, with a maximum estimated concentra-
tion of 56 mg kg™’ With SOI this area reduced to 223 km?, with a
maximum of 87 mg kg™, and with IOI the area reduced further to
178 km? with a maximum estimated value of 52 mg kg™ . It is clear that
the different methods had different impacts on the spatial estimations
based on the data selected by each method.

3.5. Estimation of the local geochemical baseline concentration

The Matheron variogram of the geochemical baseline data obtained
by the IOI approach (Fig. 5) is used to generate the Cr geochemical
baseline map (Fig. 6) with Ordinary kriging procedure. A general trend
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Fig. 5. The Matheron variogram of data defined as Cr geochemical baseline using IOI,
modeled with double exponential structure, Co=0.04, C;=0.13, a; =470 m, C;=0.03 and
a,=8210 m.
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Fig. 6. Cr geochemical baseline distribution in Flanders as obtained from I0I, coordinates are in m according to the Belgian Lambert72 projection.

of increasing Cr concentration can be observed from north to south.
Most of the northern part has a Cr geochemical baseline concentration
of less than 20 mg kg™ .. But in the southern part geochemical baseline
concentrations can reach up to 43 mg Cr kg™ '. This pattern reflects the
general change in soil texture, i.e. from sandy in the north to the silty in
the south. So there are indications that this variation is due to soil
genesis processes. Locally however, like in the strongly industrialized
area around Antwerp, this general pattern is disturbed. So it seems to
be evident that the geochemical baseline is a result of both general
natural processes occurring on a regional scale and, at a more local
scale, human activities.

4. Conclusions

For the determination of the geochemical baseline concentration
the use of fuzzy k-means with extragrades classification was found to
be efficient for identification of the marginal outliers. With this
procedure most observations with extreme high values were removed.
However, because this approach does not take information about the
neighbourhood of observations into account, it was incapable to define
uniquely the geochemical baseline level at a local scale. As a result on
the contrary of expectations for the geochemical baseline measure-
ments the resulted data from MOI procedure displayed weaker spatial
autocorrelation. SOI on the other hand, was very useful in improving
the spatial autocorrelation within the geochemical baseline data as it
excludes outliers based on local information. But since SOI depends on
the sampling configuration of the data its ability in identifying outliers
fails in clustered sampled areas which unfortunately coincide mostly
with polluted sites. As a result SOI involves a risk of inflating the
geochemical baseline concentration in pollution risk zones. By com-
bining the two approaches our proposed approach, I0I, becomes
capable of avoiding the problem of overestimating the local geochem-
ical baseline level and maximizing the structured variability within the
geochemical baseline data.

As a conclusion we recommend the I0I approach to identify the
geochemical baseline of heavy metals on a regional scale.
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