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Preface 
 

It seems like only yesterday that I was graduating with a bachelor's degree in civil 

engineering and starting my career on a construction site, ready to make a name for 

myself in the industry.  I love technology, so when I stepped onto that busy 

construction site, I could not help but notice how far behind the construction 

industry was in adopting the latest technologies. As a Planning Engineer, I was faced 

with the difficult task of manually capturing progress data, which required a great 

deal of labor, time and was rife with errors. Due to the subjective nature of 

understanding the progress, disputes between stakeholders frequently arose, which 

complicated project implementation, especially the progress-based payments. I 

found myself yearning for a better way, a standardized and automated approach 

that could transform the traditional monitoring approach and help the industry as a 

whole. This yearning grew stronger the longer I stayed in the construction field.  

Ideas swirled in my mind with the imagination where progress monitoring can be 

automated and the latest technologies could be used. I remember watching the 

videos in my spare time where the 3D technologies being utilized for self-driving cars 

and then speculating on how it could possibly be applied at complex construction 

sites to detect building objects. During my Master’s studies, I came across BIM 

technology and realized its transformative potential in the construction industry, 

which utterly captivated and fascinated me. My curiosity was piqued, and I became 

determined to further explore the potential of the technologies, especially in 

construction progress monitoring. My path to pursuing a Ph.D. in this area of study 

was paved by a persistent thought and an unquenchable yearning for improvement 

that slowly took possession of my being. 

This dissertation is a very personal journey that was inspired by my undying faith in 

the transformative potential of technology. It is not just the result of academic study. 

It is motivated by a sincere desire to effect change in a construction sector that has 

been stuck to traditional procedures for far too long. I want to spark a seismic change 

that will improve the automation, accuracy, efficiency, and collaboration of 

construction project monitoring. 

I hope that my work will inspire fellow researchers, practitioners, and industry 

leaders to join forces in this noble endeavor, pushing the boundaries and shaping a 

future where automated construction project monitoring is the norm. Join me in 

envisioning a future where automated monitoring is seamlessly integrated into 

construction projects, empowering stakeholders and driving industry 

transformation. Let the exploration begin. 

-Noaman Akbar Sheik 

7th July 2023 
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Summary 
 

"If you can't measure it, you can't improve it" 

-Peter Drucker 

Although the construction sector is a significant part of the global economy, it 
evolves slowly. Progress monitoring in the construction process is an example of this 
slow evolution. Inaccurate progress monitoring, particularly in large projects, can 
lead to severe financial consequences. Efficient tracking of the construction process 
allows for early error detection, avoids issues in resource and personnel planning, 
helps meet predefined deadlines, and consequently, is cost-effective. However, over 
half of construction projects lag behind schedule, and budget overruns are common. 
Traditional monitoring practices are time-consuming and labor-intensive, leading to 
errors, missing information, and low monitoring frequency. An automated and 
precise method for monitoring construction progress would be a significant 
advancement, but it is still in its early stages. 

Recent developments in 3D data acquisition techniques enable the creation of 
accurate 3D as-built models of construction sites. Many studies utilize these models 
for automated progress monitoring through a process known as model-based 
assessment. This process involves the geometric analysis of as-built models with 
their corresponding as-planned situations and typically consists of three phases: (1) 
registration, (2) comparison, and (3) estimation/exchange of progress information. 
Each of these phases faces a variety of difficulties that make it challenging to be 
applied practically in the construction industry.  

The aim of this study is to facilitate progress monitoring on construction sites using 
modern technologies, addressing challenges in all three phases. 

The first phase of model-based assessment requires the automation of the 
registration process which involves the alignment of the as-built model with the 
planned model. The challenges in this phase mainly revolve around the automated 
extraction and identification of geometric features in both the as-built and as-
planned models. This process is currently predominantly manual and relies on the 
operator's expertise. In this research, the abundant and dominant planar structures 
in most buildings are leveraged in the registration phase. Two algorithms were 
developed for this purpose. 

The first registration technique directly employs the plane segments extracted from 
both models. After extraction, plane segments from both models are clustered based 
on their orientation. Rotational matrices for these clusters are evaluated using a 
matching cost algorithm to determine the extent of correspondence between 
elements in the as-built model and the BIM model. Finally, the precise translation 
vector is determined based on the best-matching planar segments. The accuracy and 
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robustness of this registration technique were validated using multiple datasets with 
varying degrees of complexity. One key finding is the reduced impact of noise and 
outliers in the as-built point clouds on this technique. Moreover, the method is 
successful in registering as-built scans of partially completed constructions with their 
BIM models, making it suitable for progress monitoring. 

The second registration technique utilizes the corner points, as a point of interest, 
extracted from previously determined planar segments from building structures. The 
number of points is first limited through RANSAC-based pairwise assessment of 
distinctive geometric invariants: distance, angle, rotation, and translation, to find 
potential congruent points. The transformation of these potential corresponding 
points is then evaluated to identify the actual pairs. Finally, the transformation 
parameters resulting in the largest overlap between both models are selected as the 
most optimal transformation parameters. The accuracy and robustness of this 
technique were validated using the same datasets as the first technique and yielded 
comparable results for both completed and under-construction buildings. Both 
techniques are accurate with low sensitivity to point cloud noise. Although the 
second technique is slightly more accurate, the first is more suitable for under-
construction buildings. 

The primary outcome of the research in the first phase is the development of new 
automated techniques enabling accurate and automatic registration of as-built scans 
of under-construction buildings with their corresponding BIM models using their 
geometry 

The second phase of model-based assessment involves a geometrical comparison of 
the as-built model with the as-planned BIM model to determine the as-built 
completion of the building. The traditional comparison methods yield inaccurate 
results due to the presence of occlusions in point clouds, lack of a suitable 
comparable as-planned model, and imprecise detection of the built during the 
comparison process. 

This study explores the comparison process and introduces several improvements to 
enhance accuracy in three steps. First, semantic time-related information from the 
IFC-based BIM model is used to sort construction components for processing, 
determine if a comparison is necessary, and confirm the completion of prior 
components before proceeding with the comparison. Next, a detection analysis is 
performed using a ray-tracing technique that utilizes geometrical information from 
BIM and the location of the laser scanner from the as-built scan. Initially, a revised 
as-planned model is developed, adapted for a suitable comparison by classifying 
surfaces based on identified occlusions. The final stage conducts the structural 
comparison, where an as-built surface is more accurately detected by reducing the 
errors resulting from occlusions. This is achieved by utilizing the classified revised as-
planned model, which estimates not only the surfaces exposed to the scanner but 
also predicts the non-exposed surfaces, along with surface coverage as an additional 
parameter. 
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This improved comparison was evaluated with various datasets to assess 
performance and potential practical applications in construction progress 
monitoring. The completion ratio of each construction component based on their 
accurately detected as-built surface is measured. Additionally, the surface coverage 
by the scanner of each building component and the corresponding range of the 
overall predicted completion ratio are identified. Utilizing the amount of surface area 
of each construction component that would be exposed to the scanner if fully 
realized allows for a better estimate of the actual progress of the construction 
process. Collectively, these improvements enable a comprehensive understanding 
of the achieved building completion and result in a significant improvement in 
accuracy and reliability compared to existing automated model-based comparison 
methods. 

The third phase of the research focuses on estimating and exchanging progress 
parameters for effective construction progress monitoring. The emphasis is on 
leveraging the full potential of the BIM model for the automated, accurate, 
interoperable, and standardized exchange of progress information among all 
stakeholders in the construction process, without the use of any third-party external 
commercial software. 

A framework is proposed with a task-oriented approach, using the latest IFC schema 
to accommodate various types of progress information from the construction site. 
The goal is to convert this information into progress parameters in the form of 
relevant IFC entities. The progress information being processed is not limited to 
time-related schedules only to report the completion of building construction but 
also includes the cost and any other non-standard progress-related information such 
as construction comments, inspection notes, additional progress indicators, etc. This 
framework consists of four phases: (1) the integration of IFC entities based on 
progress information in BIM model; (2) enrichment of planned values; (3) frequent 
updating of actual values after their accurate estimation; and (4) reporting all 
information, including additional progress parameters, in a user-friendly manner. 

The method was assessed using multiple BIM models, successfully completing the 
automated exchange of planned and as-built progress information. The information 
was translated into IFC entities in a standardized manner, conforming to the IFC 
hierarchy, and making it accessible via any IFC-based application. Additionally, a 
web-based application was also developed, that takes advantage of the progress 
information stored in the IFC-based BIM model to retrieve it for effective reporting 
and visualization in a user-oriented way. The development of a standardized 
framework for the automated exchange of progress information using a BIM model 
is a milestone in model-based construction progress monitoring. 

This thesis presents significant improvements in various phases of model-based 
automated monitoring of construction progress for buildings with an existing BIM 
model, combined with as-built point clouds obtained through laser scanning. It 
provides automated registration methods and enhances the traditional comparison 
process of as-built and as-planned information, including an accurate estimation of 
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completed construction components. Additionally, a framework was developed for 
standardized and automatic exchange of progress information. The research results 
have the potential to significantly reduce project delays and cost overruns for large 
construction projects. 

Although this dissertation offers substantial improvements for construction progress 
monitoring using 3D laser technology and BIM, there is still a long way to go. The 
current research is an attempt to support the practical application of modern 
technology in the construction environment. Future research efforts will focus on 
further facilitating the monitoring process by addressing the remaining challenges in 
model-based assessment. Further technological developments in 3D data 
acquisition, AI, etc., will create new synergies for more efficient construction 
processes. 
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Samenvatting 
 

Hoewel de bouwsector een belangrijk onderdeel is van de wereldeconomie, is dit 
een sector die slechts traag evolueert. Monitoring van de voortgang van het 
bouwproces is daar een voorbeeld van. Onzorgvuldige voortgangsmonitoring kan 
vooral bij grote projecten problematisch zijn en leiden tot zware financiële gevolgen. 
Efficiënte opvolging van het bouwproces maakt vroegtijdig opsporen fouten 
mogelijk, vermijdt problemen in de planning van mensen en middelen, helpt om de 
vooropgestelde termijnen te halen en is bijgevolg kostenbesparend. Nochtans loopt 
meer dan de helft van de bouwprojecten achter op schema en zijn 
budgetoverschrijdingen schering en inslag. Een van de voornaamste oorzaken is dat 
traditionele monitoringpraktijken tijds- en arbeidsintensief zijn, wat aanleiding geeft 
tot fouten, ontbrekende informatie en een te lage monitoringfrequentie. Een  
geautomatiseerde en nauwkeurige methode voor het monitoren van de 
bouwvoortgang zou een grote vooruitgang zijn, maar bevindt zich nog in een 
beginfase.  

Recente ontwikkelingen in 3D data acquisitietechnieken maken het mogelijk om 
nauwkeurige 3D as-built modellen van bouwplaatsen te verkrijgen. Een groot aantal 
studies maakt gebruik van deze modellen voor geautomatiseerde monitoring van de 
bouwvoortgang via een proces dat bekend staat als modelgebaseerde beoordeling. 
Dit proces omvat de geometrische analyse van as-built modellen met hun 
overeenkomstige as-planned situatie om voortgangsinformatie te identificeren en 
bestaat doorgaans uit drie fasen: (1) registratie, (2) vergelijking en (3) 
schatting/uitwisseling van voortgangsinformatie. Elke fase ondervindt echter nog 
moeilijkheden, waardoor de praktische toepassing in de bouwsector uitdagend is.  

Het doel van deze studie is het vergemakkelijken van voortgangsmonitoring op 
bouwplaatsen door gebruik te maken van moderne technologieën, waarbij de 
uitdagingen in de drie fasen worden aangepakt.  

De eerste fase in de modelgebaseerde beoordeling houdt de  automatisering van het 
registratieproces in. Hieronder wordt verstaan de uitlijning van het as-built model 
met het geplande model. Uitdagingen die verband houden met deze fase omvatten 
voornamelijk de geautomatiseerde extractie en identificatie van de geometrische 
kenmerken van het gebouw in zowel het as-built als het as-planned model. Dit is 
vooralsnog een proces dat hoofdzakelijk handmatig gebeurt en waarvan het succes 
afhankelijk is van de expertise van de operator.  

In dit onderzoek wordt de dominante aanwezigheid van een groot aantal vlakke 
structuren in de meeste gebouwen benut in de registratiefase. Hiertoe werden twee 
algoritmen ontwikkeld. 
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De eerste registratietechniek maakt direct gebruik van vlaksegmenten, die 
geëxtraheerd worden uit beide modellen. Na de extractie worden de vlaksegmenten 
van beide modellen geclusterd op basis van hun richting. Voor die clusters worden 
alle mogelijke rotatiematrices bepaald en vervolgens samen met de 
translatievectoren geëvalueerd op basis van een matching cost algoritme om te 
bepalen in welke mate de elementen uit het as-built model overeenkomen met die 
uit het BIM model. Tenslotte wordt de precieze translatievector bepaald op basis van 
de best overeenkomende vlaksegmenten.  

De nauwkeurigheid en robuustheid van deze registratietechniek werd gevalideerd 
op basis van meerdere datasets bestaande uit gebouwen met een wisselende graad 
van complexiteit. Een van de belangrijkste bevindingen is dat het effect van ruis en 
uitschieters in de as-built puntenwolken op deze techniek minimaal is. Bovendien is 
de methode ook succesvol bij de registratie van as-built scans van gedeeltelijk 
voltooide bouwwerken met hun BIM-model, waardoor ze bruikbaar is voor 
voortgangsmonitoring. 

De tweede registratietechniek maakt gebruik van de hoekpunten die geëxtraheerd 
worden uit de eerder bepaalde vlaksegmenten. Het aantal punten wordt eerst 
beperkt via een RANSAC gebaseerde paarsgewijze beoordeling van een aantal 
onderscheidende geometrische invarianten: afstand, hoek, rotatie en translatie om 
zo potentiële congruente punten te vinden. Vervolgens wordt de transformatie van 
die potentiële overeenkomstige punten geëvalueerd om de werkelijke paren te 
identificeren. Tenslotte worden de transformatieparameters die in de grootste 
overlapping tussen beide modellen resulteren, geselecteerd als de meest optimale 
transformatieparameters.  

De nauwkeurigheid en robuustheid van deze techniek werden gevalideerd op basis 
van dezelfde datasets als bij de eerste techniek en gaf vergelijkbare resultaten voor 
zowel volledige als in aanbouw zijnde gebouwen. Beiden technieken zijn zeer 
nauwkeurig met een lage gevoeligheid voor ruis in de puntenwolken.  Hoewel de 
tweede iets nauwkeuriger is, is de eerste meer geschikt voor in aanbouw zijnde 
gebouwen.  

Het belangrijkste resultaat van het onderzoek gericht op de eerste fase is de 
ontwikkeling van nieuwe geautomatiseerde technieken die een nauwkeurige en 
automatische registratie mogelijk maken van as-built scans van in aanbouw zijnde 
gebouwen met hun overeenkomstige BIM-model door gebruik te maken van hun 
geometrie.  

De tweede fase van de modelgebaseerde beoordeling omvat de geometrische 
vergelijking van het as-built model met het as-planned BIM-model om de voortgang 
van het bouwproces te bepalen. Traditionele vergelijkingsmethoden kunnen 
onnauwkeurige resultaten opleveren vanwege onder andere occlusies in de 
puntenwolken, het ontbreken van een geschikt as-planned model en  
onnauwkeurige detectie van de gebouwde delen tijdens het vergelijkingsproces. 
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Het voorliggend onderzoek verkent het vergelijkingsproces en introduceert een 
aantal verbeteringen om de nauwkeurigheid te vergroten in drie stappen. Eerst 
wordt gebruik gemaakt van de semantische tijd gerelateerde informatie van het op 
IFC gebaseerd BIM-model om de bouwcomponenten te sorteren voor verwerking, 
vast te stellen of de vergelijking nodig is, en de voltooiing van voorafgaande 
componenten te bevestigen voordat verder wordt gegaan met de vergelijking. 
Vervolgens wordt een detectieanalyse uitgevoerd met behulp van een ray-tracing 
techniek die de geometrische informatie van BIM en de locatie van laserscanner van 
de as-built scan gebruikt. Eerst wordt een herzien as-gepland model ontwikkeld dat 
aangepast is voor een geschikte vergelijking door classificatie van de oppervlakken 
op basis van de geïdentificeerde occlusies. De laatste fase voert de structurele 
vergelijking uit waarbij een as-built oppervlak nauwkeuriger wordt gedetecteerd 
omdat het effect van fouten voorkomend uit occlusies wordt geëlimineerd door 
gebruik te maken van het  geclassificeerd herzien as-gepland model dat niet alleen 
de aan de scanner blootgestelde as-built oppervlakken schat, maar ook de niet-
blootgestelde oppervlakken voorspelt, samen met de oppervlaktedekking als extra 
parameter. 

Deze verbeterde vergelijking werd geëvalueerd met verschillende datasets om de 
prestaties en het potentieel voor praktische toepassingen in 
bouwvoortgangsmonitoring te beoordelen. De voltooiingsratio van elk 
bouwonderdeel op basis van het nauwkeurig gedetecteerde as-built oppervlak 
wordt gemeten. Daarnaast wordt de oppervlaktedekking door de scanner van elke 
gebouwcomponent en het overeenkomstige bereik van de algehele voorspelde 
voltooiingsratio geïdentificeerd. Het benutten van de hoeveelheid oppervlakte van 
elk bouwonderdeel dat zou blootgesteld zijn aan de scanner als het volledig zou 
gerealiseerd zijn, laat een beter schatting van de daadwerkelijke voortgang van het 
gebouwproces toe. Dit resulteert in een aanzienlijke verbetering van de 
nauwkeurigheid en betrouwbaarheid ten opzichte van bestaande geautomatiseerde 
modelgebaseerde vergelijkingsmethodes. 

Uiteindelijk richt de derde fase van het onderzoek zich op de schatting en 
uitwisseling van voortgangsparameters voor de effectieve monitoring van de 
bouwvoortgang. Hierbij wordt ingezet op het benutten van het volledig potentieel 
van het BIM-model voor geautomatiseerde, nauwkeurige, interoperabele, en 
gestandaardiseerde uitwisseling van voortgangsinformatie tussen alle actoren 
binnen het bouwproces, zonder het gebruik van externe commerciële software. 

Er wordt een kader voorgesteld met een taakgerichte aanpak, waarbij het nieuwste 
IFC-schema wordt gebruikt om diverse soorten voortgangsinformatie van de 
bouwplaats te accommoderen. Het doel is om deze informatie om te zetten in 
voortgangsparameters in de vorm van relevante IFC-entiteiten. De verwerkte 
voortgangsinformatie beperkt echter zich niet tot tijdschema's  voor het rapporteren 
van de voltooiing van de bouwconstructie. Het omvat ook kosten en andere niet-
standaard voortgangsinformatie, zoals bouwopmerkingen, inspectienota's, extra 
voortgangsindicatoren, etc. Dit kader bestaat uit vier fasen: (1) de integratie van 
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native en non-native IFC-entiteiten op basis van de voortgangsinformatie in het BIM-
model; (2) verrijking van de geplande waarden; (3)  het frequent updaten van de 
werkelijke waarden na hun nauwkeurige schatting; en (4) het rapporteren van alle 
informatie, inclusief de aanvullende voortgangsparameters, op een 
gebruiksvriendelijke manier. 

De methode werd gevalideerd met behulp van meerdere BIM-modellen, waarbij met 
succes de geautomatiseerde uitwisseling van geplande en gerealiseerde 
voortgangsinformatie werd voltooid. De informatie werd vertaald naar IFC-
entiteiten op een gestandaardiseerde manier, waarbij werd voldaan aan de IFC-
hiërarchie, en is daardoor ook toegankelijk via elke op IFC-gebaseerde toepassing. Er 
werd eveneens een web-gebaseerde toepassing ontwikkeld die de 
voortgangsinformatie uit het  IFC-gebaseerde BIM-model gebruikt voor een 
overzichtelijke en efficiënte rapportage en visualisatie.  

De ontwikkeling van een standaardraamwerk voor geautomatiseerde uitwisseling 
van voortgangsinformatie met behulp van een BIM-model, is een mijlpaal in 
modelgebaseerde  bouwvoortgangsbewaking.  

Dit proefschrift presenteert aanzienlijke verbeteringen in verschillende fasen van 
modelgebaseerde geautomatiseerde monitoring van bouwvoortgang van gebouwen 
waarvoor een BIM-model bestaat in combinatie met as-built puntenwolken 
bekomen via laserscanning. Het biedt volledig geautomatiseerde 
registratiemethoden en verbetert het traditioneel vergelijkingsproces van as-built en 
as-planned informatie met inbegrip van een accurate schatting van de voltooide 
bouwcomponenten. Daarnaast werd ook een kader ontwikkeld voor een 
gestandaardiseerde en automatische uitwisseling van de voortgangsinformatie. De 
onderzoeksresultaten hebben het  potentieel om projectvertragingen en 
kostenoverschrijdingen aanzienlijk te verminderen voor grote bouwprojecten.  

Hoewel deze dissertatie aanzienlijke verbeteringen biedt voor 
bouwvoortgangsbewaking met behulp van 3D-lasertechnologie en BIM, is er nog een 
lange weg te gaan. Het huidige onderzoek is een poging om de praktische toepassing 
van moderne technologie in de bouwomgeving te ondersteunen. Toekomstige 
onderzoeksinspanningen zullen zich richten op verdere facilitering van het 
bewakingsproces door de resterende uitdagingen in modelgebaseerde beoordeling 
aan te pakken. Verdere technologische ontwikkelingen op het vlak van 3D data-
acquisitie, AI etc. zullen nieuwe synergiën  doen ontstaan ten voordele van 
efficiëntere bouwprocessen.  
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1.1  Background 
The construction industry contributes 10% and 25% of the GDP in developed and 

developing countries, respectively, and has a significant positive impact on the global 

economy [1]. For construction practitioners and researchers, the low productivity of 

the construction industry in comparison to other industries continues to be a 

significant obstacle [2]. One of the key areas where low productivity has a big impact 

is monitoring the progress of construction projects, which is a key task in 

construction processes [3-5]. Numerous studies have indicated the precise and 

efficient monitoring of under–construction buildings as a key element of successful 

projects and a necessity for effective project management [6-12].  Despite its 

importance, over 53% of typical construction projects are behind schedule, and over 

66% exceed their budget limits [13,14]. 

To deliver the project in accordance with the planned specifications, the availability 

of precise information at the appropriate time is critical for the decision-making 

process. The exchange of partial or incorrect information can lead to project delays, 

increased costs, and numerous disputes between stakeholders [15-18]. Generally, 

large construction projects involve lots of information exchange due to extensive in-

progress work activities, hence require some arrangements or practices that ensure 

the monitoring of these activities [19]. Apart from ensuring that the in-progress work 

activities are proceeding as planned, the monitoring practices also alert early 

deviations or non-conformity of these activities from the project goal, allowing the 

avoidance or mitigation of their undesirable consequences and, eventually saving 

crucial time and expenses [20-22]. 

Current practices in construction progress monitoring consist of manual verification 

of building activities by construction staff in which they walk around the site, making 

visual observations, and taking extensive physical measurements. Later this site 

information is manually analyzed with the key information extracted from project 

drawings, specifications, and construction details to conclude a field progress report 

that determines how much the ongoing project is progressing technically according 

to schedule and budget. Overall, this process involves manual data acquisition and 

extensive processing that requires huge time and resources with prevailing human 

involvement, ultimately leading to multiple errors inclusive of missing or inaccurate 

information [23-27]. Therefore, automated and precise alternatives for effective 

construction progress monitoring are needed, however their development is still in 

its initial phase and has not achieved the required reliability and efficiency [4,9,28], 

although this problem it is already acknowledged since the 1960s [29].  

Recent advancements in remote sensing technologies have enabled the acquisition 

of three-dimensional (3D) as-built spatial information from construction sites, and as 

a result, extensive research is being carried out to make use of these models to 

improve construction progress monitoring through model-based assessment 
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methods [9]. These methods infer the building progress through a geometrical 

assessment to confirm the presence of building components by processing the 

acquired as-built model with the corresponding as-planned model. The as-built 

model is a 3D point cloud that represents the actual state of the building and can be 

acquired through either laser scanning [30-33], image-based reconstruction 

[8,13,19,23,26,34-36], or integration of both [37-39]. The as-planned model is the 

design model of the building, which is obtained from a BIM or CAD model in a 

suitable format. BIM, which stands for Building Information Model, is the major 

outcome of recent digitalization in the construction industry and represents a virtual 

model of the building with the ability to store all necessary data, including geometric 

(graphic) and semantic (non-graphic) information. The model-based assessment 

methods mainly process the as-built scan and as-planned model to infer the progress 

information in an automated way and the procedure can be categorized into three 

different phases, as shown in Figure 1.1. In the first phase, it is ensured that both 

models are accurately aligned with each other with the highest overlap through a 

technique known as registration while the next core phase performs their 

geometrical comparison to determine the as-built (completion) information. The last 

phase precisely processes the obtained as-built information to estimate the standard 

progress parameters (including time or cost schedule) and enable its seamless 

exchange with construction stakeholders for effective progress monitoring. 

 

Figure 1.1. The Sequence of different phases in model-based assessment for 

construction progress monitoring 

The model-based assessment is facing numerous challenges across all phases, 

hindering its application in the construction industry. This research focuses on 
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addressing these challenges by thoroughly investigating each phase to improve 

construction progress monitoring in an automated way. 

1.1.1   Registration 
The model-based assessment for progress monitoring requires the geometrical 

alignment of as-built and as-planned models which is achieved through an essential 

technique known as registration. The precision with which the as-built model is 

registered with the corresponding as-planned model determines the effectiveness 

of model-based assessment as the comparison in the lateral phase requires the 

accurate overlap of models [40]. If the surfaces of the models are too far apart or 

not accurately located with each other, then the subsequent comparison phase may 

fail or provide incorrect progress information. 

Technically, registration involves the determination of the rotation matrix and 

translation vector to align the as-built model with the corresponding as-planned 

model in 3D space. Normally, a coarse-to-fine registration approach is implemented 

which first performs the coarse (or global) registration to establish the initial 

alignment of models, followed by fine (or local) registration to obtain the most 

optimized overlap between the corresponding structures of models [41]. 

Furthermore, the fine registration is usually implemented with the well-known 

iterative closest point (ICP) algorithm [42] and its different versions [43-45], which 

requires the initial alignment of the models. Consequently, the direct 

implementation of fine registration without a preceding coarse registration is prone 

to failure [46], further emphasizing the significance and necessity of the coarse 

registration step. However, a key challenge in coarse registration is the extraction of 

geometric features from a model, as well as the identification of their corresponding 

matches in order to determine the required transformation.  

Although, registration is a widely explored research area, there is more emphasis on 

the registration of point clouds than on the registration of point clouds with BIM or 

mesh models particularly as the latter can be converted into the former [40]. The 

sampling of BIM/mesh models into point clouds, instead of the direct use of BIM, 

may affect the accuracy of the geometrical information and result in registration 

errors [47]. Furthermore, the current registration techniques have specific 

approaches that employ certain geometrical features, which limits their application 

to specific scenarios [48].  

Generally, building structures have orthogonal geometry with an abundance of 

dominant planar features, such as floors, roofs, walls, etc. and registration of building 

structures necessitates leveraging these features. Using these planar-based features, 

instead of processing a complete point cloud, not only saves computation time, but 

is also less affected by outlier and noise errors resulting in greater accuracy [48,49]. 

However, the reliable identification for matching primitives through these planar-

based features is still a major challenge [48,50-53]. Furthermore, the registration of 
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as-built scans with the as-planned BIM for model-based assessment in the context 

of construction progress monitoring also poses additional challenges. For example, 

few research is dedicated to challenges in comparing  as-built scans obtained from a 

partial-constructed buildings to to its complete model in the as-planned BIM.  Apart 

from that, various errors including noise, occlusions, etc., are commonly present in 

the as-built scan due to the presence of machinery, materials, and human workers. 

These errors influence the extraction of geometrical features from the model and 

pose hurdles for the registration process [54]. Additionally, the building models 

typically have several self-similar building components such as doors, windows, 

walls, etc. that may hinder the identification of matching features for registration 

[40]. Consequent to all these challenges, registration is mostly carried out manually 

through human input [52], as the available solutions are not reliable enough, 

especially when dealing with complex point clouds [55]. This illustrates the need for 

the development of automated model-based registration techniques for 

construction progress monitoring which is capable of dealing with these challenges 

in construction environment and accurately align the as-built scan with the as-

planned BIM. 

It is important to mention here that a BIM model in model-based assessment can act 

as a most suitable as-planned model due to its ability to facilitate information 

exchange during various monitoring processes especially for planning schedules, 

updating ongoing as-built information, visualizing and communicating the progress 

information to stakeholders [56-58]. However, the previous studies either did not 

directly use BIM model or manually converted BIM into another format, which 

conflicts with the automation concept in progress monitoring [4,12,33,58].  

Therefore, it is imperative to propose a registration technique in the context of 

automated construction progress monitoring that leverages the utilization of the 

BIM model and directly extracts the geometrical details for processing. 

1.1.2   Comparison 
After the registration phase, the comparison of the as-built and as-planned models 

(also referred to as Scan-vs-BIM comparison) is performed to infer the as-built 

information through the structural analysis [9,59]. It is the core phase in the model-

based assessment that primarily examines the surface geometry of the as-built scan 

in contrast to the BIM model to estimate the building completion based on surface 

identification. Technically, the comparison aims to identify the parts of the as-

planned surface that are already constructed based on the presence of 

corresponding as-built points. The results from the model-based assessment are 

reliable only if the as-built information estimated from the comparison phase is a 

precise representation of the actual as-built. However, this phase is often subject to 

several challenges that may compromise the overall reliability of the as-built 

information obtained. The challenges include but are not limited to the lack of 

suitable as-planned geometry for comparison, the presence of many errors (notably 
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the occlusion) in the as-built scan, an inaccurate comparison process.  The details of 

these challenges are given below. 

Generally, the as-planned model is directly compared with the corresponding as-

built model to find out the surfaces that are built. However, there are always some 

surfaces from the as-planned model that are completely hidden from data 

acquisition instruments such as the sandwiched surfaces of beams and roofs. If these 

surfaces are considered in the comparison then they can increase the inaccuracy in 

the result. Hence, the as-planned model needs to be revised to include only those 

surfaces that are possibly exposed to the instrument, presenting a significant 

challenge in its development. Similarly, the captured as-built scan should truly 

represent the actually built surface in an ideal case to estimate the accurate as-built 

information during the comparison process, which is not possible in real life. At a 

construction site, there is a presence of a range of elements including construction 

materials, machinery, and humans [12]. However, when acquiring spatial data from 

the site, these elements become obstacles (or occluders) that create occlusions in 

the as-built scan. Furthermore, there are cases where the data acquisition 

instrument is not appropriately positioned or fails to capture the entirety of the as-

built surfaces due to pre-existing already built other components acting as obstacles. 

As a result, the non-exposure of surfaces due to obstacles creates incompleteness in 

the as-built scan ultimately leading to the estimation of the imprecise as-built 

information during the comparing process. An example would be an as-built scan of 

a wall component that is highly affected by occlusion and noise errors. If the wall is 

nearly completed (e.g. 80%) in reality then the comparison may inaccurately 

estimate its completion around half (e.g. 55%) mainly due to errors in its as-built 

scan. This inaccurate estimation arises from the surface of the component not being 

fully exposed to the data acquisition instrument due to the other components and 

occlusion at the site. Hence, it is a big challenge for the instrument to capture all the 

as-built surfaces. Apart from that, the errors in the traditional comparison process 

should be identified for improvement eventually to effectively detect the as-built 

surface. Collectively, all these challenges create a difference between the actual and 

the estimated progress, thus limiting the application of model-based assessment in 

the construction industry and demands addressing this inaccuracy in the comparison 

phase [60-63].  

Currently, there is no study addressing these issues or providing a solution to 

improve the accuracy and reliability of the comparison process. Therefore, the 

comparison process needs to be explored to accurately identify the as-built surface 

while integrating the potential improvements to increase the accuracy of progress 

results. 

1.1.3   Estimation and exchange of progress Information 
To monitor the progress of the construction projects in an automated way, accurate 

and up-to-date progress information is required in accordance with standard forms 
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commonly used in construction. The traditional method may not be a suitable fit for 

automated progress monitoring due to the time-consuming and labor-intensive 

nature of collecting and processing the information and may result in inaccurate and 

incomplete information [23,25,63-66]. Even though there is advancement in 

developing automated progress monitoring systems, there remains a challenge in 

terms of automation, accuracy, standardization, and interoperability [56]. The need 

for an automated solution that facilitates the exchange of progress information from 

the construction site between the stakeholders while ensuring the utilization of 

standardized parameters and user-friendly reporting. 

In model-based assessment, the progress information obtained from the comparison 

phase includes the completion ratio (or percent completion) of building components 

which indicates the extent to which the components are built. For effective 

construction progress monitoring, this information has to be translated in terms of 

schedule, cost, or other benchmarks. For example, if a specific wall has reached a 

completion ratio of 80% from 50%, it will necessitate respective adjustments to the 

actual schedule (actual duration, actual start and finish date) and existing cost 

information upon further processing to reflect the actual conditions. Furthermore, it 

is crucial that the automated processing system adheres to industry-standardized 

parameters to ensure accurate and consistent processing of information. Similarly, 

it should also have the ability to report updated information along with the 

additional progress indicators in a user-friendly and comprehensive way to the 

stakeholders. 

Recently, BIM became popular in construction projects due to its ability to act as a 

digital representation of a building that encompasses comprehensive and accurate 

information about geometry and other semantic information 

[12,56,57,60,63,67,68]. According to studies, BIM has a transformative influence on 

the design, construction, and operation of buildings, serving as a valuable collection 

of information to enhance these processes [69-72]. BIM-enabled digital planning and 

construction have the capability to reduce cost by 13% to 21% during construction, 

and 10% to 17% during operation [73,74].  The adoption of BIM has facilitated 

effective project management with improved communication, collaboration, and 

project control [12,75-77]. Despite the advantages of BIM, its full potential for 

progress monitoring, and reporting has not yet been reached [78]. The effective 

exchange and management of information throughout the entire construction 

process is a significant challenge in this regard and demands the exploration of BIM 

for communication, especially for current research in which the BIM model is being 

employed as the as-planned model in all phases of model-based assessment. 

The major challenges involved in the utilization of BIM at the construction site 

include the time-consuming and laborious updating process to integrate the as-built 

information [56,79], and issues in interoperability between different phases and 

stakeholders [80,81]. Furthermore, BIM dependence on particular software renders 
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the information inaccessible once dissociated from it, resulting in inefficiencies in 

building management as well as reliance on specific vendor tools [67,82].  

IFC is a globally established standard for BIM data exchange, that allows the 

information transfer between different software applications used in construction 

industry. It is defined by IFC schema which is built on the EXPRESS language and 

designed to be open and non-proprietary, providing a uniform approach for data 

transfer specifications. Therefore, BIM software applications with the certification 

can transform their BIM models into the standardized IFC model, enabling enhanced 

interoperability and fostering collaboration among diverse stakeholders within the 

construction industry. [69,83]. The major limitations associated with the IFC schema 

include the incomplete linkage of modeled elements with semantics and the 

potential loss of information during conversion into the IFC file format [63,84,85]. 

However, it continues to be improved with extensive deployment in relevant areas 

of construction projects such as energy consumption [86,87], project performance 

evaluation [88], virtual construction [89,90], data standards for facility management 

classes [91], etc. Furthermore, there are some studies that utilized the IFC-based BIM 

in the context of progress monitoring [12,56,58], however, there is a clear gap in 

exchanging progress information using the latest IFC schema particularly to integrate 

all types of information including time-related schedule, cost and any other 

information such as a textual note or additional progress indicators.  

For effective progress monitoring in automated model-based assessment, there is a 

need for research that is focused on IFC-based BIM updating to provide a 

comprehensive solution for exchanging any kind of possible progress information. 
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1.2  Research Overview 

1.2.1   Research Objective 
The objective of this research is to analyze the model-based assessment in the 

domains of registration, comparison and progress exchange, with the ultimate goal 

of improving automated construction progress monitoring. 

1.2.2   Research Questions 
The following research questions (RQs) arises based on the above-mentioned 

research objective, which urges the investigation of the model-based assessment 

phases for construction progress monitoring. 

RQ 1. How can BIM be utilized effectively to extract the different types of 

information for construction progress monitoring? 

Model-based assessment with a BIM model employed as an as-planned model 

requires the direct and automated extraction of information from it, which is a major 

challenge as outlined in the first research question (RQ 1). The utilization of BIM in 

the different phases of model-based assessment demands the resolution of certain 

issues, such as: How can the geometrical information from the BIM model be 

accurately taken out and processed to develop its 3D model? How the other 

semantic information related to progress can be retrieved from BIM for its different 

applications in construction progress monitoring? 

RQ 2. How can the structural features of the building geometry be exploited for 

registration of partial as-built scans with the IFC-based as-planned BIM in 

a construction environment, specifically tailored for progress monitoring 

of under-construction building structures in model-based assessment? 

The second research question (RQ 2) describes the registration issue that may rises 

for the alignment of the error-prone as-built scan with their BIM model due to the 

non-identification of matching primitives in their structural models. This demands 

the response to a few challenges i.e. what are the possible discriminatory and distant 

primitives that can be extracted from building structures? How these primitives can 

be identified and matched from both models for registration, especially for the error-

prone and incomplete as-built scan acquired from the construction site?  How the 

geometrical information can be directly extracted from the BIM model to ensure 

accuracy and automation in model-based assessment? 

RQ 3. What are the challenges involved in the geometrical comparison of as-

built scans obtained from ongoing building construction with the 

corresponding as-planned BIM model to estimate the as-built 

completions, and how can the accuracy and reliability of the overall 

process be improved? 
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The third research question (RQ 3) deals with the challenges associated with the 

comparison process that analyzes the geometry of registered models to estimate the 

precise progress information. The main focus is to explore the comparison process 

with the aim to detect the accurate as-built completions of building components, 

eventually improving the process. It also analyzes how the geometrical and semantic 

information from the BIM model can contribute to the improvement of comparison. 

How the inaccuracies resulting from the error-prone as-built can be minimized and 

addressed? In addition, how the comparison process can be revised to accommodate 

the reduction of errors during as-built surface detection? The inaccuracy resulting 

from both models and the comparison itself requires a detailed investigation to 

propose improvements.   

RQ 4. How the as-built completion information can be efficiently translated into 

progress information and then exchanged in an effective and efficient 

way? And how can BIM be employed for information exchange to 

integrate, update and report progress information including time, cost, 

and other additional information obtained at the construction site? 

The last research question (RQ 4) reveals the challenges related to the utilization of 

IFC-based BIM as an information exchange tool. How the progress information 

including the time, cost, and other customized information such as site comments, 

progress variables, etc., can be integrated into BIM in a standardized framework for 

frequent updating? How to interpret the as-built completion information of building 

components from the site into progress variables for standardized processing? How 

the latest IFC schema can be exploited for automated updating and user-friendly 

reporting of progress information in the context of construction progress 

monitoring? 

1.2.3   General Workflow 
The research aims to improve automated construction progress monitoring through 

model-based assessment involving the as-built scan and BIM model of buildings. The 

research focuses on three key areas: registration, comparison, and progress 

estimation & exchange. The general workflow pertaining to these areas is shown in 

Figure 1.2. The goal is to explore innovative methods and tools that enhance the 

accuracy, efficiency, and reliability in these key areas of construction progress 

monitoring using automated systems. The study incorporates proficient use of BIM 

in every phase to leverage the additional information stored in it to achieve higher 

quality and precise assessments. 
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Figure 1.2. An overview of the workflow employed in the current research 

In the first phase, the registration of models is performed to transform the 

coordinates of the as-built scan so that it can attain maximum overlap with the as-

planned BIM. The plane-based features of buildings are employed to perform the 

registration between the inaccurate as-built scan and as-planned BIM model models. 

Two different methods based on the discriminative primitives and matching 

approach are proposed. These methods process the BIM model by extracting the 

geometrical information through the IFC schema to develop the respective as-

planned 3D model. The first method makes direct use of plane-based features to 

identify the matching correspondence using a directional and translational 

assessment through a matching cost algorithm. Similarly, the second method 

employs the corner points developed from these planes as discriminatory primitives 

and identifies their matching through a series of distinct variants. As both methods 

utilize different geometrical characteristics, they offer certain advantages and 

limitations. This variety of methods proves beneficial, catering to particular 

requirements and situations. 

After registration, the comparison of the aligned models is performed in the second 

phase. The study advances the accuracy of the traditional comparison process 

through the identification of possible errors by analyzing BIM model, as-built scan, 

and as-built detection approach. The process is improved by utilizing the geometrical 

and semantic information extracted from IFC-based BIM and processed through 

different stages including reasoning measures, detection analysis, and as-built 

progress identification. It not only identifies the errors to accurately estimate the 

progress of each building component but also computes the additional parameters 

that help to understand the as-built information and predict the total progress 

against the uncertainties. 
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In the third and last phase, a comprehensive solution is provided to estimate and 

exchange the progress information using IFC-based BIM. A four-stage method is 

detailed that integrates the relevant progress entities according to the progress 

information and then updates their planned and actual values. The integrated 

progress information is further handled to allow user-friendly reporting as well as 

the computation of additional progress indicators. This method is designed to 

perfectly fit the automated progress monitoring using model-based assessment in 

which the same BIM model is also leveraged for registration and comparison. 

By comprehensively investigating the challenges in registration, comparison, and 

progress estimation & exchange, this research seeks to contribute to the 

advancement of automated construction progress monitoring by proposing 

innovative techniques and advancements. The research outcomes aim to improve 

project management practices, facilitate decision-making processes, and ultimately 

increase productivity in the construction industry.  

1.2.4   Out of Scope 
As the research topic focused on construction progress monitoring of buildings is 

inherently expansive. This section addresses certain aspects that fall beyond the 

scope of the specific. 

The dissertation investigates the different phases of model-based assessment in 

which the as-built and as-planned models are analyzed with each other to infer the 

progress information. The previous studies may have utilized different types of as-

planned models such as CAD models or mesh models, however, the current research 

study focuses on BIM models as they support automation and significant 

improvements in each phase. Although, the CAD or mesh models can also be utilized 

by adopting the methodology accordingly. Similarly, the as-built model includes the 

3D point cloud that is either acquired from a laser scanner, through reconstruction 

of 2D images, or integration of both. The current study, particularly in the 

registration and comparison phases, is performed on laser-scanned as-built models. 

Although the image reconstructed as-built model can also be utilized in the current 

research, however, it may affect the accuracy of obtained results correspondingly.  

The registration methods focus on building structures having dominant planar 

geometry as most buildings have the majority of planar structures. However, there 

are exceptions as well as certain buildings possess non-planer or curved 

components. In such cases, the methods may not work if they do not find enough 

plane segments in both models. Furthermore, the registration techniques are 

dependent on plane segments, the plane segments from the as-built scans are 

extracted through RANSAC-based plane segmentation in which the segments are 

estimated randomly through numerous iterations. Hence, the segmented plane may 

change slightly each time, thus also marginally impacting the registration accuracy. 
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The current research is not focused on the plane extraction technique; therefore, it 

relies on the already available efficient RANSAC-based segmentation technique. 

The method proposed for the comparison phase identifies the accurate completion 

ratio by processing the building components. The method is designed to be efficient; 

however, it may experience high computation times for large datasets including the 

buildings model with hundreds of components that are being processed for the first 

time. The underlying reason is that the proposed methodology precisely identifies 

the surface completion of each building component. The intended prioritizing of the 

accuracy over efficiency may not affect the overall computation time, as it has no 

impact on the progress monitoring of already processed building components 

because the progress monitoring requires the regular processing of models over 

time. Similarly, the method also handles the occlusion in the scan models due to 1) 

other building components that are already built and, 2) the presence of other 

external objects placed at the scene. The method presented successfully identified 

the occlusion for the first type for simulated and real-life datasets. Although, a 

solution for the second type of occlusion was proposed and validated for simulated 

datasets, however, it required some advancement for its successful application on 

real-life datasets, which is another extensive research domain; hence, it is planned 

for the future.  

Currently, there is an absence of standardized datasets that can be used to 

benchmark the results of model-based assessment techniques. This limitation may 

be attributed to the scarcity of extensive research in this particular research domain. 

Ideally, standard datasets should include diverse models comprising scans and their 

corresponding BIM models completely enriched with semantic planning information, 

particularly the time-related data of building components and their construction 

sequences. As the practical application of model-based assessment techniques is still 

in its early stages and not yet fully developed, the availability of adequate data for 

testing remains limited. However, it is important to acknowledge that the current 

thesis primarily focuses on investigating and proposing improvements to 

construction-based assessment processes for automated progress monitoring. 

While the lack of standardized datasets is acknowledged, the research within this 

thesis was conducted within the scope of available resources and data. The main 

goal is still the advancement of model-based assessment techniques for automated 

progress monitoring while recognizing the need for further research and 

standardization in this emerging field. 

1.3  Outline 
This dissertation is composed of a several research publications that were produced 

within the scope of this PhD. The complete list of publications is provided in Section 

1.6 . These publications offer a comprehensive and integral overview of the research 

performed. Similarly, significant research contributions are achieved through the 
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current research study, which are also described in Section 1.5 .  Figure 1.3 provides 

an overview of the main chapters of the dissertation, excluding the first 

(introduction) and last (conclusion) chapters. As evident from the figure, each 

chapter corresponds to a specific phase of model-based assessment and is arranged 

according to their sequence. 

 

Figure 1.3. An overview of chapters in the dissertation  

The overview of the remainder of this dissertation is provided with an explanation 

of how the different chapters are linked together. Table 1.1 indicates how the 

different research questions are being addressed in each chapter. These chapters 

are also briefly summarized in next section according to the research questions that 

are highlighted in Section 1.2.2  . It is pertinent to mention that the same consistent 

model is being employed throughout the methodologies section in all chapters, 

serving as the fundamental framework for demonstrating their approaches. This 

model acts as the cornerstone, providing a cohesive and unified foundation for the 

demonstration of different methodologies.  

Table 1.1. An overview of the research questions discussed in each chapter. 

 Ch. 2 Ch. 3 Ch. 4 Ch. 5 

RQ 1  ✓    

RQ 2 
✓  ✓    

RQ 3   ✓   

RQ 4    ✓  
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1.4  Study Methodology 
The objective of this research was to improve construction progress monitoring by 

analyzing the model-based assessment in the research domain of registration, 

comparison and progress information exchange. Each chapter presents innovative 

methods and tools aimed at improving accuracy, efficiency, and reliability across the 

key phases of model-based construction progress monitoring. Chapter 2 and 3 

focuse on registration issues, while chapter 4 examines the comparison stage. 

Additionally, the chapter 6 explores the progress exchange mechanism. The goal of 

this comprehensive approach is to provide a deeper understanding of progress 

monitoring processes and facilitate more effective decision-making in construction 

projects. A brief summary of all chapters is as follow: 

The chapter 2 addresses the registration issue by adopting a novel approach that 

directly utilizes the plane segments in the building geometry to robustly determine 

the most accurate registration parameters in three stages. Initially, the plane 

parameters are extracted from the building model through plane segmentation and 

then they are clustered according to their directions to get the nominal directions of 

models. In the second stage, the nominal directions obtained from both models are 

then further processed to determine the possible rotation matrices. These matrices 

are then assessed in the last stage based on a computation framework that measures 

the correspondence through a matching cost algorithm, deploying a minimization 

process. The framework performs the directional and translational assessment to 

identify the correct rotation matrix and translation vector. 

The next chapter also deals with the registration challenge by proposing another 

unique method that makes use of evident and distinct corner points in the building 

structures for registration of the as-built scan of under-construction buildings with 

as-planned BIM. Similar to the previous registration plane-based approachthis 

method also employs the building plane segments but only to create the corner 

points as points of interest for matching. It mainly consists of four stages. The first 

stage extracts the corner points from the models by finding the possible intersection 

points obtained from any three non-parallel plane segments. Later the potential 

matching corner points are identified in the subsequent stage by pruning the 

extracted corner points using different geometric matching invariants related to 

distance, angle, rotation, and translation. In the third stage, transformation 

parameters obtained from potential matching points are evaluated to find the 

cluster with the correct transformations. In the end, the most optimal 

transformation among the correct transformations is identified that gives the 

maximum overlapping of surfaces. This chapter also compares the corner-based 

registration method with the previously proposed plane-based method for the 

registration of building models presenting the merits and the limitations. 
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Chapter 4 delves into the comparison stage with the aim to improve the procedure 

by introducing new measures. These new measures not only increase the accuracy 

of comparison but also provide additional progress parameters to get important 

insights and a comprehensive understanding of progress information, exceeding the 

limitation of traditional comparison. The proposed methodology focuses on 

identifying the possible errors and identifies the detected as-built component by 

leveraging the planned information and analyzing the geometrical surfaces of 

models. The proposed methodology detailed in this chapter consists of three main 

stages: preliminary reasoning, detection analysis, and as-built progress detection. 

The first stage involves the reasoning measures to reduce the progress error based 

on the sequencing and time-related schedule of building components by extracting 

the semantic information from BIM models through the IFC schema. Later, detection 

analysis is performed that first develops a detection model from the BIM model for 

more conformable comparison and then classifies its surfaces by identifying the 

occlusion. In the end, as-built progress is accurately estimated by considering the 

possible errors during comparison and then predicting the non-exposed surfaces as-

built surfaces. These advancements in the improved comparison provide accurate 

as-built progress information with additional parameters. 

Chapter 6 describes the exchange of information during the complete process of 

construction progress monitoring by providing a comprehensive framework. It 

outlines the process of effectively communicating progress information to a BIM 

model through a task-based systematic approach, ensuring efficient and accurate 

progress monitoring. A detailed methodology is provided that includes the four 

stages to perform the exchange of progress information with the BIM model using 

the latest IFC-based schema. The IFC entities to accommodate the progress 

information are integrated into the BIM model in the first stage while their 

corresponding values for planned progress are inputted in the second stage. A 

separate third stage, designed to facilitate the frequent incorporation of actual 

progress, enriches the BIM model with the latest actual progress. In the end, the 

retrieval of progress information to report the construction progress monitoring is 

carried out. The approach not only identifies the standard progress parameters but 

also incorporates the estimation of additional progress indicators, such as earned 

value analysis, to provide valuable insights. The methodology is well explained and 

supplemented with the required IFC modification algorithm, values estimation, and 

the relevant IFC hierarchy of entities. In addition to incorporate standard progress 

information such as time-related schedules or costs, the framework also facilitates 

the integration of supplementary semantic progress information that might not align 

with the predefined IFC entities such as additional progress parameters, textual 

comments, etc. If the native IFC entity supports it, all the information is stored within 

it; otherwise, a designated property set is assigned to accommodate the information. 

In the end, a web-based application was also developed to report the construction 
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progress with additional progress indicators including earned values in an efficient 

and human-friendly way. 

The last chapter of the dissertation presents the summary of the contributions made 

throughout the study, discusses the limitations and offers valuable suggestions for 

further research in the future. 

1.5  Scientific Contributions 
The challenges to improve the automated construction progress monitoring through 

different phases of model-based assessment are presented in section 1.2.2  . The 

remaining sections of this dissertation address these challenges for which a brief 

outline is provided in section 1.3 . A concise list detailing the main research 

contributions made in this dissertation is presented below: 

• Outcome 1: Proposed two different novel methods based on building 

geometry to perform the automated registration of as-built scan with the 

as-planned BIM.  

o Methods are based on two evident geometric features of 

buildings: planes and corner points 

o Directly extract the Geometry of the as-planned model directly 

from BIM using the IFC schema 

o Works accurately for the as-built scan of under-construction 

buildings 

 

• Outcome 2: Improved the traditional comparison process for under-

construction buildings to infer their accurate as-built information  

o Evaluation of progress information through reasoning measures 

based on time-related schedule and components execution 

sequencing information extracted from BIM model 

o Develops a revised model from an as-planned model representing 

a compatible surface for its comparison with the as-built model 

o Classify the as-built scan surface based on the errors and coverage  

o Accurately detects the exposed as-built surface and also predicts 

the non-exposed as-built surface. 

• Outcome 3: developed a comprehensive BIM-based progress monitoring 

framework to enable the automated estimation and exchange of progress 

information effectively between different stakeholders and the 

construction site. 

o Comprehensive methodology with a task-based approach 

o Introduced the algorithms to integrate the relevant IFC entities 

using the latest IFC4.x schema. 

o Enables the integration of progress information  
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o Not only integrate the time-related information but also the cost 

as well as any other non-standardized information including the 

site inspection notes, delay reasons, additional progress indicators, 

etc. 

o Also computes the additional progress indicators including earned 

value analysis 

o Allows the reporting of construction progress in a user-friendly 

way 

1.6  Publications 
The findings of this PhD research have been published in scientific journals and 

international conferences.   The following list is the research publications produced 

during the PhD research. 

1.6.1     Publications in international journals 
Followings are the research articles published in high-impact international journals 

factors with A1 ratings. 

1. Sheik, N. A., Deruyter, G., & Veelaert, P. (2022). Plane-based robust 

registration of a building scan with its BIM. Remote Sensing, 14(9), 

1979. https://doi.org/10.3390/rs14091979 

2. Sheik, N. A., Veelaert, P., & Deruyter, G. (2022). Registration of Building 

Scan with IFC-Based BIM Using the Corner Points. Remote Sensing, 

14(20), 5271. https://doi.org/10.3390/rs14205271 

3. Sheik, N. A., Veelaert, P., & Deruyter, G. (2023). Exchanging Progress 

Information Using IFC-Based BIM for Automated Progress Monitoring. 

Buildings, 13(9), 2390. 
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This chapter is an adapted version from the following original publication: 
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Abstract 
 

The registration of as-built and as-planned building models is a pre-requisite in 

automated construction progress monitoring. Due to the numerous challenges 

associated with the registration process, it is still performed manually. The research 

study described in this chapter proposes an automated registration method that 

aligns the as-built point cloud of a building to its as-planned model using its planar 

features. The proposed method extracts and processes all the plane segments from 

both the as-built and the as-planned models, then—for both models—groups 

parallel plane segments into clusters and subsequently determines the directions of 

these clusters to eventually determine a range of possible rotation matrices. These 

rotation matrices are then evaluated through a computational framework based on 

a postulation concerning the matching of plane segments from both models. This 

framework measures the correspondence between the plane segments through a 

matching cost algorithm, thus identifying matching plane segments, which ultimately 

leads to the determination of the transformation parameters to correctly register the 

as-built point cloud to its as-planned model. The proposed method was validated by 

applying it to a range of different datasets. The results proved the robustness of the 

method both in terms of accuracy and efficiency. In addition, the method also proved its 

correct support for the registration of buildings under construction, which are inherently 

incomplete, bringing research a step closer to practical and effective construction 

progress monitoring. 

Keywords: BIM; point cloud, registration, buildings, automated, 3D model. 
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2.1   Introduction 
Numerous studies indicate the precise monitoring of the as-built status of 

constructions as a critical component of the building process [1-3]. Good monitoring 

practices not only assure adequate project management, but also allow for the early 

detection of deviations from, or nonconformity with, the design, thus providing the 

opportunity to remediate in an early stage to save both time and money [4-6]. 

Notwithstanding the significance of effective monitoring, the current methods of 

monitoring progress involve manual data collection and processing, which are time 

consuming and labor intensive with a dominant human presence, thus entailing 

several flaws, such as missing or inaccurate information [7-9]. Although the 

construction industry demands timely and accurate progress monitoring through an 

automated approach, the development of automated progress monitoring is still at 

an early stage and has not yet reached the desired efficiency and reliability [10-12]. 

With the advancement in remote sensing technologies to acquire three-dimensional 

(3D) data from construction sites, a vast body of research dedicated to improving (or 

automating) construction monitoring through model-based assessment methods is 

emerging. In these methods, the actual state of the building in the form of an as-built 

model is compared to the as-planned model. In most cases, the as-built spatial 

information is captured in the form of point clouds obtained through image-based 

3D reconstruction [3,7,13-17], laser scanning [18-21], or the integration of both 

techniques [22-24], whereas the as-planned or design information originates from a 

building information model (BIM) that is converted into a point cloud or another 

suitable format. Before the comparison, the as-built model is geometrically aligned 

with the as-planned data through an essential technique known as registration. The 

effectiveness of model-based assessments depends on the accuracy of the 

registration of the as-built with the as-planned model. Normally, registration 

techniques can be classified as either coarse or fine registration. The fine registration 

of point clouds is commonly achieved through iterative closest point (ICP)-based 

algorithms [25-28]. However, directly applying this type of registration is likely to fail, 

because it requires an initial alignment, achieved through a coarse registration. 

While there is a variety of literature available providing automated solutions for 

different environments and applications, coarse registrations are mostly performed 

manually through human involvement, because although they may work relatively 

well when applied to simple corresponding point clouds or certain scenarios, the 

probability of failure is quite high given more intricate point clouds [29]. In addition, 

the presence of working equipment or objects at building construction sites 

increases the likelihood of noise, occlusions, and missing data in the as-built model, 

which often limits the effectiveness of the registration. Furthermore, almost always, 

the as-built model of a completed building is used as input for the registration, and 

only limited research has been conducted on the registration problem focusing on 

the alignment of an incomplete building with its as-planned model. As a result, the 

registration of building models for progress monitoring remains a challenge. 
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Therefore, instigating research on registration systems that can accurately align a 

partially completed as-built model will expand the applicability of automated model-

based assessment methods for the progress monitoring of buildings under 

construction.  

The current chapter deals with the research related to registration challenge. It 

proposes a new method to automate the registration of as-planned and as-built 

building models by particularly leveraging their planar geometry in a highly robust 

and efficient way, leading to an accurate registration of both models, even if the built 

structure is not fully completed. First, the possible rotations are determined based 

on the directions obtained from the clustered plane segments of both building 

models. Then, the matching segments are estimated in both models based on the 

geometric details of individual plane segments. Finally, these matching segments are 

used to identify the most likely rotation and translation the as-built model must be 

subjected to in order to be fully aligned with the as-planned model.  

In Section 2, a literature overview on registration problems is given. Then, the main 

concept and a detailed explanation of the proposed technique are provided in 

Section 3. Section 4 describes the experiments along with the results. Section 5 

discusses the results of the experimental evaluation of the method. Finally, Section 

6 concludes the discussion based on the results and major findings. 

2.2   Related Work 
Registration is a extensively studied research problem, with most efforts dedicated 

on the registration of two or more point clouds and less on the registration of point 

clouds with BIM/mesh models, as the latter can be transformed into the former [30]. 

BIM/mesh are the artificially prepared building models that are utilized for structural 

comparison with the scan point cloud after registration. Nevertheless, the sampling 

of BIM/mesh models can deteriorate the precision of the geometrical information 

and thus introduce registration errors [31]. Similarly, errors, including noise, 

occlusion, etc., in the scan point cloud also affect the precision of directly extracted 

geometrical information [32], and thus challenge the geometrical procedures of 

registration. 

The registration problem of point clouds can be reduced to finding the rotation 

matrix and translational vector to transform the coordinate system (CS) of one point 

cloud into the CS of the other, thus aligning both point clouds. A rigid transformation 

has six degrees of freedom (DoF) referring to three translations and three rotation 

angles in the three-dimensional (3D) space. Often, a coarse-to-fine strategy is 

applied, meaning that a coarse registration is applied first to get an initial alignment, 

followed by a fine registration to achieve the utmost correspondence between the 

matching areas. Directly applying the fine registration without an initial alignment is 

likely to fail [33]. 
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The registration process can be classified into two major categories: point-based and 

feature-based approaches. Point-based approaches use corresponding point pairs in 

both clouds and do not require complex processing algorithms [34,35]. Random 

sample consensus (RANSAC), proposed by Bolles et al. [36], is extensively used to 

identify corresponding points. It is an iterative method, where in each iteration, a 

random selection of sample points is performed in the corresponding point clouds, 

after which the transformation is calculated to detect the number of inliers. In the 

end, the transformation with the largest number of inliers is considered to be the 

most likely and final transformation [37,38]. Another widely used point-based 

method is the iterative closest point (ICP) algorithm [25], which is based on a strategy 

where point-to-point distances between the corresponding points in overlapping 

parts are minimized through iteration. To improve the original ICP algorithm in terms 

of a weighting strategy, error metric formulation, correspondence building, and 

outlier rejection, a large number of ICP variants have been proposed [34]. 

Furthermore, the 4-point congruent sets (4PCS) and their variants make use of 

coplanar sets of four congruent points with an affine invariant ratio between point 

clouds through iteration to find correspondences [39-41]. Generally, iterative 

methods similar to ICP or 4PCS have been proven to be computationally expensive if 

a good initial alignment is not attained. However, the computation time can be 

largely reduced if only key points are processed instead of all the points as an 

alternative solution [42]. The methods that employ this solution include scale-

invariant feature transform (SIFT) key points [43,44], virtual intersecting points [45], 

difference-of-Gaussian (DoG) key points [39], fast point feature histograms (FPFH) 

key points [46], and semantic feature points [47]. Although all these point-based 

methods demonstrate the ability to register point clouds, they are still very sensitive 

to noise, occlusions, differences in the point density of the two point clouds, and 

scene complexity. Furthermore, these methods also face difficulties in registering 

large point clouds. 

Compared to point-based approaches, feature-based approaches are less affected 

by noise or outliers, because the registration is based on identified features 

extracted from the point clouds. These features are geometric primitives formed by 

lines [48-51], curved surfaces [52], or planes [35,42,53-56]. A lack of these features 

can result in the failure of these methods; however, man-made structures usually 

contain an abundance of planar features. Registration using planar features only, 

instead of whole point clouds, not only reduces the needed computation power but 

also significantly increases the overall accuracy due to the decreased influence of 

noise and outliers [34,57]. To apply plane-based registration, the plane segments are 

first extracted from both point clouds, after which the correspondence between the 

extracted planes is computed to identify the conjugate/matching planes. To extract 

the plane segments from the point clouds, frequently used segmentation techniques 

are RANSAC segmentation [58-60], dynamic clustering [61], Hough transform [62], 

region growing [63], and voxel-based growing [35]. The quality of the extracted 
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segments affects the efficiency of plane-based methods. Furthermore, if the normal 

vectors from a plane are biased, this will eventually lead to the identification of 

incorrect conjugate/matching planes [42]. To determine the correspondence 

between the extracted plane segments, discriminative geometric primitives, known 

as descriptors, are used. This procedure is still challenging due to the lack of reliable 

and distinct descriptors. Furthermore, a high number of similar planar surfaces 

extracted from large point clouds increases the difficulty of finding 

matching/conjugate planes. Therefore, defining descriptors to identify the distinct 

planes also becomes a challenge. As a consequence, some researchers prefer to 

manually identify the conjugate/matching planes [64], although research aimed at 

efficiently solving this problem in an automated environment is ongoing. He et al. 

[65] determined the matching planes using an interpretation tree based on plane 

attributes, such as area, normal angle, and centroid. Dold et al. [54] used the area, 

bounding box, boundary length, and mean intensity value of the planes to identify 

matching pairs. Brenner et al. [66] proposed the intersection angles formed by a set 

of three planes to find the matching local geometry in the other point cloud, while 

Theiler et al. [45] deployed the virtual intersection point of planes as a key point with 

the help of specialized descriptors to find the matching points for the registration. 

Xu et al. [35] used a set of three planes that formed 3D virtual corner points and then 

estimated a coordinate frame using their normal vectors to find their matching set 

of planes. Similarly, Pavan and dos Santos [67] introduced a global refinement to 

evade the iterative method using the local consistency of planes. Geometric 

constraints formed by planes were employed along with similarities in plane 

properties to identify the correspondence between the planes. Xu, Boerner, Yao, 

Hoegner and Stilla [42] applied the 4PCS strategy on pairs of voxelized planed 

patches from both corresponding point clouds to find the 4-plane congruent sets for 

registration. Recently, Pavan, dos Santos and Khoshelham [57] performed plane-

based registration by proposing a global closed-form solution via a graph-based 

formulation to find plane-to-plane correspondences. All these methods were 

proposed for the registration of different scans, mostly for urban scenes. Compared 

to these scans, the registration involved in the model-based assessment of buildings 

has unique challenges, because the registration is typically performed between a 

scan-based point cloud and the design model of a building. These challenges include 

the self-similarities of building components, such as walls or floors, lack of 

completeness of as-built data, symmetrical geometry of buildings, and occlusion due 

to objects or machinery present at the construction site during as-built data 

acquisition [30]. 

As mentioned before, coarse registration is often applied manually through an n-

point approach that requires picking at least three pairs of matching points in both 

models [1,16,68]; there are few research efforts that propose solutions for 

automated registration in the context of the progress monitoring of buildings. For 

example, Kim et al. [69] applied a coarse-to-fine strategy for the registration of the 
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scanned point cloud to the design model of the building in which principal 

component analysis (PCA) [70] was used as coarse registration, while LM-ICP [71] 

was applied as fine registration. In the coarse registration, the rotation was 

computed from the bases formed by the principal components of both models, and 

the translation was calculated from the centroids of the models. However, this 

method assumes that the principal components of both models have the same global 

directions with congruent centroids, which is only possible if both models are exactly 

the same. Therefore, this method is not applicable in real-life scenarios involving 

occlusions, noise, or missing data, which are typical of as-built point clouds of 

incomplete buildings. Similarly, Chen et al. [72] used a column-based scan 

registration in which the first columns are detected by projecting the point clouds on 

a heat map through a rule-based detection scheme. After that, a RANSAC-based 

strategy that randomly selects two columns from each point cloud in each iteration 

and calculates the transformation parameters by matching those two columns was 

applied. Later, all the columns were transformed based on these transformation 

parameters, and an alignment score based on correctly placed columns was 

obtained. In the end, the transformation with the highest score was finalized. This 

method only provides good results for buildings that possess a substantial number 

of columns. Bueno et al. [30] adapted the 4PCS algorithm that randomly selects the 

set of four planar patches as candidates for 4-plane bases in which the first three 

planes are not pair-wise parallel and the fourth plane is not co-planar to any of the 

other three planes. This method computes the possible transformations based on 4-

plane congruent sets and then evaluates these transformations using a two-step 

support method. In the end, the method clusters the transformations and gives a 

ranked list of the top five. In this study, three simulated datasets and two real 

datasets were tested. For the simulated dataset, the correct transformation 

parameters were ranked first, while for the real datasets the correct transformation 

parameters were ranked second. Except for Bueno et al. [30], none of the above-

mentioned studies address the problem of the incompleteness of data that is typical 

for buildings in the construction phase. This observation demonstrates the need for 

research on registration methods in the case of progress monitoring. 

2.3   Methodology 
Generally, buildings have dominant planar geometric features, such as walls or 

floors, of which a large number are parallel to each other. By clustering the planar 

structures based on their orientation, nominal clusters—each containing a set of 

parallel planar structures—can be created to represent the main directions of the 

building. A typical building has a minimum of three clusters, where one cluster 

represents parallel floors and roofs, and the others act as walls. In the case of non-

horizontal roofs or non-perpendicular walls, the total number of clusters increases. 

Normally, the as-built models of the building exhibit the same overall geometry as 

the as-planned model; thus, comparing the directions of the nominal clusters from 

both models offers an opportunity to determine the possible rotation matrices. 
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Figure 2.1 illustrates the general workflow of our method. In the first stage (Figure 

2.1, Stage 1), the directions of the nominal clusters of parallel plane structures are 

determined. In the second stage, the possible rotation matrices are calculated based 

on at least three matching directions (Figure 2.1, Stage 2). Finally, in the third stage, 

the most likely rotation matrix and translation vector are identified (Figure 2.1,  

Stage 3). A pseudo-code outlining the procedural stages for implementing the 

proposed methodology is presented in Appendix 6 while the detailed explanation of 

each stage is provided in the following sections. 

 

Figure 2.1. Overall Methodology 

2.3.1   Preprocessing 
Data from corresponding as-built and as-planned building models may not be in their 

best form for comparison; therefore, preprocessing can be necessary as an initial 

stage, to ensure the geometric parameters of both models can be compared 

efficiently, thus assuring a robust and accurate registration. 

A 3D as-built point cloud acquired through laser scanning is generally dense and 

accurate; however, it contains noise and outliers which may limit the overall 

reliability of the registration. Therefore, the point cloud needs to be cleaned 

completely beforehand through computer algorithms, such as the tensor voting 

algorithm [73,74]. Furthermore, as high point densities increase the computation 

time, it can be necessary to down-sample the point cloud using octree-based 

voxelization. The voxel size must be chosen in function of the desired level of detail 
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because although the computation time benefits from a larger voxel size, this also 

causes a loss of detail. 

The as-planned model, often a BIM design, can be represented in a triangulated 

mesh format that contains accurate geometric information, including the vertices 

and normal values of each building plane. Most researchers convert BIM into a point 

cloud format for compatibility reasons with the as-built point cloud. However, this 

practice results in a loss of detail in the as-planned model, which, in turn, causes a 

loss of accuracy and augments the processing time in later stages. Therefore, it is 

better to process the as-planned model in a mesh format. A detailed procedure to 

translate the geometrical information from the IFC-based BIM to construct their 

structural mesh model is detailed in section 3.3.2.  

2.3.2   Determining the Directions of Clustered Plane Segments 
Calculating the direction of clustered plane segments in both the as-planned and as-

built models involves two steps, as shown in Figure 2.2. In the first step, the model, 

represented by Figure 2.3a, is segmented to extract all of its plane segments (Figure 

2.3b), which are then clustered based on their orientation in the second step (Figure 

2.3c). The similar normal values of the plane segments in each cluster act as the 

directions of the model. 

 

Figure 2.2. Workflow for determining the directions of clustered plane segments. 

2.3.2.1   Planar Segmentation 
The as-built point cloud is first segmented into planar segments with 3D points (x,y,z) 

and normal vector n(a,b,c) at a distance ‘d’ from the origin satisfying the plane 

equation: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 +  𝑑 = 0, which is performed through RANSAC 

segmentation. During the segmentation, coplanar segments are handled as one large 

segment. For extracting the plane structures in the as-planned model, the meshes 

are split based on their face connectivity. 
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Figure 2.3. Visual representation of (a) model, (b) segmented planar components, and 

(c) planar segments grouped into clusters. 

The as-built point cloud may include outliers and occlusions due to the presence of 

objects in the scene during scanning. On the one hand, to reject outliers, the plane 

segments are ordered in a hierarchy based on their surface area, where the largest 

plane segment is ranked first. Only the dominant planes in both models are retained 

by rejecting the smaller segments based on the suitable threshold expressed as a 

certain percentage of the area of the largest plane. On the other hand, occlusions 

have an effect on the determination of the plane centroids, which will be used for 

calculating the translations in a later stage. For example, the surface coverage of 

matching plane segments from the as-planned and as-built models, as shown in Figure 

2.4a,b, respectively, are slightly different due to the occlusions in the as-built point cloud. 

This problem is mitigated by creating an axis-aligned bounding box of each plane 

segment in the as-built and BIMs, thus allowing the similar representation of the 

geometrical shapes in both models (Figure 2.4a,b). The example in Figure 2.4c shows 

the bounding box created from the occluded plane segment (Figure 2.4b). The centroid 

calculated from the bounding box is located closer to the center; hence, it is more 

accurate than the centroid calculated from the occluded point cloud (Figure 2.4d). 
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  (a) 

 
  (b) 

 
  (c) 

 
  (d) 

 

Figure 2.4. Visualization of (a) plane segment from BIM, (b) plane segment from 

original point cloud, (c) bounding box of plane segment created from the point cloud, 

and (d) centroid points calculated from the original point cloud (red) and from the 

bounding box (blue). 

2.3.2.2   Clustering the Plane Segments 
After extracting all the plane segments and determining their geometrical 

parameters, parallel planes are grouped together into clusters based on their normal 

vectors. To avoid the failure of the clustering process caused by inaccuracies in the 

segmentation, a suitable tolerance is introduced in the direction of the normal 
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vectors. The direction of a cluster is defined as the weighted average of the normal 

vectors according to Equation (1): 

n𝑔 =
∑ n 𝑖 s𝑖 

𝑡
𝑖=1

∑ s𝑖 
𝑡
𝑖=1

 (1) 

In Equation (1), n𝑔 is the weighted normal of a cluster of parallel plane segments, 

n 𝑖 represents the normal vector of each segment, s𝑖 is the area of the plane segment 

𝑖, and 𝑡 is the total number of parallel segments in the cluster. A pseudocode 

describing the program designed to cluster parallel plane segments is provided in 

Appendix 7. 

2.3.3   Calculating the Possible Rotation Matrices 
The rotation matrix is calculated from the directions of the plane clusters in both 

models. First, all the possible combinations of the three plane cluster directions in 

both models (as-built and as-planned) are made and the angles between the cluster 

directions in each combination are calculated. Then, for each combination in the as-

built model, these angles are compared to all possible combinations within the as-

planned model. Combinations with the same angles are withheld. While comparing 

the angles, a suitable tolerance is applied to account for slight inaccuracies in the 

directions. Figure 2.5a demonstrates an example of a combination with 

corresponding cluster directions in both models having the same angles. 

 

Figure 2.5.  Visualization of (a) possible combinations with directions from the 

clustered plane segments having the same relative angles in the as-built and as-

planned model, (b) normal vectors from as-built (yellow) and as-planned (green) 

models before rotation (c), the alignment of a pair of corresponding normal vectors 

after the first rotation, and (d) the aligned normal vectors of both models after the final 

rotation. 

In the next step, for the combinations that were withheld previously, the rotation 

matrices are determined in two phases. First, the first pair of normal vectors of the 

as-built and the as-planned models, as shown in Figure 2.5b, are aligned with each 

other by rotating the normal vector of the as-built model around the perpendicular 

axis, as shown in Figure 2.5c. Then, the other normal vectors of the as-built model 

are simultaneously aligned with their corresponding normal vectors by rotating them 

about the axis defined by the first rotated normal vector, as shown in Figure 2.5d. 



 

39 

The rotation is performed by the Rodriquez rotation formula, given in Equation (2), 

with an input of the axis of rotation (k) and angle (θ), given in Equation (3). 

𝑹(k, θ) = I + k sinθ + 𝑘2(1 − cosθ) (2) 

𝑘 ( 𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) = [

0 −𝑘𝑧 𝑘𝑦

𝑘𝑧 0 − 𝑘𝑥

−𝑘𝑦  𝑘𝑥 0
] (3) 

In the case of the occurrence of corresponding combinations with unique angles 

between their cluster directions, these clusters can automatically be regarded as 

being the clusters with matching plane segments. In this ideal scenario, the rotation 

matrix calculated from these corresponding clusters represents the correct 

orientation of the as-built model with the as-planned model. However, this ideal 

scenario seldom occurs, as most buildings have an orthogonal geometry with many 

parallel structural components. This reduces the number of possible distinct angles 

between plane clusters; hence, the number of possible rotation matrices 

(𝑹𝟏, 𝑹𝟐, … , 𝑹𝒓) increases substantially. Some rotations resulting from different 

combinations of the directions of the two models are shown in Figure 2.6. 

 

Figure 2.6. Example of a few rotation matrices and their respective rotational effect on 

the as-built model against the alignment of the as-planned model, obtained from 

different possible combinations by aligning the corresponding normal vectors of 

clustered segments from the as-built (yellow) and as-planned (green) models. 

2.3.4   Identifying the Most Likely Rotation Matrix and 
Translation Vector 

Only one of the calculated rotation matrices will lead to the correct orientation of 

the as-built to the as-planned model. To identify this most likely rotation matrix (and 

translation vector), a computational framework is proposed here based on the 

principles that if two models with a similar geometric structure are correctly oriented 

then: 

1. Matching plane segments between the two models should be parallel to 

each other. 

2. The translation between the models should be the same for all matching 

planar segments. 
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Figure 2.7 shows a few examples with different orientations of the as-built model 

relative to the as-planned model to depict how the direction and translation 

between the matching plane segments can be different if the models are not 

correctly aligned. Based on this, all the possible rotation matrices are evaluated to 

identify the rotation matrix offering the most likely alignment. The identification 

process is performed by assessing the individual plane segments of both models 

based on their directions and translations for each rotation matrix by computing a 

matching cost. The details of this calculation are explained below. 

(a) (b) (c) 

   

Figure 2.7. Visualization of the as-built model (yellow) corresponding to the as-

planned model (green), with an incorrect orientation (a,b) and correct orientation (c). 

The lines connecting the matching segments in all orientations represent the 

corresponding translation. 

For each rotation matrix, first a preliminary assessment of the directions of the plane 

segments from both models is performed to either discard the rotation matrix, 

because it is an unlikely candidate, or to continue by computing the total matching 

cost based on potential matching planes. The assessment workflow is shown in 

Figure 2.8. 

 

Figure 2.8. General workflow for the assessment of the plane segments for each 

rotation matrix. 
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2.3.4.1   Directional Assessment 
For each rotation matrix, all the plane segments from the as-built model are rotated, 

after which each rotated plane segment is paired with all the as-planned plane 

segments. For each pair, the angle between the planes is computed using their 

normal vector. Pairs of plane segments that are not parallel to each other are 

rejected, leaving only those pairs with parallel plane segments. If for the majority of 

the as-built plane segments no parallel plane segments from the as-planned model 

are found, it is obvious that this particular rotation matrix must be rejected from the 

list of possible matrices. If, on the other hand, the majority of as-built plane segments 

have several parallel plane segments in the as-planned model, then the rotation 

matrix is further scrutinized by considering the pairs of parallel plane segments in 

the corresponding models as the potential matching plane segments. By lowering 

the number of rotation matrices based on the directional scrutiny of plane segments, 

the overall computation time is reduced substantially. 

2.3.4.2   Translational Assessment 
Once a rotation matrix is accepted, a matching cost that combines the rotation with 

the most likely translation is computed. For a particular rotation matrix R, all possible 

translation vectors 𝒕𝑹
𝒊,𝒋 that map a centroid of a plane segment ‘i’ of the as-built 

model onto the centroid of a plane segment ‘j’ of the as-planned model are 

considered. Let 𝐶𝑖  and 𝐶𝑗  denote the centroids of these planes calculated from their 

bounding boxes earlier in stage 1. Provided the two planes are almost parallel after 

rotation, the translation vector 𝒕𝑹
𝒊,𝒋 for this pair is defined as: 

 𝒕𝑅
𝑖,𝑗 =  𝐶𝑗 −  𝑅𝐶𝑖            (4) 

The translation vectors determined between all the potential pairs of matching 

planes for dataset 1 are shown in Figure 2.9a. From this set of all possible translation 

vectors, the most likely translations are selected, as shown in Figure 2.9b. Because 

of noise in the as-built point cloud, the occlusions in some of the as-built plane 

segments, and small errors in the alignment, plane segments that are supposed to 

match may still define slightly different translations. Therefore, a minimization 

process is proposed by allocating a cost to each possible translation vector, which 

takes into account that some segments may be incomplete or not aligned correctly. 
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(a) (b) 

  

Figure 2.9. Representation of all the possible translation vectors 𝒕𝒊,𝒋, are shown with line 

colors indicating the parallel plane segments from the (a) potential matching planes and 

(b) matching planes. 

Depending on the translation, each plane segment from the as-built model may have 

more than one potential matching plane from the as-planned model. Therefore, the 

assumption is made that the most likely match is the one for which the distance 

between the centroids is minimal. Let 𝒕𝑹
𝒐 denote a possible translation and R 

represent one of the rotation matrices. For a particular plane segment ‘i’ from the 

as-built model, the most likely matching plane segment of the as-planned model is 

then j = argmin
𝑗

‖ 𝒕𝑹
𝒐  −  𝒕𝑹

𝒊,𝒋‖. That is, from all possible translation vectors that map 

the centroid of segment ‘i’ onto one of the centroids of the as-planned model, the 

one closest to the proposed translation 𝒕𝑹
𝒐 is chosen. The total matching cost, as a 

function of 𝒕𝑹
𝒐 and R, is then defined as: 

𝜎 ( 𝑡𝑅
𝑜) =

∑ (min
𝑗

‖ 𝒕𝑹
𝒐  −  𝒕𝑹

𝒊,𝒋‖
2
)

𝑚

𝑖=1

𝑚
 

(5) 

The most likely translation 𝒕𝑹
𝒐 for rotation matrix R is found by minimizing the above 

total matching cost over a finite set of translation vectors. To further simplify the 

computation, it is also assumed that the optimal translation vector 𝒕𝑹
𝒐 will be close 

to one of the translation vectors 𝒕𝑹
𝒊,𝒋: 

 𝒕𝑹
𝒐 ≈  𝒕𝑹

𝒑,𝒒 ∶    (𝑝, 𝑞) =  argmin
(𝑖,𝑗)

𝜎( 𝒕𝑹
𝒊,𝒋) (6) 
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Similarly, the most likely rotation matrix 𝑹𝒐 is also identified from a finite set of pre-

filtered rotation matrices. 

Hence, the matching cost ensures that the most likely rotation matrix, as compared 

to other matrices, is measuring the matching of all the corresponding plane 

segments of both models, as shown in Figure 2.10. Similarly, it also confirms the 

most likely translation is determined from the potential pair of matching plane 

segments that is offering the maximum overlap of all the matching plane segments, 

as shown in Figure 2.11. To further improve the registration, fine registration using 

ICP can be performed in the end, if required. 

(a) (b)  

 

 

(c)  (d)  

  

Figure 2.10. Visualization of the corresponding as-built model (yellow) relative to the as-

planned model (green) sorted with rotation matrices having matching costs(𝜎): a) 

𝜎(𝑡𝑅1
𝑜)=0.4304, (b) 𝜎(𝑡𝑅2

𝑜)=4.8754, (c) 𝜎(𝑡𝑅3
𝑜)=5.0401 and, (d) 𝜎(𝑡𝑅4

𝑜)=5.5786. 

  

 𝑹𝒐 = argmin
𝑹

𝜎( 𝒕𝑹
𝒐)          R ∈  {𝑹𝟏, 𝑹𝟐, 𝑹𝟑, … . . 𝑹𝒓}  (7) 
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(a) (b) (c) 

   

(d) (e) (f) 

   

Figure 2.11. Visualization of the corresponding models registered with different 

translation vectors computed from the pairs of the most likely matched plane segments 

sorted according to their matching costs(𝜎): (a) 𝜎(𝑡𝑅0
1)=0.4304, (𝐛) 𝜎(𝑡𝑅0

2)=0.4361, 

(𝐜) 𝜎(𝑡𝑅0
3)=0.4423, (𝐝) 𝜎(𝑡𝑅0

4)=0.4448, (𝐞) 𝜎(𝑡𝑅0
5)=0.4783 and, (𝐟) 𝜎(𝑡𝑅0

6)=0.5874. 

2.4   Results 
The proposed method was validated by tests on different datasets, including both 

simulated and real-life datasets that were different from each other in terms of their 

architectural shape, the number of planes, and the number of 3D points in their as-

built model. The simulated data were used to validate the theoretical framework, 

while the real-life datasets helped in understanding the practical difficulties and 

limitations of the proposed method in real building projects. 

For the simulated datasets (S1, S2, and S3), the as-built model was derived from the 

as-planned model with random transformation. The registration of the as-built 

model with its original model allowed us to analyze the proposed method without 

any influence of factors including noise, outliers, or missing information. The real-life 

case studies (datasets R1, R2, and R3) were carried out to test the validity of the 

proposed method using laser scan data for the as-built model together with the BIM 

model of the same existing building.  
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Table 2.1. Details of simulated datasets. 

 Dataset S1 Dataset S2 Dataset S3 Dataset R1 Dataset R2 Dataset R3 

3D view of 

as-built 

model 
 

 

 

 

 

 

Dimensions 

from top 

view (m) 
 

 

  
  

Height (m) 3 27 9 2.55 5.21 14.6 

Area per 

floor (m2) 
69 

Each floor: 

39.2 

1st and 2nd 

floor: 56 

3rd floor: 

38.8 

18.7 84.2 

1st, 2nd, and 

3rd floor: 

200 

4th floor:  

75 

No. of 

plane 

segments 

9 14 9 6 6 10 

No. of 3D 

points in 

the as-built 

model 

1,000,006 2,485,913 1,364,741 79,537,667 3,580,303 64,773,370 

The real-life dataset R1 represents a point cloud scan of office space acquired using 

a Faro Focus 120 scanner. It comprises around seventy nine million 3D points and 

includes six plane segments structurally. Similarly, dataset R2 constitute an indoor 

point cloud scan, acquired by laser scanner, capturing the architectural details of a 

building hall with a distinctive gabled roof structure. It contains nearly 3.5 million 3D 

points, covering an area of 84.2 square meters per floor, and features six plane 

segments. The last dataset R3 is a point cloud scan of four-storey structure captured 
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with terrestrial laser scanner. A comprehensive collection effort involving 53 scans 

yielded a densely populated dataset exceeding 500 million points. This dataset has 

previously been utilized in studies referenced as [75,76]. The geometric details of all 

the datasets are presented in Table 2.1, and the real-life datasets R1, R2, and R3 are 

shown in more detail in Figure 2.12. 

 As-Planned Model As-Built Model 

Dataset 

R1 

  

Dataset 

R2 

  

Dataset 

R3 

 
 

Figure 2.12. Visualization of BIM (as-planned model) and scan (as-built model) from 

dataset R1, R2, and R3. 

All the datasets, both simulated and real, were successfully registered using the 

proposed method. Figure 2.13 shows the registration results for all the datasets, 
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while the respective processing details of the registration are listed in Table 2.2. The 

reported results were obtained by initially down-sampling the as-built cloud points 

during preprocessing using a voxel size of 0.2 m. Similarly, plane segmentation was 

performed using RANSAC with the number of iterations limited to 3000. 

Furthermore, because the directions of the plane segments can be slightly faulty due 

to the presence of noise in the point cloud, a suitable tolerance level according to 

the datasets was set for the normal values of plane segments during the process of 

clustering to determine the directions of clustered plane segments. All the 

processing was conducted on a laptop with an Intel i7-8850H CPU with 16 GB RAM 

and the proposed method was implemented in the Python language. The proposed 

method was further analyzed in terms of processing time and accuracy to evaluate 

its performance and explore its limitations. 

(a)  (b)  

 

 

(c)  (d)  

 
 

(e)  (f)  
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Figure 2.13. Visualization of the registered as-built (yellow) and as-planned (green) 

models of (a) dataset S1, (b) dataset S2, (c) dataset S3, (d) dataset R1, (e) dataset R2 and, 

(f) dataset R3. 

Table 2.2. Registration details of all the datasets, including the computation of the 

correct rotation matrix and identical translation. 

Dataset No. 
Dataset 

S1 
Dataset 

S2 
Dataset 

S3 
Dataset 

R1 
Dataset 

R2 
Dataset 

R3 

No. of plane segments  9 14 9 6 6 10 

No. of directions from plane 
segment clusters 

3 3 5 3 4 4 

Processing time (s) 3.18 47.43 15.48 3.96 5.01 23.92 

RMSE (mm) 7.186 9.278 8.792 18.119 23.205 17.781 

M
at

ch
in

g 
co

st
 

(𝜎
) 

According 
to each 
possible 
rotation 
(𝑅1, 𝑅2,  

𝑅3, … . 𝑅𝑟)  

𝝈 ( 𝒕𝑹𝟏
𝒐) 0.430 1.787 0.825 2.214 1.866 3.471 

𝜎 ( 𝑡𝑅2
𝑜) 4.875 15.984 3.588 4.742 4.053 8.281 

𝜎 ( 𝑡𝑅3
𝑜) 5.040 20.721 4.350 4.985 5.095 16.335 

𝜎 ( 𝑡𝑅4
𝑜) 5.578 21.571 4.522 5.383 7.047 19.784 

According 
to the 

translation 
of 

matching 
plane 

segments 

𝝈 ( 𝒕𝑹𝟎
𝟏) 0.430 1.787 0.825 2.214 1.866 3.471 

𝜎 ( 𝑡𝑅0
2) 0.436 1.795 0.825 2.235 1.876 3.503 

𝜎 ( 𝑡𝑅0
3) 0.442 1.797 0.830 2.290 2.090 3.571 

𝜎 ( 𝑡𝑅0
4) 0.444 1.800 0.855 2.477 2.364 3.864 
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2.5   Discussion 

2.5.1   Time Efficiency 
The time efficiency of the proposed technique was analyzed in detail. First, the effect 

of voxel size on processing time was examined. Generally, a decrease in voxel size 

increased the size of the point cloud, which in turn increased the processing time. 

However, an increase in voxel size induces a loss of detail, leading to a possible 

decrease in the registration accuracy. Hence, a compromise must be found. 

Therefore, the processing time of the different processing stages (illustrated in 

Figure 2.14), as well as the overall registration accuracy, were analyzed with a range 

of different voxel sizes for dataset S1. The results are shown in Figure 2.14, where it 

can be observed that the overall processing time of the method significantly 

increased once the voxel size was lowered to 0.1m. The time complexity of the 

proposed technique is 𝑂(log 𝑛), where 𝑛 equals the voxel size in a grid. When the 

computation time was analyzed per processing stage, it was clear that the overall 

processing time was not affected by stage 2, while the processing time of stage 3 

increased approximately linearly with a decreasing voxel size, and the computation 

time in stage 1 increased significantly once the voxel size dropped under 0.1 m. This 

major increment in computation can be attributed to the plane segmentation of the 

as-built point cloud that is performed using RANSAC segmentation, which estimates 

the plane from the voxelized points in numerous iterations. Therefore, the voxel size 

should be chosen to be between 0.1 m and 0.5 m to ensure the success of the 

proposed method and limit the significant increment in processing time. 

To gain insight into the influence of different parameters on the computation time, 

the overall processing time of all the datasets was further analyzed at a voxel size of 

0.2 m, as shown in Table 2.3. As could be expected, the total number of plane 

segments was the determining factor influencing the processing time in stages one 

and three. 

 

Figure 2.14. Graph indicating the processing time and RMSE at different voxel sizes 

ranging from 0.01 to 0.5 m for dataset 1. 
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Table 2.3. Details concerning the processing time and accuracy error according to 

each dataset. 

Dataset 
No. 

Processing Time Error 

Step 1 

(s) 

Step 2 

(s) 

Step 3 

(s) 

Total Time 

(s) 

RMSE 

(mm) 

 𝛜𝐑 

(°) 

 𝛜𝒕 

(mm) 

Dataset S1 0.52 0.08 2.58 3.18 7.186 0.007 29.164 

Dataset S2 7.19 0.07 40.17 47.43 9.278 0.007 40.961 

Dataset S3 2.99 0.09 12.40 15.48 8.792 0.005 35.385 

Dataset R1 3.23 0.07 0.39 3.69 18.119 0.027 94.267 

Dataset R2 1.82 0.08 3.11 5.01 23.205 0.020 190.482 

Dataset R3 8.1 0.08 15.74 23.92 17.781 0.021 107.142 

As the proposed method processes the as-planned model from BIM directly into the 

triangulated mesh instead of the point cloud, the total processing time of the 

proposed technique was also analyzed by processing the as-planned model in both 

triangulated mesh and point cloud form. It was found that extracting the geometric 

parameters directly from the triangulated mesh of the as-planned model instead of 

converting it into a point cloud had a positive impact on the overall computation time, as 

shown in Figure 2.15. This is due to the fact that the required plane parameters (such as 

the normal of a plane) can be extracted directly from the mesh model, while in the case 

of the point cloud, these parameters are calculated from the 3D points of plane 

segments, which increases the processing time. 

 

Figure 2.15. Comparison of computation time of the proposed technique when the as-

planned model is processed in a mesh form (left) vs. a point cloud form (right). 
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2.5.2   Registration Accuracy 
The accuracy of the proposed method was evaluated by comparing the 
transformed as-built model to the ground truth model. The ground truth model is 

the as-planned model and the fine registered as-built model for simulated and real-

life datasets, respectively. According to Figure 2.14, the voxel size did not the 

registration accuracy in terms of RMSE. As the root mean square error (RMSE) is not 

only an effective indicator of registration accuracy [34], the rotation error (in 

degrees) and translation error (in mm) for each dataset were also calculated, using 

Equations (8) and (9), respectively. 

In Equation (8), 𝜃𝑇and 𝜃𝐺𝑇and denote the respective quaternion rotation angles of 

the transformed model and the ground truth, whereas 𝒕𝑻 and 𝒕𝑮𝑻 represent the 

respective translation vectors of the transformed model and the ground truth in 

Equation (13). The results of the evaluation metrics are listed in Table 2.3; they 

indicate a good accuracy of the proposed method, however this does not mean that 

the method has relatively higher accuracy over other methods. This is because the 

proposed method is a coarse registration method that aims to roughly align the 

models. The registration accuracy of these rough aligned models are later achieved 

through fine registration techniques such as ICP. From the results, it is evident that 

building structures with an overall simple geometry and fewer planes had relatively 

higher accuracy. The accuracy in terms of rotation was high in all datasets. This is 

inherent to the proposed method due to the accurate normal values of plane segments. 

The normal values of plane segments obtained from the mesh surfaces in the as-planned 

model are error-free, and the normal values from the as-built model are determined 

through RANSAC plane estimation with a high iteration value. Furthermore, the 

proposed method computes the weighted average for parallel segments to ensure a 

minimal influence of inaccurately extracted normal values, if any. 

It should be noted that the proposed method depends on plane segments extracted 

randomly from the as-built model by means of RANSAC plane estimation, and the 

registration parameters may change slightly each time the proposed method is 

applied, thus also slightly impacting the resulting registration accuracy. However, 

these minor changes can be covered by fine registration through an ICP algorithm, if 

required.  

2.5.3   Effect of Noise and Occlusion 
The effect of noise on the success ratio along with different voxel sizes was also 

analyzed. It was observed that the voxel size influenced the planar segmentation 

stage in the proposed method, as a greater voxel size decreased the number of 3D 

 ϵR = |𝜃𝐺𝑇 − 𝜃𝑇| (8) 

 ϵt = || 𝒕𝑮𝑻 − 𝒕𝑻 || (9) 
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points in the model. If the amount of 3D points is too low, the planar segmentation 

may extract inaccurate plane segments from the model, which affects the results of 

the proposed technique. The presence of noise in the point cloud may hinder the 

detection of plane segments, thus also attributing to the possible failure of the 

proposed technique, although this can be solved by decreasing the voxel size. Table 

2.4 illustrates different point cloud models of dataset 1 having Gaussian noise with 

a variance of zero and a standard deviation ranging from 0 to 0.15. Planar 

segmentation was performed on these point clouds after down-sampling them with 

voxel sizes from 0.01 to 0.37 m. It was evident that a higher voxel size enabled the 

extraction of accurate plane segments, even in the presence of strong noise, for the 

success of the proposed method. 

Table 2.4. Segmented as-built point cloud with different noise levels and voxel sizes. 
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2.5.4   Application on Partially Constructed Buildings 
To investigate the registration success of partially constructed as-built models with 

their as-planned model for automated construction progress monitoring, the 

proposed method was evaluated using as-built models with different combinations 

of missing planes simulating different stages of completion. During testing, it was 

found that the proposed method worked successfully if the necessary conditions 

were met. These conditions include: (i) as-built models with an overall 
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unsymmetrical structure should have at least three planes in distinct directions and 

(ii) the size of most plane segments should correspond highly to their matching 

segments in the as-planned model. The presence of at least three planes in distinct 

directions assures that the correct rotation matrix will be calculated in the second 

stage along with other possible rotation matrices. Similarly, matching plane 

segments with high geometrical correspondence improve the identification of 

matching plane segments in the third stage. 

Generally, the building models met these two conditions, and even a scan of a small 

typical building had plane segments in three distinct directions with a point cloud 

covering the walls for the most part. In the worst scenario, with a major missing part 

in the point clouds, the registration can further be improved through ICP registration. 

Figure 2.16 shows an example of a modified simulated model of dataset 1 with an 

as-planned model (Figure 2.16a) and an as-built model (Figure 2.16b) with just three 

plane segments that were successfully registered through the proposed method. In 

this example, all three plane segments of the as-planned model had different 

directions and were identical in size to their corresponding segments. Similarly, it is 

also evident that the proposed method accurately calculated the translation based 

on matching planes even if the major part of the model was missing, as compared to 

the traditional technique based on the centroid of whole models, as shown in Figure 

2.16c,d. 

 

Figure 2.16. Visualization of (a) complete as-planned model, (b) incomplete as-built 

model with only three plane segments in distinct directions, (c) registered model using 

translation computed from the centroid of matched segments, and (d) registered 

model using translation computed from the centroid difference of the complete point 

cloud. 

2.5.5   Registration of as-builts scans with other scans of same 
model 

Apart from testing the six datasets, another real life dataset having occlusions was 

also tested to analyze the occlusion effect on the proposed method. This new dataset 

represents a large furnished room with both scan models, instead of scan and BIM, 

having intense occlusions in their point clouds. Both of the scan models in the 

dataset were collected with different position in the presence of numerous objects, 

as the missing points as clearly evident in Figure 2.17. Although the overall research 

is focused on registration of as-built model (scan) with their corresponding as-

planned model, however this new dataset as opposed contain both as-built models 
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and tested only to confirm the reliability of proposed plane-based method at higher 

difficulty. Both the scan models contain plane models but highly affected due to 

different errors. 

 
 
 
 
 

(a) 

 

.  
 
 
 
 

(b) 

 

 

Figure 2.17. Visualization of point cloud in different views from (a) scan model 1, and 

(b) scan model 2. 

Normally, the occlusion in the point cloud affects the centroid due to the unequal 

distribution of 3D points. Therefore, it can also influence the proposed method due 

to its dependence on centroid during translation assessment. The results 

demonstrate that the proposed method successfully registered the highly occluded 

scan models by diminishing the effect of occlusions. The underlying reason for the 

precise registration can be attributed to the fact that the proposed method 

calculates the centroids of plane segments from scan model that are calculated from 

their bounding boxes, instead of their individual point clouds, to get more accurate 

registration as evident in Figure 2.18a and Figure 2.18b. Similarly, the registration 

results of the proposed method, as shown in Figure 2.18b, are later refined with ICP 

registration, as shown in Figure 2.18c, which validates that the results of the 

proposed method are accurate enough for fine registration. 
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(a) 

 

 

 
    

(b) 

 

 

 
 

(c) 

 

 

 
 

Figure 2.18. Visualization of registered scans in three different views after applying 

the (a) proposed method with the centroid of plane segments calculated from point 

clouds (b) proposed method (c) proposed method and then fine registration 

2.5.6   Limitation 
As emphasized frequently, the proposed method is totally dependent on extracted 
plane segments. These plane segments are obtained through a RANSAC-based plane 
segmentation technique that computes the same parameters but ends up with 
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different plane parameters every time. Hence, the plane parameters may change 
slightly which also affects the registration accuracy. In the worst case, it is also 
possible that the incorrect plane segments may be extracted, as shown in Figure 2.19 
which will eventually affect the success of the proposed method leading it to the 
failure. The estimation of incorrect plane segments may occur due to numerous 
reasons including complex point cloud model, improper segmentation parameters, 
and the segmentation technique itself. This limitation was very much evident in the 
case of dataset R4 (Figure 2.19b) that contains most plane segments which are 
located very close to each other along with the presence of  intense noise and 
occlusion, eventually leading to difficulty in obtaining accurate plane segments. The 
registration success was only achieved in this case after the successful extraction of 
plane segments from the model. It is worth mentioning here that the current 
research focuses on the novel utilization of plane segments to obtain successful 
registration, however, the way these plane segments are obtained is out of scope.  

(a) (b) 

 

  

Figure 2.19. An example visualization the incorrect plane segments extracted in 

different colors from as-built point cloud of (a) dataset R1 and, (b) dataset R3. 

2.6   Conclusions 
Construction project monitoring includes the registration of as-built models with 

their as-planned model followed by the analysis of the aligned models to infer 

progress information. Normally, the registration process involves two steps: (1) 

coarse registration, in which both models are almost aligned to each other, and (2) 

fine registration, which involves an improvement of the coarse registration and 

augments the registration accuracy. This research presented in the current chapter 

addressed the coarse registration problem in detail and proposed a new automated 

method to align the as-built and as-planned building models using their geometric 

features in a highly robust and accurate way. Most building structures have an 

orthogonal geometry that consists primarily of plane segments. The extraction of 

these planar features is only slightly affected by the presence of noise or minor 

outliers; therefore, the proposed technique employs these features for the 

automated registration of building models for project monitoring. The technique 
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first utilizes the directions of the planes from the building models to determine the 

possible rotations for the registration. Then, it measures the matching between all 

the plane segments to recognize the rotation with the best match. Consequently, the 

translation is calculated from the best-matched plane segments. Along with the 

transformation parameters, the proposed method also has the ability to identify the 

matching plane segments between corresponding models. The identification of 

plane segments, representing the building components, can further aid in their 

individual inspection during project monitoring. 

Experimentation was performed on building datasets with different geometries to 

evaluate the performance of the proposed method. The results demonstrated that 

the proposed method successfully registered all the building models with a high 

rotation and translation accuracy in a fully automated way. The presence of noise or 

occlusions only slightly affected the success of registration. The proposed method 

also proved to be robust in terms of computation time; however, the processing time 

was highly dependent on the number of plane segments. 

Overall, the proposed method in this chapter exhibits reliable results for both 

complete and incomplete buildings, which makes it useful for progress monitoring 

as long as at least three identical plane segments with distinct directions are present 

in both models. From the perspective of construction management, the automated 

registration of scan models of partially completed as-built situations with their BIM 

model is a big step forward in the development of an automated system for project 

monitoring. Further research is necessary to enhance the applicability of the 

proposed method in complex buildings with a high number of planes and/or curved 

elements. 
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Abstract 
 

Progress monitoring is an essential part of large construction projects. As manual 

progress monitoring is time-consuming, the need for automation emerges, 

especially as, nowadays, BIM for the design of buildings and laser scanning for 

capturing the as-built situation have become well adopted. However, to be able to 

compare the as-built model obtained by laser scanning to BIM design, both models 

need to use the same reference system, which often is not the case. Transforming 

the coordinate system of the as-built model into the BIM model is a specialist process 

that is pre-requisite in automated construction progress monitoring. The research 

described in this chapter is aimed at the automation of this so-called registration 

process and is based on the dominant planar geometry of most buildings with 

evident corner points in their structures. After extracting these corner points from 

both the as-built and the design model, a RANSAC-based pairwise assessment of the 

points is performed to identify potential matching points in both models using 

different discriminative geometric invariants. Next, the transformation for the 

potential matches is evaluated to find all the matching points. In the end, the most 

accurate transformation parameter is determined from the individual 

transformation parameters of all the matching corner points. The proposed method 

was tested and validated with a range of both simulated and real-life datasets. In all 

the case studies including the simulated and real-life datasets, the registration was 

successful and accurate. Furthermore, the method allows for the registration of the 

as-built models of incomplete buildings, which is essential for effective construction 

progress monitoring. As the method uses the standard IFC schema for data exchange 

with BIM, there is no loss of geometrical information caused by data conversions and 

it supports the complete automation of the progress-monitoring process. The 

current chapter also compare the proposed method (detailed in current chapter) 

with the plane-based registration method (provided in previous chapter) and 

describes their merits and de-merits in the end. 

Keywords: BIM, point cloud, registration, buildings, automated, IFC, corner 
points. 
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3.1   Introduction 
The accurate and efficient progress monitoring of under-construction buildings is a 

prerequisite for effective project management [1–5]. Current methods of progress 

monitoring are based on manual measurements and extensive processing 

performed by construction staff. The manual process with a dominant human 

presence consumes a lot of time and labor and can lead to inaccurate or missing 

information; therefore, accurate automated alternatives should be pushed forward 

[6–8]. 

Recently, several studies have been performed on automated progress monitoring 

through a model-based assessment where the as-built model of the building is 

compared with its as-planned model [1]. A three-dimensional (3D) point cloud of the 

building, acquired through reconstruction technologies such as laser scanning, 

image-based reconstruction, or the integration of both, represents the as-built 

model. This model is compared to its design state (as-planned model) in a suitable 

format that is usually obtained from a Building Information Model (BIM), a rich digital 

representation of the building comprising the 3D geometrical and semantic 

information [5]. The comparison of the as-built and as-planned model, termed 

“Scan-vs-BIM”, enables the accurate automated progress monitoring of buildings [1]. 

However, effective progress monitoring using Scan-vs-BIM requires an accurate 

alignment through a fundamental task of registration [9]. 

Registration is an active research area, with most efforts focused on the alignment 

of point clouds and less on the alignment of point clouds with BIM. In the latter case, 

BIM can be converted into a point cloud or some other suitable format like a mesh, 

although the conversion process can result in loss of geometrical details. The 

registration problem involves finding the rigid rotation and translation 

transformation parameters to overlap the as-built model onto the as-planned model. 

Normally, a coarse-to-fine strategy is applied in which coarse (or global) registration 

procedure is initially applied to obtain the approximate overlapping of the models, 

followed by a fine registration procedure using the iterative closest point (ICP) 

algorithm to improve the initial coarse registration. The results of the fine 

registration are highly dependent on the success of the coarse registration; hence, 

this first registration step requires a lot of attention. In this coarse registration, the 

extraction of geometric features and identifying their match are the critical steps. 

The features can be either points or primitives such as lines, planes, and curves. 

Furthermore, the application of registration methods can also be limited to specific 

scenarios based on their approach [10]. As a lot of building structures are dominated 

by planar features, approaches utilizing the planar features can be considered a 

suitable solution for registration. Methods employing the planar features are 

primarily dependent only on plane parameters, contrary to complete point clouds, 

and this makes them more robust in identifying their matching and less affected by 

outliers [10,11]. However, the identification of matching planes in these methods is 
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highly challenging [10,12–15]. Therefore, a plane-based method is required that infers 

the discriminative information from buildings to differentiate the matching features for 

registration. 

Apart from registration, another challenge faced in Scan-vs-BIM is the direct 

extraction of geometrical details from BIM as an as-planned model. After the 

registration process, the aligned models are compared in Scan-vs-BIM to infer the 

progress information. Later, the progress information needs to be updated into a 

suitable catalog that can be later utilized in schedule planning, continuous updating 

of progress information, visualization, and communication of as-built progress [16]. 

To effectively perform these tasks, BIM integration with the construction schedule is 

required. Few researchers manually performed the exchange of progress 

information using software solutions, against the notion of automated progress 

monitoring [5,17–19]. In contrast, some studies performed the automated updating 

of progress data in BIM by directly accessing the relevant information using an 

Industry foundation classes (IFC)-based BIM [16,20]. IFC is a no-proprietary file 

exchange format for BIMs that provides a common solution to exchange intense 

information between stakeholders. The application of IFC-based BIMs in Scan-vs-BIM 

ensures a consistent information format and facilitates the thorough automation of 

all stages of progress monitoring, including registration. However, there is no 

registration attempt that directly utilizes the IFC-based BIM as an as-planned model. 

This demands a registration method that, instead of manually converting BIM into 

another format before use, directly extracts the geometrical information from BIM 

in an automated way. 

The corner points, corresponding to three intersecting planes, are identifiable 3D 

points in the Euclidean scale. These corner points can be exploited for geometric 

invariants for matching to compute the transformation for building models. The 

current research detailed in the current chapter proposes a novel registration 

technique that makes use of the distinct corner points defined as the intersection 

points of three intersecting planes extracted from the model. A series of geometric 

discriminative invariants are used as matching constraints to prune the corner points 

in combination with the semantic information of their parent plane to find an 

accurate match. The method is made robust by applying Random Sample Consensus 

(RANSAC) during the initial identification of matching pairs to solve the combinatorial 

problem and then clustering the potential matching points with similar 

transformations. Similarly, the method also identifies the most optimal transformation 

from the clustered matched corner points. Another contribution of the current research 

is that it translates the geometrical information directly from the IFC-based BIM during 

the processing. 

In Section 3.2, related works on registration, particularly on features-based 

registration, are reviewed to gain an insight into the problem. Section 3.3 details the 

stages of the proposed methodology. Experimentation results with simulated and 
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real-life datasets followed by a discussion are presented in Section 3.4. Finally, the 

conclusions are outlined in Section 3.5.  

It is important to mention here that the detailed literature review focused on studies 

related to plane-based structural features is already elaborated in the previous 

chapter (Section 2.2). The literature discussed in the current chapter focuses on 

other aspects, challenges, and studies that are more related to point-based features. 

3.2   Related Work 
Registration is a widely studied research problem with the aim to align datasets in a 

common coordinate system. Registration methods often apply a coarse-to-fine 

strategy where an initial alignment is obtained by a coarse registration, after which 

it is improved by fine registration algorithms. [21] The quality of the course 

registration determines the success of the fine registration [21], which is mostly 

obtained by means of the well-established ICP algorithm [22] and its variants [23–

25] or the normal distribution transformation (NDT) and its variants [26–29]. Hence, 

coarse registration remains the area of greater challenge, with numerous studies 

attempting to address this challenge. 

Generally, the coarse registration method involves extracting geometric features 

from models and then identifying the matching features between them to compute 

the transformation. The main idea is that, instead of using all the 3D points in the 

models, the selection of key points or primitives formed by the points as a distinct 

feature is established for computational relief and improved matching [30]. The 

features are based on geometric characteristics such as fast point feature histograms 

(FPFHs) [31], semantic feature lines [32], intersecting lines [33], planes [34], curves 

[35], patches [36], or adaptive covariance [37]. Similarly, the identification of 

matching features is performed through different techniques including Random 

sample consensus (RANSAC) [38], inliers search [39], fast-matching pruning (FMP) 

[40], geometric consistency constraints [41], and non-cooperative game [37]. The 

approach of the feature-based registration method is widely adopted due to the 

practical effectiveness of geometric characteristics in various scenes. Approaches 

based on point features such as scale-invariant feature transform (SIFT) key points 

[42,43], virtual intersection points [12], Difference-of-Guassian (DoG) points [44], 

FPFH key points [45], SURF key points [46], and semantic feature points [32,47] have 

registered the point clouds, but their success is sensitive to noise and varying point 

density. Furthermore, they are inefficient in the case of large datasets [13]. In 

contrast to the point-based features, approaches that use primitives such as lines, 

planes, and curved surfaces as features are more robust in identifying the features 

that can be matched [30]. Some studies used line features such as a linear invariant 

[48,49], the intersection of neighboring planes [33], and the footprint from a building 

[50] for registration. Similarly, curved surfaces [36,51] are also reported to be used 

as matching features. Additionally, a plane surface as a geometric feature for 
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matching has also been studied by numerous researchers [9,11,13,34,52–55]. These 

plane-feature-based approaches fail in rural landscapes, but they can achieve good 

performance in urban infrastructures as urban structures have plenty of these 

features [21]. 

Buildings in particular have abundant planar features that can be extracted for 

registration. The registration approaches with plane features primarily process the 

plane parameters, instead of complete point clouds, to reduce the computation 

time. Furthermore, these approaches are less affected by the outliers; hence, the 

accuracy can be increased [11]. The efficiency of these approaches also depends on 

the quality of the extracted planes. The extraction of planes from a point cloud can 

be performed with segmentation techniques such as RANSAC segmentation [56–58], 

region growing [59], Hough transform [60], dynamic clustering [55], and voxel-based 

growing[13]. Generally, high numbers of similar planar surfaces extracted from the 

large-scale point clouds increases the difficulty in identifying matching plane 

segments. Additionally, the lack of discriminative geometric primitives and distinct 

invariants remains a challenge for reliable identification of matching pairs. 

Consequently, some authors manually identify matching planes [14], although 

research efforts to automate this process are emerging. He, Ma, and Zha [15] 

performed the matching of complete plane patches through interpretation trees 

where the area, normal angles, and centroid were used for tree pruning. Although 

the computation complexity was reduced, employing only complete planes lowered 

the probability of determining the correct transformation because of varying overlap 

and occlusion conditions. Pavan and dos Santos [61] introduced the non-iterative 

global refinement step utilizing the local consistency of the plane. The identification 

of matching planes uses the plane similarity properties and the geometric constraint 

formed by the surfaces of planes. This method exploits the properties of quaternions 

to place the rotation matrices into the same coordinate system. Similarly, the use of 

4-plane congruent sets (4-PCS), which inputs the pair of planar patches from 

voxelized point clouds to finds their matching, is proposed [30]. Furthermore, many 

studies have attempted to solve the registration problem using geometric 

information obtained from the combination of three planes. For example, Dol and 

Brenner [52] conducted a search process with a triple product of plane normals to 

find their matching pairs with acceptable results. The number of combinations in the 

matching process was reduced using geometrical constraints such as area, boundary 

length, bounding box, and mean intensity values. However, the related practical 

details were not published [10]. Similarly, Brenner, et al. [62] used the intersecting 

angles formed by three planes for matching as geometrical constraints. Theiler and 

Schindler [12] tackled the correspondence problem by identifying the matching 

virtual tie points of three planes with the assistance of specialized descriptors 

(intersection quality, angles, smoothness, segment extent) to describe the 

geometrical characteristics of the planes. The distance between the tie points was 

employed as the matching constraint and a specific threshold was introduced to limit 



 

69 

the number of compatible candidates and reduce the exponential complexity. This 

method is not reliable, as additional virtual tie points at symmetrical distances can 

be obtained for planes that are not physically intersecting or are located near to each 

other, in which case the distance constraint is not enough to differentiate them. In 

addition, the success rate is also sensitive to high noise and occlusions. The matching 

problem was also approached through the utilization of three planes, in which the 

coordinate frame was estimated from the set of normal planes obtained from 

randomly selected non-parallel planar patches [13]. This method adopted the 

RANSAC-based strategy where transformation parameters from the coordinate 

frame of potential matching patches are computed and then assessed according to 

the number of coplanar patches. The parameter with the highest number of coplanar 

patches is considered the final transformation parameter. This method considers all 

tie points from planar patches of both models as their potential matching pairs 

without any initial scrutiny and applies the RANSAC-based selection that may not 

always select the matching points. Furthermore, the application of coplanar criteria 

as the only matching constraint may result from the incorrect transformation in 

datasets with many parallel planes. Morever, Li, Gao, Wang, and Li [55] proposed an 

automated registration method to identify matching planes using only the relative 

angles of three planes with two strategies. The first strategy finds the potential 

correspondence for those three planes intersecting at one point with different 

relative angles with each other and the second strategy finds the correspondence 

for three planes having at least one perpendicular relative angle. The matching 

constraint marks the method as unreliable, as employing only angle constraints limits 

the practicality if there are a high number of planes. Kim, et al. [63] proposed to use 

a plane-matching algorithm in which three plane correspondences are identified by 

comparing their normal vectors. The rotation is computed from the identified 

corresponding planes and the translation is determined from the tie point of the 

corresponding planes. The method uses plane matching as an alternative if the 

primary method doesn’t find sufficient initial alignment based on extracted common 

features from the RGB-fused point cloud. Similarly, the identification of matching 

planes is not explained nor is any evaluation performed to verify the transformation. 

Apart from the limitations of all these mentioned methods, none of them performed 

the registration from the perspective of construction progress monitoring in which 

the as-built point cloud is registered with its as-planned BIM model. 

In studies focused on Scan-vs-BIM, Kim, et al. [64] proposed an automated method 

in which the 3D CAD model of a building converted into a point cloud is used as an 

as-planned model to register it with an as-built point cloud obtained from the 

construction site using a coarse-to-fine strategy. The coarse registration was 

performed with Principal component analysis (PCA) [65] with rotation determined 

from the bases formed by principal components of both models while the translation 

was computed from the centroids of the models. This method is not applicable in 

real-life scenarios involving occlusion, noise, or missing data as the method assumes 
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that the principal components of both models have the same direction and centroid, 

which is only possible if both models are duplicates. Recently, Bueno, Bosché, 

González-Jorge, Martínez-Sánchez, and Arias [9] performed Scan-vs-BIM registration 

in planar patches extracted from the as-built point cloud and BIM converted mesh 

model that were processed as 4-PCS to compute the possible transformation. The 

transformation was later evaluated using plane and centroid support. In the end, 

top-five ranked transformations are obtained, instead of top-only, based on the 

challenge that the presence of extreme self-similarity and symmetry in building 

structures can lead to several incorrect transformations. Although the correct 

transformation for the given simulated datasets was ranked first, the method ranked 

the correct transformation in second place for provided real datasets. Hence, none 

of these methods proved to be reliable in the construction environment. 

Nevertheless, registration methods involving Scan-vs-BIM may have mentioned BIM 

or CAD model but none of them directly extracted the geometrical information from 

them because all of them converted the model into a point cloud or mesh for 

compatible processing. Recently, Sheik, et al. [66] performed the registration of 

building models (Scan-vs-BIM) in which the geometrical parameters from the plane 

segments were processed through a rotational and translational assessment using a 

minimization process. Their method was able to successfully perform the 

registration for the partially built building models provided the minimum of three 

matching plane segments with distinct directions were present in both models. This 

chapter proposes an improved method that focuses on the utilization of corner 

points to perform the accurate registration of the scan model of the partially built 

building acquired from a construction site with its corresponding IFC-based BIM 

model. 

In automated progress monitoring with Scan-vs-BIM, the aligned models are 

compared to infer the as-built progress information that ultimately needs to be 

updated in BIM. This demands the utilization of IFC-based BIMs as the common 

solution to allow exchange of information including the geometrical information of 

the as-planned model (before registration) and the communication of progress 

information (after registration). IFC is a platform-neutral and open data file exchange 

format for BIMs. This non-proprietary format, introduced by BuildingSMART 

International Ltd. (Camberly, UK) [67], allows the collaborative and interoperable use 

of BIMs at various stages of building projects between different stakeholders. Its 

applications include schedule planning, continuous updating of progress 

information, visualization, and communication of as-built progress [16,17,20]. There 

are some attempts that performed the IFC-based BIM updating using proprietary 

software such as Synchro [68] and Vico Office [69] by manually inputting the required 

information [5,17–19]. However, in compliance with automation, some efforts 

performed the direct exchange of progress information to the IFC-based BIM using 

the IFC schema. For example, Hamledari, McCabe, Davari, and Shahi [16] developed 

a method to update the progress information into IFC2X3 BIM by modifying the 
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schedule hierarchy, updating the progress ratios, and then color-coding the building 

elements. Apart from IFC support for schedules, other progress information such as 

facility inspection data including as-built details, images, notes, and changes were 

also reported to be updated in the IFC-based BIM [20]. Although these studies 

employed the IFC-based BIM to update progress information, its utilization as an as-

planned model by accessing the 3D geometrical information using the standard IFC 

schema for registration still needs to be explored. 

3.3   Methodology 

3.3.1   Overview 
Building structures have evident corners due to the dominant planar structures, such 

as walls, roofs, etc., in their geometry. The study detailed in this chapter 3, a corner 

point is defined as the intersection point of three plane segments, referred to as 

parent plane segments. Similar to the Cartesian points in the 3D Euclidean space, the 

geometrical information of these corner points, along with their parent plane 

segments, follows the geometric invariants; hence, they can be employed for 

geometrical computations. 

The proposed method in this chapter employs corner points as points of interest to 

solve the registration problem of the building scan with its BIM model. The method 

can be divided in four consecutive stages: (1) extraction of the corner points from 

both models, (2) identification of the potential matching corner points through 

geometric invariants, (3) evaluation of the transformations of potential matching 

corner points, and (4) calculation of the most optimal transformation. Overall 

Methodology of the proposed method is also presented in Appendix 1. 

3.3.2   Extracting Corner Points 
The corner points are extracted from both models using their plane segments. 

However, the models may not be in their best form to obtain the plane segments 

from them; therefore, pre-processing might be necessary. 

The as-built model obtained by laser scanning can contain millions of unevenly 

distributed points contaminated with noise and occlusions. Huge number of points 

will increase the computation time, while noise and occlusions affect the accuracy of 

extracted geometrical parameters. Therefore, pre-processing will consist of down-

sampling the point cloud using octree-based voxelization, with voxel sizes as a 

function of the desired level of detail (LoD), after removal of noise based on existing 

algorithms. After that, plane segmentation is performed on the model to detect the 

plane segments from it. 

Similarly, the as-planned model is assumed to be a BIM model of the building. 

Usually, the BIM model is converted into a point cloud before use for a compatible 

comparison with the as-built point cloud model. However, the conversion may limit 

the details in the model and causes the loss of quality in its extracted geometrical 
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parameters. Therefore, the current study directly extracts the geometrical details 

from an IFC-based BIM. The Industry Foundation Classes (IFC) data model follows a 

neutral and open file format, registered as an official international standard ISO 

16739:2013. The file format is object-oriented and commonly used for Building 

information modelling. Objects have an accurate position in space that are 

distinguished by categories, characteristics, and function. IFC models include 

geometric and non-geometric entities: the building geometry and data associated 

with its elements. The IFC data schema assigns a name to, and relationships 

between, objects. It describes identity and semantics (ID, object, name, function), 

characteristics (material, properties, color), relationship between objects (e.g., walls, 

slabs, windows), abstract concepts (e.g., performance, costing), processes (e.g., 

installation, assembly), and people (e.g., owners, managers, designers, contractors). 

Figure 3.1 shows an example of the IFC data format in plain text form that contains 

different entities exchanging various types of information related to building 

components. To obtain the plane segments from the as-planned model, the mesh 

model is constructed according to the geometrical details of structural elements 

from the IFC-based BIM in an automated way, as shown in Figure 3.2. The required 

geometrical shape information, including the vertices and faces from the planar 

structural elements, like walls and roofs, are taken out from each element by 

processing their geometric information. The elements are stored in IFC schema 

under the entity ‘IfcProduct’ with the inheritance (IfcRoot → IfcObjectDefinition → 

IfcObject → IfcProduct). The geometric information (such as shape, position, 

direction etc.) of the elements is obtained by traversing the representation 

attributes. The processed information of these elements in the form of vertices and 

faces is then used to create their mesh for further processing. Later, the required 

plane parameters can be directly acquired from the mesh in an accurate and efficient 

way, without any need of point cloud conversion. In comparison to other methods, 

we construct a mesh from the BIM model directly rather than a CAD model. 

 
Figure 3.1.  An example of IFC content. 

 
Figure 3.2.  Extracting the geometric details of building components from IFC to 

construct their structural mesh model. 
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After acquiring the plane segments from both models, all the possible corner 
points are extracted. The corner point is the unique intersection point between three 
non-parallel plane segments. For the given plane segments 𝑝𝑚𝑎

, 𝑝𝑚𝑏
, and 𝑝𝑚𝑐

, with 

their respective normal vectors 𝒏𝒎𝟏
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑎1, 𝑏1, 𝑐1, 𝑑1), 𝒏𝒎𝟐

⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑎2, 𝑏2, 𝑐2, 𝑑2), and 
𝒏𝒎𝟑
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑎3, 𝑏3, 𝑐3, 𝑑3), the coordinates of their intersection point (Figure 3.3a) can be 

computed using the given formula: 

[
𝒙
𝒚
𝒛
] = [

𝒂𝟏 𝒃𝟏 𝒄𝟏

𝒂𝟐 𝒃𝟐 𝒄𝟐

𝒂𝟑 𝒃𝟑 𝒄𝟑

]

−𝟏

[

−𝒅𝟏

−𝒅𝟐

−𝒅𝟑

] 
 

(1) 

Equation (1) generates the intersection points for the given plane segments based 

on their plane directions, even if those segments are not actually intersecting. 

(Figure 3.3b) Accordingly, false corner points are also generated that not only 

increase the quantity of extracted corner points, but, due to the equidistant 

placement of these additional points, can also affect the reliability of the invariant-

based matching step. Therefore, a verification is performed that confirms the 

intersection of the calculated corner point to the actual surface of all three parent 

plane segments (Figure 3.3c). In this study, a k-d tree nearest-neighbor search 

algorithm is used to verify the corner points are contained with their respective 

parent planes with a suitable tolerance radius to accommodate the errors in plane 

segments. In the end, only the points at the actual corners contained in their 

respective intersecting planes (Figure 3.3d) are extracted along with the geometrical 

information of their parent planes. Appendix 8 contains a pseudocode detailing the 

program developed to extract corner points from the plane segments, while 

pseudocode in Appendix 9 details the additional process to filter the actual corner 

points from extracted ones. 

 

 

 
(a) (b) 
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(c) (d) 
Figure 3.3. Visualization of (a) a single corner point generated from three parent planes; 

(b) all the possible corner points generated from a model, including the false points; 

(c) differentiation of false corner points (red color) from others (green) after 

verification; and (d) final corner points (green) in the model. 

3.3.3   Identifying the Potential Matching Corner Points 
through Geometric Invariants 

To identify the matching points between both models, the corner points are pruned 

using geometric matching criteria to reject the non-matching points based on 

distance, angle, rotation, and translation invariants. The remaining points that 

comply with all geometric criteria are termed ‘potential matching points’. These 

potential matching points are later evaluated in the next step to sort out the 

matching points. 

If the corner points extracted from the as-planned and as-built model are M 

={𝒎𝒊}𝑖=1
𝑝

 and D ={𝒅𝒊}𝑖=1
𝑞

, with 𝒎𝒊, 𝒅𝒊 ∈ ℝ3, then their matching corner points can be 

identified as: 

𝑚𝒊 = 𝑹𝑑𝑖 + 𝑡 + 𝒆𝒊 (2) 

where p is the number of corner points in the as-planned model, q is the number of 

points in the as-built model, R∈ 𝑆𝑂(3), and 𝒕 ∈ ℝ3 are rotation and translation, 

respectively. Similarly, 𝒆𝒊 is the error in the as-built corner point as a result of the 

presence of noise and occlusions in the as-built model. In Equation (2), 𝒎𝒊 is the 

matching point of 𝒅𝒊 with an error 𝒆𝒊 in the i-th correspondence according to the 

rigid transformation parameters R and t. 

The identification of matching points is performed in a cycle where the two corner 

points from both models are assessed for matching simultaneously through a series 

of different geometric invariants in a specified combination. For example, two corner 

points {𝒅𝒂, 𝒅𝒃} from the as-built model are compared with the respective 

corresponding corner points {𝒎𝒂,𝒎𝒃} from an as-planned model in a particular 

cycle, and if they are congruent to all the invariants, only then they are withheld as 

potentially matching; otherwise, they are rejected. In the next cycle, two different 
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corner points from both models are compared. Each cycle can either reject or 

withhold the pairs of two corner points as potential matching corner points to 

eventually identify the possible pairs in the end. An algorithmic description in the 

form of pseudocode outlining the procedural steps utilizing diverse geometric 

invariants is presented in Appendix 10. 

Figure 3.4 shows the processing flow for the assessment of the geometric invariants 

for one cycle. The processing of two sets of corner points, instead of one, gives the 

opportunity to individually compare both sets with each other (in the first and last 

step) in addition to analyzing the match of corresponding points in each set (in the 

second and third step) in each scrutiny-based cycle. Overall, this pairwise processing 

of corner points in an invariant-based step-wise combination is designed to increase 

the prospects of identifying the matching corner points in a highly optimized way. 

The flowchart describing the processing using a series of geometric invariants to 

identify potential matching points is also shown in Appendix 2, with further details 

of these invariants provided below: 

 

Figure 3.4.  The processing sequence of geometric invariants to identify the potential 

matching corner points in a cycle. 

3.3.3.1    Distance Invariant 
The distance invariant is based on the characteristic that, if the two particular points 

from both models are matching points, then the distance between them should also 

be the same. A graphical example to understand the invariant is also provided in 

Appendix 3. Mathematically, given any two points {𝒎𝒂,𝒎𝒃} in M and their matching 

points {𝒅𝒂, 𝒅𝒃} in D, where 𝒂 ≠ 𝒃, the relative distance of these two points and their 

matching points from Equation (1) becomes: 

(𝒎𝒂 − 𝒎𝒃) = 𝑹. (𝒅𝒂 − 𝒅𝒃) + (𝑒𝑎 − 𝑒𝑏) (3) 

‖𝒎𝒂 − 𝒎𝒃‖ ≤ ‖𝒅𝒂 − 𝒅𝒃‖ + ‖𝑒𝑎 − 𝑒𝑏‖ (4) 

In above equations, ‖. ‖ denotes the Euclidean norm in ℝ3. If c is the constant that 

represents the maximum allowed error on the distance, hence that c >‖𝑒𝑎 − 𝑒𝑏‖, 

then the Equation (4) can be written to reject the non-matching points: 
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‖𝒎𝒂 − 𝒎𝒃‖ − ‖𝒅𝒂 − 𝒅𝒃‖ ≤ c (5) 

As the relative distance between corner points is invariant with respect to rotation 

‘R’ and translation ‘t’, it provides the possibility to initially probe the pair of corner 

points for matching without computing their transformation parameters. 

3.3.3.2   Angle Invariant 
The angle invariant is based on the geometric invariant that the corresponding 

parent plane segments of matching corner points should have the same relative 

angles with each other. Each corner point is constructed from three parent plane 

segments with their respective normals. With a suitable tolerance, the angles 

between the corresponding parent plane segments for both potential matching 

corner points are probed using their plane normals, as demonstrated in Figure 3.5. 

 

Figure 3.5.   Verification of the relative angles between the parent planes of two 

potential matching corner points using their normals. 

3.3.3.3   Rotation Invariant 
If not rejected in the previous steps, both pairs of potential points are assessed to 

find their corresponding transformation with the correct rotation. It is based on the 

invariant that the transformation obtained from potential matching corner points 

with correct rotation should fit their respective corresponding parent plane 

segments. 

  



 

77 

 

   
(a) 

 
 

 

(b) 

Figure 3.6. Visualization of (a) rotation matrices obtained after alignment of the 

corresponding plane normal in different combinations and, (b) their respective 

rotation effect on the as-built model relative to an as-planned model. 

To find the transformation of any potential matching corner points, the direction of 

their corresponding parent plane segments can be utilized to find out the rotation 

matrix and then the translation can be computed directly from the points. However, 

the estimation of correct transformation demands the determining the correct 

rotation matrix and this requires the identification of the respective corresponding 

segments. Most buildings have orthogonal geometries with perpendicular plane 

segments; therefore, the correspondence of plane segments cannot be truly 

determined based solely on their relative angles. To illustrate this, some examples of 

rotation matrices (𝑹𝒓) resulting from the alignment of the corresponding plane’s 

normal in different combinations ‘r’ are shown in Figure 3.6a while the visualization 

of the transformation obtained from the respective rotation matrices on the as-built 

model relative to the as-planned model is shown in Figure 3.6b. 

To solve this issue, transformation is determined for potential matching points with 

possible rotation matrices according to all the corresponding combination of parent 

plane segments and then evaluated in terms of their plane segment centroids to 

confirm their geometrical coincidence after transformation. For example, the 

rotation matrix (𝑹𝒂𝒓
) is determined for individual potential matching corner points 

(𝒎𝒂, 𝒅𝒂) by aligning the corresponding direction of plane segments based on the 
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correspondence combination ‘r’ while the translation (𝒕𝒂𝒓
= 𝒎𝒂 − 𝑹𝒂𝒓

𝒅𝒂) is 

computed from the corner points. For all the possible rotation matrices with their 

respective translations for all the combinations, the projection of the average 

centroid of the parent plane segments from the as-planned and transformed as-built 

corner points are compared using Equations (6) and (7) for both pairs of points, 

respectively. 

𝑹𝒂, 𝒕𝒂 = argmin
𝑹𝒂𝒓,𝒕𝒂𝒓

∑min(‖𝐶𝑚𝑎
− (𝑹𝒂𝒓

. 𝐶𝑑𝑎
+ 𝒕𝒂𝒓

) ‖
2

𝑟

𝑟=1

 (6) 

𝑹𝒃, 𝒕𝒃 = argmin
𝑹𝒃𝒓,𝒕𝒃𝒓

∑min(‖𝐶𝑚𝑏
− (𝑹𝒃𝒓

. 𝐶𝑑𝑏
+ 𝒕𝒃𝒓

) ‖
2

𝑟

𝑟=1

 (7) 

In the ideal case, the average centroids {𝐶𝑚, 𝐶𝑑} of the plane segment from both 

models should project into each other with the correct rotation 𝑹𝒂 (Figure 3.7a) as 

compared to the incorrect rotations (Figure 3.7b). However, due to errors in the as-

built plane segments, the projections may have slight deviations. Therefore, the 

rotation matrix allowing the projections to be nearest to each other is considered to 

be the most likely rotation matrix among the other matrices. The underlying reason 

is that it is the only rotation matrix obtained with the correspondence which permits 

the simultaneous fitting/coincidence of all the matching plane segments with each 

other. At the end of this step, the individual rotation matrices (𝑹𝒂, 𝑹𝒃) for both pairs 

of potential matching points that are later processed in next stage are computed. 

  
(a) (b) 

Figure 3.7. Visualization of as-planned model and transformed as-built model with 

transformations aligning the (a) corresponding plane segments with centroids nearest 

to each other and, (b) non-corresponding plane segments with centroids relatively far 

from each other. 

3.3.3.4   Translation Invariant 
Finally, the transformation parameters calculated from both potential matching 

points are compared. It is based on the invariant that all the matching points should 

have the same rotation matrix and translation. If any of the transformation 
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parameters from both pairs of potential matchings points are not the same, then 

they are rejected. 

Mathematically, any corner point 𝒎𝒊 corresponding to its matching point 𝒅𝒊 rotated with 

rotation matrix 𝑹𝒊 has the translation 𝒕𝒊 = 𝒎𝒊 − 𝑹𝒊. 𝒅𝒊. Similarly, in the case of potential 

matching corner points, the two corner points {𝒎𝒂,𝒎𝒃} in M corresponding to their 

matching points {𝒅𝒂, 𝒅𝒃} in D, with respective rotation matrices {𝑹𝒂, 𝑹𝒃}, should have 

the same rotation, such that 𝑹𝒂. 𝑹𝒃
𝑻 = 𝐼3, and the same translation, which satisfies the 

following: 

‖(𝒎𝒂 − 𝑹𝒂. 𝒅𝒂) −  (𝒎𝒃 − 𝑹𝒃. 𝒅𝒃)‖  ≤  𝒄 (8) 

In the above equation, c is the constant confirming 𝒄 > ‖𝒆𝒂 − 𝒆𝒃‖ with a suitable 

value assigned according to the errors in as-built plane segments. Figure 3.8 indicates 

the potential matching corner points, indicated with same label in both models, 

obtained after consenting to all the geometrical invariants. 

  

Figure 3.8. The identification of potential matching corner points from the as-built (left) 

and the as-planned model (right). The edges of the arrow with the same labels 

[a,b,c,…,y,z] in both models represent the potential matching points. 

The combinations of invariants that sequentially process the pairs of candidate 

corner points for matching are arranged to identify the potential matching corner 

points with less possible computation. The first step rejects the non-matching pairs 

without the need to calculate other parameters, thus reducing the processing time 

of the succeeding steps. The non-rejected pairs are further probed in a step-wise 

arrangement using the required parameters that were computed in the preceding 

step. Furthermore, the identification of potential corner points can be performed 

using all the extracted corner points from both models. However, the processing 

time can be increased exponentially in the case of a high number of corner points 

and can affect the time efficiency. Therefore, the two corner points from both 

models are randomly picked in each cycle using RANSAC with a defined number of 
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cycles to ensure robustness during the current stage of identifying the potential 

matching points using geometric invariants. 

3.3.4   Evaluating the Transformations of Potential Matching 
Corner Points 

The identified potential matching corner points include the matching corner points 

with correct transformation, but there is a possibility that some non-matching points 

with incorrect transformation may be included as well, as evident in Figure 3.8. Non-

matching corner points may have passed the identification due to the possible 

symmetries in the models. Therefore, all the remaining potential matching points 

are re-evaluated to find the correct or most likely matching corner points and 

transformations in two steps: (1) removal of duplicates and clustering of the 

remaining potential matching points according to their transformation parameters 

and (2) selection of the cluster with the correct transformation parameters. 

3.3.4.1   Removing the Duplicates and Clustering the Potential Matching 

Corner Points 
The potential matching corner points, identified in the last step, may contain 

duplicates due to the possibility of their identification in many pairs as a result of the 

RANSAC pairwise processing. There is a possibility that the duplicate pairs of 

potential corner points can be picked during RANSAC random selection. These 

duplicates are discarded by removing the other potential matching corner points 

having the same parent planes. 

After removing the duplicates, potential matching corner points are grouped 

according to their transformation parameters. The translation vector 𝒕𝒊 = 𝒎𝒊 − 𝑹𝒊. 𝒅𝒊 

is dependent on the rotation matrix; hence, it is unlikely that potential matching 

points with different rotation matrices have the same translation vectors. Therefore, 

the translation vectors of the points can be utilized to differentiate their 

transformation parameters. To allocate potential matching corner points to a cluster 

with translation 𝒕𝒐, the candidate potential matching corner points with 𝒕𝒊 should 

have the same translation with a suitable tolerance c, as represented in Equation (9). 

Figure 3.9 represents the different potential matching points [a, b, c, …, y, z], 
clustered according to their transformations where it is apparent that the potential 
matching points in each cluster have the same translations (blue line). 

  

‖(𝑚0 − 𝑅𝑜. 𝑑0) − (𝑚𝑖 − 𝑅𝑖 . 𝑑𝑖)‖
𝟐 ≤ 𝒄𝟐   (9) 
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(a) 

 
 

(b) 

 
 

(c) 

Figure 3.9. Potential matching points in the as-built (left model) and as-planned model 

(right model), clustered according to respective transformation parameters visualized 

next to them in terms of their corner points and 3D models (a–c). 

3.3.4.2   Finding the Cluster with the Correct Transformation 
To reduce computation time—instead of evaluating the individual potential 

matching corner points—the evaluation is performed directly on the clusters based 

on the two invariants to allow the simultaneous identification of the matching 

corners. According to the first invariant, the correct transformation aligns all (or the 

majority of) the corner points from both models. The second invariant advances that, 

if the aligned corner points in the correct transformation are matching, their 

corresponding parent planes should be parallel as well. Based on these two 

invariants as indicators of the correct registration, all the clusters, with their 

transformations, are evaluated. 

Initially, all the corresponding corner points according to each transformation from 

the clusters are recognized. The transformation parameters from the respective 

clusters are applied to the original as-built corner points to project them into as-

planned points. Ideally, corresponding points with the same parent plane segments 
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from both models should be aligned with each other in the case of correct 

transformations. However, due to the presence of errors in the as-built plane 

segments, the projection of corresponding corner points may not be exactly aligned 

but located near to each other. Therefore, neighboring corner points from both 

models having corresponding parallel parent plane segments are determined with a 

suitable tolerance, by means of k-d tree and the angles between the normals of the 

corresponding parent plane segments. Figure 3.10 shows a corner point 𝒅𝒊  from the 

as-built model transformed with rotation 𝑹𝒊 and translation 𝒕𝒊. Its distance to a 

neighboring point 𝒎𝒊 from the as-planned model is less than the tolerance c, and 

both points have parallel parent plane segments after transformation; hence, they 

are considered to be aligned corner points. 

 

Figure 3.10.  An example of neighbor corner points with parallel parent planes. 

It is obvious in Figure 3.10 that some of the aligned corner points with parallel 

corresponding parent plane segments, according to the transformation of each 

cluster, are already present in the cluster along with other additional aligned corner 

points. The additional points are the potential matching points that have a similar 

transformation if computed. However, they were not identified previously due to 

the random selection of corner points from both models using RANSAC. Therefore, 

the current procedure enables their complete detection. The additional potential 

matching points are detected at the current stage because the complete 

identification of all the potential matching points in the previous stage is 

computationally expensive. The random identification ensures the minimum 

computation and outputs sufficient potential matching points that include at least 

one matching point whose transformation is enough to detect the other matching 

points at this present stage. Overall, this approach allows the robustness in the 

proposed method with high reliability. 

Finally, the cluster with the transformation having the highest number of aligned 

corner points is considered to be the correct transformation while the respective 

aligned points are finalized as matching corner points. Figure 3.11 demonstrates the 

aligned points in both models according to the transformation of different clusters. 
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The cluster transformation in Figure 3.11a has the highest aligned points as 

compared to others; hence, it is finalized as a cluster with matching corner points 

having correct transformation. 

   

(a) (b) (c) 

Figure 3.11. Visualization of the corner points from the as-built (yellow) and transformed 

as-planned model (green) resulting in aligned corner points (blue) according to each cluster 

transformation (a–c). 

3.3.5   Calculating the Most Optimal Transformation from 
Matching Corner Points/Cluster 

After sorting out the cluster with highest number of matching corner points, the 

individual transformation parameters of each corner point are assessed to find the 

most optimal transformation. The rotation 𝑹̂ and translation 𝒕̂ among the other 

respective rotation {𝑹𝟏, 𝑹𝟐 … .𝑹𝒄} and translation {𝒕𝟏, 𝒕𝟐 … . 𝒕𝒄} parameters of 

clusters that align the corner points from both models with relatively more precise 

fitting, e.g., with less error, are finalized as the optimal transformation parameter, 

using Equations (10) and (11). 

σ(𝑹, 𝒕)  = √
 ∑ ‖(𝒎𝒊  − 𝑹. 𝒅𝒊 − 𝒕)‖2𝑛

𝑖=1

𝑛
 (10) 

𝑹̂, 𝒕̂ = argmin
𝑅,𝑡

σ(𝑹, 𝒕)            𝑹 ∈ {𝑹𝟏, 𝑹𝟐 … .𝑹𝒄}, 𝒕 ∈ {𝒕𝟏, 𝒕𝟐 … . 𝒕𝒄} (11) 

In Figure 3.12, the models registered with transformation parameters corresponding 

to their error values are shown and Figure 3.12a indicates the optimal 

transformation (lowest error). It is evident that the optimal transformation 

parameter offers the relatively highest overlapping of models.  
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(a) σ = 0.0019 (b) σ = 0.0025 (c) σ = 0.0038 

   
(d) σ = 0.0050 (e) σ = 0.0063 (f) σ = 0.0095 

Figure 3.12. Visualization of as-built (yellow) and as-planned (green) registered 

according to the different transformation parameters with respective error values in 

ascending order (a–f). 

3.3.6   Identifying the Matching Planes from Matching Corner 
Points (Optional) 

The construction project monitoring requires the progress estimation of building 

components that are represented by plane segments. The individual identification 

of matching plane segments is essential for an effective monitoring process. 

Normally, the matching planes can be easily identified using the criteria that the 

matching plane segments are parallel and fit with each other after registration. As 

an additional and reliable alternative, the utilization of corner points along with the 

semantic information of their parent plane segments in the proposed method 

enables the identification of plane segments as well. Generally, each plane segment 

is present as a parent plane segment in more than one corner point, with a maximum 

of four corner points. Therefore, after computing the transformation from the 

matched corner points, likewise, the matching plane segments can also be obtained 

by verifying their required presence in their corresponding multiple matching points. 

3.4   Results and Discussion 
The methodology was tested on different datasets presenting various challenges 

based on their geometrical shape. The datasets include two simulated (A1 and A2) 

and two real-life datasets (R1 and R2). It is important to mention here that the 

simulated datasets (A1 and A2) are the same that are also used in previous chapter 

but with different names (S1 and S3). 

The simulated datasets were artificially designed to represent the building models 

with different structural compositions for testing, as shown in Figure 3.13. Using 

such datasets allowed for the assessment of the theoretical foundation of the 

proposed method, without effect of errors typical for real life situations. BIM models 

in IFC format were used as as-planned models, whereas randomly transformed 

models in point cloud format was used as as-built models. Both simulated models 
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have nine plane segments; however, the first model represents a single-floor 

building while the second one represents a triple-floor building. 

 
 

(a) (b) 

Figure 3.13.  Visualization of models for (a) dataset A1 and (b) dataset A2. 

The real-life datasets contain BIM and as-built models of two building projects. The 

as-built models were acquired by means of laser scanning. The datasets represent a 

conference room (R1) and a large educational building (R2), as shown in Figure 

3.14a,b, respectively. The real-life dataset R1 represents a point cloud scan of an 

office space acquired using a Faro Focus 120 scanner. It comprises approximately 

seventy nine million 3D points and includes six plane segments structurally. The 

second real-life dataset, R2, is a point cloud scan of a four-storey structure captured 

with a terrestrial laser scanner. A comprehensive collection effort, involving 53 

scans, yielded a densely populated dataset exceeding 500 million points. It is worth 

noting that both the real-life datasets were already used in other research [70–72]. 

Using these real-life datasets to assess the proposed method allows the evaluation 

of its performance and robustness in the case of the presence of occlusions, noise, 

and other errors typically present in as-built point clouds. 
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As-planned Model As-built Model 

  
(a) 

  
(b) 

Figure 3.14. Visualization of as-planned and as-built models for (a) dataset R1 and (b) 

dataset R2. 

The proposed method was implemented in the Python language, and all processing 

was conducted on a laptop equipped with an Intel i7-8850H CPU and 16 GB RAM. 

During the testing, the initial down-sampling of the as-built models was performed 

with a voxel size of 0.2 m and, later, RANSAC-based-plane segmentation was 

performed to obtain as-built plane segments. Similarly, the number of RANSAC 

iterations to randomly select the two corner points from both models for 

identification of potential matching points was limited to 5000. Furthermore, 

according to errors in the as-built model of each dataset, a suitable tolerance value 

was used to verify the geometric invariants. The proposed method successfully 

registered all the datasets, as shown in Figure 3.15. A detailed analysis was also 

performed to evaluate the registration accuracy and explore the limitations. 
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(a) (b) 

 

 
(c) (d) 

Figure 3.15. Visualization of registered as-built (yellow) and as-planned (green) 

models of (a) dataset A1, (b) dataset A2, (c) dataset R1, and (d) dataset R2. 

To evaluate the registration accuracy of method, the root-means-square errors 

(RMSE) were computed. Furthermore, the transformed models were also compared 

with their ground truth models as RMSE is not sufficient as an indicator of 

registration accuracy [10]. The ground truth models were the same as the as-planned 

models for the simulated datasets; however, in the case of the real-life datasets, the 

transformed models after fine registration were used as ground truth. The rotation 

error in degrees and the translation error in mm for each dataset were calculated as 

additional evaluating metrics using Equations (12) and (13), respectively. 

 𝛜𝐑 = |𝛉𝑮𝑻 − 𝛉𝑻| (12) 

 𝛜𝐭 = || 𝒕𝑮𝑻 − 𝒕𝑻 || (13) 

In the above equations, 𝛉𝑮𝑻 and 𝒕𝑮𝑻 represent the quaternion rotation angles and 

translation vector of ground truth, whereas 𝛉𝑻 and 𝒕𝑻 are the quaternion rotation 
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angles and translation vector of the transformed model. The evaluation parameters, 

listed in the Table 3.1, indicate an overall good accuracy as a coarse registration 

method. The method registered not only the simulated datasets but also the real-

life datasets with higher accuracy. Furthermore, the registration results were also 

compared with our previous plane-based method [66] which is described in chapter 

2, as shown in the Table 3.1, where it is evident that the proposed method registered 

all the datasets with more accuracy. The higher accuracy can be attributed to the 

approach of the proposed method that ensures the detection of all the matching 

corner points to compute the most accurate transformation parameter from them. 

Table 3.1. Details of simulated datasets. 

Datasets 
Plane-Based Method Proposed Method 

RMSE 
(mm) 

 ϵR (°)  ϵt (mm) RMSE (mm)  ϵR (°)  ϵt (mm) 

A 1 7.186 0.007 29.164 7.519 0.002 4.036 

A 2 8.792 0.005 35.385 8.485 0.003 7.821 

R 1 18.119 0.027 94.267 15.884 0.015 37.649 

R 2 17.781 0.021 107.142 16.139 0.007 31.224 

The proposed method is RANSAC-dependent to ensure robustness, so the number 

of iterations could have an influence on the success. Although increasing the number 

of iterations results in more potential matching points with a cost of higher 

processing, this does not improve the registration accuracy (as shown in Figure 3.16) 

as the method already ensures the highest accuracy by detecting the remaining 

matching points after selecting the most optimal cluster in the third step. Generally, 

the method can only fail if the potential matching corner points obtained in stage 2 

do not include any actual matching point, which can happen if the number of 

RANSAC iterations is too low. During testing, the method failed for dataset R1 and 

R2 prior to a number of iterations of 1500 and 2500, respectively. By increasing the 

number of iterations, this problem was resolved. In our results, 5000 iterations were 

found to be sufficient for both robustness and successful execution of the proposed 

method for all tested datasets. 
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Figure 3.16. Graph showing the effect on RMSE of increasing the number of RANSAC 

iterations. 

The potential matching points are identified using a series of geometric invariants to 

try to ensure that only the actual matching corner points are detected; however, 

geometrical symmetry in the building can still lead to the selection of non-matching 

points. To further explore this problem concerning construction progress 

monitoring, the proposed method was also tested for partially built buildings to 

analyze its success. For this purpose, two additional as-built models derived from 

dataset A2 (Figure 3.17), representing the completion of the first and second floor, 

were created. 

 

Figure 3.17.  Visualization of the dataset A2 model with different floors utilized to 

create incomplete as-built models. 

The experimentation validated the successful registration of the as-built model with 

two floors completed as shown in Figure 3.18a; however, the registration success of 

the remaining model with the single model was inconsistent. Sometimes registration 

was successful, but other times there was some translation error, as shown with the 
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registered models in Figure 3.18b,c. The reason can be attributed to the fact that 

there was a lack of distinct points in both models. Hence, the proposed methodology 

finalized the two transformation clusters with equal number of corresponding corner 

points due to symmetrical positions of corner points at ground zero, first, and 

second, as demonstrated with the corner points in Figure 3.18b,c. However, in the 

case of the as-built model with two floors completed, the points are also the same 

and symmetrical, but the transformation cluster with maximum corresponding 

points is identified. The same happened with the fully completed as-built model 

(dataset A2). Therefore, it can be concluded that the proposed method works well 

for incomplete buildings not only with non-symmetric corner points but also with 

symmetric points if not all the as-built points form the symmetry with additional as-

planned points. 

   

   

(a) (b) (c) 

Figure 3.18. Visualization of registered incomplete as-built (yellow) with as-planned 

(green) models according to their respective extracted corner points shown above. 

The presence of symmetrical corner points in the building models challenges the 

registration due to similar geometrical parameters. However, the presence of a few 

discriminatory corner points can support the identification of correct 

transformation. Hence, the proposed method may fail in buildings with a 

symmetrical geometry; however, the presence of few distinct planar structures in 

the buildings can resolve this limitation. To solve this limitation in future research, 

the same matching strategy for complicated structures in the building can be 

developed if required. 

It is important to mention here that the current research make use of the BIM model 

and extensively leverages its semantic information within the BIM model across all 
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the phases. For example, geometric data from BIM is utilized in the current phase for 

the registration process (as detailed in chapter 2 and chapter 3), while subsequent 

phases involve estimating and storing as-built completion information in BIM ( as 

detailed in chapter 4). Additionally, semantic parameters related to time, cost, and 

progress are utilized for storing, retrieving, modifying, and reporting construction 

progress monitoring data (as detailed in chapter 5). In addition, using BIM as the as-

planned model also opens up a multitude of opportunities to address various 

limitations effectively, as BIM's ability to incorporate semantic information provides 

a powerful tool for overcoming the limitations. In the limitation scenario described 

above, such as when faced with the challenge of symmetric building shapes, we can 

supplement the semantic information with geo-referencing data. This enables us to 

provide detailed floor-level information during scan acquisition, augmenting the 

robustness of our methodology and surpassing the symmetric limitation. 

Comparison with plane-based registration 
The current corner-based registration method is also compared with the plane-

based registration method, which is detailed in (previous) chapter 2. From the results 

as indicated in Table 3.1 it is evident that the current corner point-based method is 

relatively more accurate although both are coarse registration methods that only 

aim to roughly aligns the models. This higher accuracy of current method can be 

explained as the plane-based method directly utilizing the centroid of plane 

segments, however, the presence of point cloud errors such as noise or occlusion 

can slightly affect the centroid parameters eventually influencing the registration 

accuracy. In contrast, the corner point-based method, dependent on corner points, 

computes the accurate corner point from the intersection of the plane segment 

using their normal values and the presence of noise or occlusion doesn’t affect 

significantly the precision of corner points if the plane segments are detected. 

Therefore, the dependency of the second point on corner points, as compared to 

plane segments, doesn’t compromise considerably on registration accuracy. Apart 

from that, the corner point-based method selects the most accurate rotation and 

translation parameter among the pool of correct parameters obtained from all the 

matched corner points. Overall, these measures give the second method an upper 

hand in terms of accuracy. Both methods were also tested with simulated datasets 

representing an under-construction building for registration. The results 

demonstrate that both methods successfully registered the scan model of an under-

construction building if their respective conditions were met. 

If we discuss their boundry conditions for success, the plane-based method requires 

two conditions. The first condition is the scan model should have at least three plane 

segments in a distinct direction so that the rotation matrix can be correctly 

computed. The second condition is that the size of most plane segments in the scan 

model should correspond to their matching plane segments so that the minimization 

process can accurately find out the correct transformation. For example, Figure 3.19 
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shows a simulated dataset in which the partially built model contains all the 

segments except the segments in one direction (horizontal). As there are two distinct 

directions of plane segments instead of three, the plane-based method incorrectly 

computed the transformation parameters. It is important to mention here that the 

proposed corner point method is also a plane dependent method hence it also fail if 

the plane segments are not obtained correctly as described in section 2.5.6   

 

Figure 3.19. Visualization of the unsuccessful registration of the dataset with a partially 

built scan model using the plane-based method. 

In contrast, the simulated model shown in Figure 3.20 contains a partially built model 

with only three plane segments. Although there are only three segments all of them 

are in distinct directions, hence, the plane-based method registered the model 

successfully. 

 

Figure 3.20. Visualization of the successful registration of the dataset with partially 

built scan model using the plane-based registration method. 

As compared to the plane-based method, the corner point-based method requires 

at least two corner points in the scan model, otherwise, the method will fail due to 

not having enough points for processing. As the extraction of corner points commits 

the presence of three plane segments in distinct directions, this necessitates more 

than three corresponding plane segments for a minimum of two corner points. 

However, the registration still may fail relatively because of the reason that demands 

a matching pair of corner points from both models during processing to confirm the 

geometric invariants. Furthermore, at least one corner point, in terms of its position 

with others, should be non-symmetric as well. Figure 3.21 demonstrates that if all 

the corner points extracted from the dataset (Figure 3.21a) of the partially built 

building model are positioned symmetric then the incorrect transformation (Figure 
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3.21b) can be computed based on the correspondence to non-matching points 

(Figure 3.21c). Therefore, the corner point-based method demands the presence of 

at least one asymmetric position of the corner point among the other symmetric 

points to accurately identify the correct transformation. 

(a) (b) (c) 

 

  

Figure 3.21.  Visualization of (a) Models before registration, (b) Incorrectly registered 

models, and (c) Corner points of Incorrectly registered models  

To sum up, the corner point-based method is relatively more accurate, however, the 

plane-based method is more suitable for datasets with scan models having less no. 

of structural components constructed. 

3.5   Conclusions 
A novel method is proposed in the current chapter for registration that utilizes 

corner points as the distinct feature to perform the accurate alignment of building 

scans with their BIM model to facilitate construction progress monitoring using Scan-

vs-BIM. To ensure a consistent information format in automated progress 

monitoring, the study utilized an IFC-based BIM to directly extract the lossless 

geometrical details using the IFC schema, instead of converting BIM into another 

format. Buildings have evident corner points due to the dominant planar features in 

their structures. The method extracts those corner points from both models and 

then identifies their matching to eventually compute the most precise 

transformation parameters from them. The matching corner points are identified 

after RANSAC-based geometric pruning through a series of different geometric 

invariants. The results demonstrated that the proposed method successfully 

registered all the datasets, both the simulated and real-life datasets, with a high level 

of accuracy in a fully automated way. Apart from registering the scan models of 

completed buildings with their respective BIM models, the proposed method also 

proved its ability to register the scan model of the under-construction building as 

well, if a distinct corner point is present. 
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In terms of model-based construction progress monitoring, the research study in the 

current chapter adds a significant contribution by introducing a another fully 

automated and accurate point-based registration technique that utilizes IFC-based 

BIMs, identifies the matching structural features, and is capable of performing the 

registration of under-construction buildings. Further research is aimed to refine the 

proposed method to upgrade its application in complex buildings through additional 

geometric invariants.  
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Abstract 
 

Accurate and reliable construction progress monitoring plays a critical role in 

ensuring successful project outcomes. Recently, Scan-vs-BIM comparison methods 

have been increasingly employed for automated progress monitoring that mainly 

consists of the geometrical comparison between the as-built scan model and the 

corresponding as-planned model. Despite the capability to estimate the progress, 

these methods suffer from inaccuracies mainly due to the presence of occlusions 

along with other errors in the as-built scan, resulting in unreliable progress 

estimation. The current research detailed in this chapter is an effort to address these 

challenges and improve the Scan-vs-BIM comparison process through new 

innovative advancements. The proposed method initially integrates reasoning 

measures to reduce the progress error based on the execution sequence of building 

components. Later, a geometric analysis is performed to develop a suitable surface 

model from as-planned BIM, for its compatible comparison with as-built scan. The 

surface model is then classified to provide the as-built coverage information of the 

building structure according to data-capturing equipment and external objects 

present at the scene. Subsequently, the classified surface model is utilized in 

comparison to accurately detect the exposed and non-exposed potential as-built 

surfaces in the scan model. Finally, progress information along with additional 

information is obtained that allows the comprehensive understanding and 

meaningful insights in the building progress. This novel method is evaluated and 

validated through both simulated and real-life datasets, which demonstrates its 

preciseness in measuring the partial completion of building components and its 

ability to deliver valuable comprehension of progress through supplementary 

information.  

 

Keywords: Scan-vs-BIM comparison, progress monitoring, as-built detection, 

progress estimation, IFC-based BIM. 
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4.1   Introduction 
Recently, there has been a significant advancement in automated progress 

monitoring using model based-assessment, which mainly involves the geometrical 

comparison of the as-built and as-planned three-dimensional (3D) information of the 

building. The as-built information includes the 3D point cloud, mostly obtained 

through reconstruction technologies like laser scanning, image-based 

reconstruction, or their integration. Similarly, the as-planned information involves a 

geometrical design model extracted from the BIM model in a suitable 3D format. 

These assessment techniques initially register both models (as-built scan and as-

planned BIM) ultimately to perform their comparison to find out the progress 

information that is then updated back into BIM model.  

The comparison is the core part of the process that identifies and estimates the 

progress by examining the as-built 3D geometry from the point cloud in contrast with 

BIM information, hence also referred to as Scan-vs-BIM comparison. Although Scan-

vs-BIM comparison has been increasingly used for automated progress monitoring 

of construction projects, the accuracy of this technique heavily relies on the scan-vs-

BIM comparison preciseness, which is often affected by occlusions and other errors. 

As a result, the reliability of the overall progress monitoring process can be 

compromised. The as-built model obtained from the construction site includes 

numerous errors which may compromise the accuracy of the scan-vs-BIM 

comparison. For example, occlusions caused by already constructed components, 

the presence of construction materials, labor, machinery, or other obstacles, can 

make certain areas of the building inaccessible to the data acquisition instrument, 

resulting in incomplete scans.  Hence, scan-vs-BIM comparison can fail to identify 

occluded surfaces in the captured as-built scan and assumes that it covers the entire 

surface of the structure, resulting in inaccurate estimations. In addition, the point 

cloud generated from the as-built model may contain errors, such as noise and 

outliers. Another source of error arises from inaccuracies in the alignment of the as-

built and as-planned models, which can affect the comparison process. All these 

errors increase false positives or false negatives in the built scan, thus influence its 

comparison with the as-planned model.  

Despite the significance of these issues, there is a paucity of research that focuses 

on addressing the challenges associated with as-built data acquisition and alignment 

for Scan-vs-BIM. As such, there is a pressing need to explore new approaches that 

can improve the accuracy and reliability of Scan-vs-BIM for progress monitoring by 

addressing these issues. The proposed research in this current chapter aims to 

improve the Scan-vs-BIM comparison process by developing a comparison model 

derived from the as-planned BIM model, detecting occlusions and other possible 

errors in the as-built data, performing their precise comparison while utilizing 

semantic information to optimize the process through reasoning. 
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The structure of this research study described in this chapter 4 is as follows. Section 

2 presents a comprehensive review of the relevant literature, followed by Section 3 

that explains the problem statement. Section 4 details the proposed methodology 

and Section 5 showcases the results obtained from the experiments and includes a 

detailed discussion of the findings. Finally, a concise conclusion summarizing the key 

contributions of the research and its potential implications is outlined in Section 6. 

4.2   Related Work 
The development of infrastructure, housing, and other physical structures is 

dependent on the construction industry, which is facing numerous challenges, 

including the critical issue of construction progress monitoring. Monitoring practices 

entail tracking the progress of a under-construction project to identify any variances 

or divergences from the scheduled plan (or design), thereby allowing early detection 

of potential issues. This early detection through construction progress monitoring 

enables prompt remediation, ultimately resulting in significant time and resource 

savings [1,2]. Regardless of its importance, a majority of construction projects, 

numbering over 53%, experience delays, and over 66% exceed their original cost 

[3,4]. Hence, research has highlighted the critical importance of efficient and precise 

monitoring of the as-built status of constructions as a prerequisite for effective 

project management [5-14].  

The traditional monitoring methods involve manual measurement techniques with 

substantial processing carried out by construction staff which is time-consuming, 

error-prone, and labor-intensive, resulting in serious flaws, such as missing and 

imprecise as-built information [15-18]. Additionally, they have been found to be 

costly, ineffective [7,19], complex [20], and non-systematic [21-23]. Eventually, this 

created a critical demand for automated progress monitoring in the construction 

industry that has the ability to produce accurate, efficient, and reliable progress 

information. However, despite the strong necessity, automated progress monitoring 

is still in its early development stage and lacks the desired level of efficiency and 

reliability [5,24,25]. As a result, there is a significant research gap that requires the 

development of approaches aimed towards automated construction progress 

monitoring [26-28]. 

As the technology has rapidly advanced, there have been numerous research studies 

that investigated potential solutions for automating construction progress 

monitoring by using various technologies including the radio frequency identification 

(RFID) [29-33], ultra-wideband (UWB) [34-36], barcodes[37], and global positioning 

systems (GPS) [38]. Although, these technologies are primarily focused on 

monitoring materials or labor, however, they has limitations in providing the 

comprehensive as-built information required to accurately identify the progress in 

terms of the geometrical structure of the building [39]. To overcome these issues, 

advanced reconstruction technologies were introduced in the construction industry 
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to capture the as-built geometry and spatial information of structures through 

millions of 3D points to create their respective as-built model. This is achieved 

through methods such as laser-based scanning [40-43], image-based reconstruction 

[3,11,15,17,44-47], or their integration [34,48,49]. Normally, laser-based scanning, 

being a modern surveying technology, is more accurate and dense than image-based 

reconstruction for capturing as-built geometry, but the devices are also more 

expensive [50]. The reconstruction technologies are non-contact and non-

destructive, and offer significant advantages as compared to traditional techniques, 

in terms of accuracy, time, and automation. However, these technologies are limited 

by their dependence on a clear line of sight range, which can adversely affect the 

accuracy of the as-built capturing process at the construction site and result in 

undetected points in certain areas of the structure that are obstructed or have 

limited access [5,41].  

While the reconstruction technologies enable the capture of as-built geometry, the 

as-planned geometry of the building is represented through various 3D models such 

as computer-aided design (CAD) [51] or mesh format [7,43,52] in the construction 

industry. With the recent digitization, BIM models are increasingly being employed 

as as-planned models, because they comprise not only the 3D geometry of the 

building, but also semantic information, enabling the detailed representation of the 

building [9,53]. The semantic information in BIM allows for the inclusion of additional 

information such as time-related schedules, costs, and any other relevant data, 

which expands the opportunities for construction management and improves 

decision-making throughout the project lifecycle [54,55]. Recently, Industry 

Foundation Classes (IFC) have emerged as a widely recognized open standard for 

information exchange in Building Information Modeling (BIM). It provides a 

standardized digital description of the built asset industry released by 

BuildingSMART, enabling data exchange and collaboration among stakeholders in a 

consistent and compatible manner, facilitating the integration of various data 

sources, and allowing for real-time updates on project progress [26,56-58]. As a 

result of the standardized and compatible nature of IFC-based BIM facilitating 

automation, it has become a popular choice for construction progress monitoring, 

with many research studies utilizing its capabilities [9,26,27,54,55,59,60]. 

Construction progress monitoring has been extensively studied with the 

advancement in technologies, resulting in a proliferation of proposed methods [61]. 

Kopsida, Brilakis and Vela [2] reviewed several methods in terms of data acquisition, 

progress estimation, information retrieval, and visualization capabilities while 

assessing their usefulness, precision, degree of automation, necessary preparation, 

time effectiveness, training needs, expense, and mobility. The study found that no 

single method is superior in all aspects, and the optimal method depends on the 

specific circumstances, such as whether the application is indoor or outdoor, the 
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type of building structure being monitored, the available cost, and the desired level 

of precision. 

In recent times, research studies have utilized a model-based assessment technique 

for construction progress monitoring in which BIM (as-planned) model is 

geometrically compared with its corresponding aligned laser scanned (as-built) 

model to obtain progress information of a building,  also known as a Scan-vs-BIM 

comparison [5,62]. This technique requires the initial alignment of both models in 

the same coordinate system, which is accurately established through the registration 

process, either manually [7,63], semi-automated [64,65], or fully automated 

[3,8,56,57,66]. The Scan-vs-BIM comparison involves the analysis and inference of 

3D surfaces of the as-built model, relative to the as-planned model, to determine the 

completion of building components, providing a valuable tool for construction 

progress monitoring. Technically, the as-planned surface of the component structure 

is regarded as constructed when corresponding as-built points are present, allowing 

for an estimation of overall completion. Despite the usefulness of this technique, the 

manual implementation of the comparison is often hindered by its time-consuming, 

labor-intensive, and expensive nature, making it unreliable for comprehensive 

applications on construction sites [8]. Hence, numerous studies have been 

performed to automate the Scan-vs-BIM comparison, but the effectiveness of these 

automated techniques is heavily reliant on resolving several challenges encountered.  

In these studies, the geometrical comparison of the 3D points from the as-built scan 

is performed either with the points extracted from the as-planned surface [67,68] or 

with the as-planned surface itself [8,26,27,69]. Some of the earliest Scan-vs-BIM 

approaches, introduced by Bosche and Haas [40] and Bosché [8], involved object 

detection in the laser-scanned as-built point cloud which was subsequently extended 

by,  Turkan, et al. [70] to track the temporary and secondary objects such as 

formwork, shoring and rebars in concrete works. Turkan, Bosche, Haas and Haas [43] 

also used the object detection approach  [8] to monitor the progress of structural 

building objects in construction projects in which an additional metric for 

recognizable objects was introduced to reduce the false positives and false negatives 

in the result. However, this metric is dependent on a fixed threshold value 

representing the minimum recognizable surface, making it prone to occlusion errors 

[9], and therefore requires proper estimation instead of a fixed threshold. Kim, Son 

and Kim [41] employed a Lalonde features-based supervised classification approach 

to identify targeted building component types in the as-built model by matching 

them with their counterparts in the as-planned model, both of which were in point 

cloud form. Similarly, Zhang and Arditi [7] developed a method by analyzing the point 

distribution in relation to the enlarged and shrunken boundaries of the objects to 

determine the object’s presence, its completeness, or any deviation from the 

expected object. However, the method was evaluated in a simplified, simulated 

environment, which may not fully reflect the complexity and difficulties inherent in 
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analyzing data from actual construction sites. Similarly, Tuttas, et al. [71] utilized a 

voxelized octree to validate the existence of points in cells. Another technique 

proposed by Pučko, Šuman and Rebolj [24] involves constantly updating the as-built 

model using small low-precision scanning devices, attachable to safety helmets or 

machinery, to allow the identification of deviations and differences from the planned 

schedule. Limitations of this technique, which was tested on a testbed, include 

manual simulation of some activities, manual registration of various partial point 

clouds for comparison, and successful object detection during comparison only when 

at least one-third of the surface is covered, while a commercial software was used 

for model comparison. 

Normally, the effectiveness of reliable automated progress monitoring through 

Scan-vs-BIM heavily relies on the accuracy of the comparison, which encounters 

several challenges that must be actively addressed. One of the significant challenges 

in the Scan-vs-BIM is the occlusion in the as-built model, which arises when some 

parts of a building are obstructed from the view of the data acquisition instrument. 

These obstructions can occur due to various physical blockages such as construction 

materials, equipment, labor, or other objects present at the construction site [9]. As 

a consequence, it creates missing points or inaccuracies in the as-built model, which 

in turn can lead to difficulties in the geometric comparison process and ultimately 

impact the reliability of the results [26,60,72,73]. Several studies have considered 

occlusion in the scan-vs-BIM comparison, such as the method proposed by 

Golparvar-Fard, Pena-Mora and Savarese [9] that leverage unstructured site 

photographs to generate their dense point cloud using structure-from-motion and 

multi-view stereo. To facilitate the comparison between as-planned and as-built 

geometries, the scene is discretized into a voxel grid while a probabilistic approach 

was employed to determine construction progress, with threshold parameters for 

detection determined through supervised learning. Another study utilized the 

inverse photogrammetric approach to project building elements into corresponding 

site photographs for automated labeling based on semantic information provided by 

BIM model, subsequently training a neural network for reliable detection rates [74]. 

Although these image-based reconstruction approaches somewhat consider 

occlusion, they may not be applicable for laser-based as-built scans. While occlusion 

in the as-built scan can be addressed with new data acquisition, identifying the 

occluded surfaces is necessary to plan for the new location [75]. Despite efforts, 

occlusion continues to pose a challenge in Scan-vs-BIM [26,76]. In addition to 

occlusion, the as-built scans obtained from construction sites may include noise due 

to the presence of moving objects during laser scanning, resulting in measurement 

errors that can impact object detection [9,26,76]. Furthermore, the precision of 

registration is critical for Scan-vs-BIM techniques, as even minor registration errors 

can significantly impact the comparison’s accuracy [77]. 
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In construction projects, the time-related schedule provides information about the 

time information of components such as the start and finish time, duration, 

completion, etc. As the BIM model can store additional semantic information 

including the time-related schedule, hence, many studies also utilized the schedule-

integrated BIM in Scan-vs-BIM by providing the geometry of the as-planned model 

based on the planned progress dates [9,24,74]. Moreover, the schedule-integrated 

BIM has been utilized for the completion reasoning of components by exploiting 

their precedence relationship for construction [41,60,78,79]. The precedence 

relationship plays a critical role in determining technological dependencies between 

building objects by establishing which object cannot be built until a preceding object 

is completed. Therefore, identifying and analyzing precedence relationships is crucial 

in ensuring the accurate and timely completion of construction projects through 

Scan-vs-BIM comparison. However, the implementation of this approach using the 

latest IFC4 schema has not been detailed in any study. 

4.3   Problem Statement 
It is a challenge for data acquisition instruments to actually capture all the surfaces 

of the building structure ideally in the as-planned model as some of their surface 

may not be structurally exposed to the instrument for coverage. In real-life, joined 

surfaces of building components are sandwiched, making their unexposed surface 

undetectable during scanning. For example, a beam could be potentially obscure a 

portion of joined roof, or the edge surface of one wall might conceal a section of 

another wall. Consequently, the employment of these raw as-planned models having 

complete surfaces for comparison can affect the scan-vs-BIM comparison, mainly 

due to the lack of benchmark parameters defining the expected detection of built 

surface and ultimately impact the comparison accuracy. Therefore, this requires the 

identification of detectable surfaces of as-planned BIM that can be utilized for 

comparison during Scan-vs-BIM instead of comparing the complete surface that may 

affect the Scan-vs-BIM accuracy. This identification process involves converting the 

as-planned model into a detectable model that can be used as a benchmark for 

comparison. 

Similarly, the captured as-built point cloud in an ideal Scan-vs-BIM comparison 

should also truly represent the actually built component in a perfect scenario and 

must contain only 3D points that completely cover the surface of that built structure. 

However, in actual cases that may not be possible. In real life, the acquired as-built 

scan 𝑆 of a building component captured at the construction site may not fully 

comprise points covering the as-built surface (referred to as detected as-built 𝐷) as 

some as-built points may be missing (referred to as undetected points 𝑂). The 

detected as-built D are the points that perfectly represent the as-built surface for 

precise scan-vs-BIM comparison. Similarly, the undetected points 𝑂 are those 

assumed points that are not present in the as-built scan S due to occlusion as the 

built component may not have been fully captured by the data acquisition 
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instrument due to various reasons. Eventually, these occluded or undetected points 

𝑂 coupled with the inadequate number of detected as-built points 𝐷 in the as-built 

scan 𝑆 create uncertainty about the percent completion of building components and 

increase the false negatives during scan-vs-BIM comparison, ultimately reducing the 

accuracy. Although, these undetected points 𝑂 cannot be determined without 

another data acquisition round, identifying the occluded surfaces, where these 

undetected points 𝑂 were assumed to be present, can aid in improving the scan-vs-

BIM comparison. This can help in better understanding the obtained results, 

enhancing the accuracy further, and estimating the space required for the next data 

acquisition. 

Figure 4.1a illustrates a data collection instrument scanning a wall component. 

Occlusions caused by other building components and external obstacles at the scene 

limit the laser scanner's exposure, as shown in yellow and orange in Figure 4.1b.  

  

 

 
Figure 4.1. Visualization of building with data acquisition instrument placed to scan 

the wall component (in blue) along with obstacle in (a) 3D view, and (b) top view 

highlighting the detectable coverage (green), and non-detectable coverage due to 

building component (yellow) and external occluder (orange). 

The non-exposure of the surface creating the occlusion in an as-built scan 𝑆 is 

categorized into two main types based on the type of obstacle/occluder: 

1) A (major) part of the surface may not be directly visible to the line of sight 

of data acquisition instruments (such as laser scanners) due to the presence 

of other building components that are already built, as highlighted with 

yellow in Figure 4.1b. In this case, already built components block the 

surface exposure, thus acting as occluders.  

2) The presence of material, laborers, or machinery located between the data 

acquisition instrument and required building component may hinder the 

surface exposure of building components, in which case these external 
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obstacles act as occluders. The orange-highlighted area in Figure 4.1b 

illustrates the blockage due to this type of occlusion.  

In traditional Scan-vs-BIM comparison, the completion ratio of as-built components 

is calculated based on the (acquired) detected points only, without accounting for 

the presence of occluded or undetected points. This can lead to a significant 

difference between the reported and actual completion ratios, as illustrated in 

Figure 4.2(a-d), which shows an example of an as-built point cloud of a wall 

component captured in the presence of occlusions, while Figure 4.2b represents its 

aligned comparison with the corresponding as-planned surface. The surface 

occupied by as-built point cloud through the traditional method is 56% of the as-

planned surface. However, the actual as-built surface, as depicted in Figure 4.2c, 

along with the as-planned surface, indicates an actual completion ratio of 80%. This 

difference is primarily attributed to the presence of undetected points 𝑂, 

represented by undetectable surfaces (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒) which include the occluded 

surface due to internal building components (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑

) and external obstacle 

(𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑏𝑢𝑖𝑙𝑡 ) in as-built scan, classified with yellow and orange respectively, as 

shown in Figure 4.2d. Together, these undetectable surface account for 30% of the 

total surface area. Therefore, the measured completion ratio can also be reported 

as 56% of the total surface, but with only 70% detectable surface or overall 80% 

(=56%/70%) of the complete surface. This highlights the limitations of the traditional 

Scan-vs-BIM method and the importance of considering the coverage as an 

additional parameter in progress reporting. By accounting for the presence of 

occluded or undetected points, this approach can provide a more accurate and 

reliable representation of the actual conditions, leading to better decision-making in 

construction projects. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.2. Visualization of the: (a) acquired as-built scan colorized using scalar fields, 

(b) as-built scan with corresponding as-planned surface (grey), (c) surface of the actual 

as-built wall (green) as compared to the as-planned surface (grey), and (d) provides a 

classification of different surfaces in which the detectable surface is highlighted with 

green while the occluded surfaces 〖(σ〗_(Un-detected)) due to building component 

and external occluder are represented with yellow and orange respectively. 
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Furthermore, it is important to consider potential challenges that could influence the 

accuracy of the Scan-vs-BIM comparison. Here are some of the key factors that play 

significant roles in this regard: 

• Some error points E, mostly attributed to 3D noise and outliers, present in 

the captured as-built scan 𝑆 may result in an increase in the false positive in 

the Scan-vs-BIM comparison. 

• Registration errors, caused by inaccurate registration between different as-

built scans or between the as-built scan and BIM, can also affect the scan-

vs-BIM comparison. 

• The traditional Scan-vs-BIM comparison doesn’t consider the occluded 

surfaces while performing the comparison, which also affects the accuracy 

of the obtained progress. 

These errors can limit the ability of points in the as-built to represent their 

corresponding surface in BIM during the comparison, highlighting the importance of 

addressing these errors in Scan-vs-BIM to minimize their impact. 

During the continuous Scan-vs-BIM comparison being performed after each data 

acquisition, it is possible to mistakenly identify a fully built building component as 

non-completed as the currently acquired as-built point cloud may not have full 

coverage of its surface although the same component was identified as completed 

in previous comparison phase. The comparison may yield a different result with each 

iteration and requires sound reasoning to be incorporated into the process. 

Additionally, time-related information defined in the construction schedule specifies 

the completion sequence of building components. For example, walls cannot be 

constructed until preceding components, such as the foundation, are completed, 

and successor components, such as the roof, depending on the completion of all 

preceding components (walls and foundation). This time-related information can be 

integrated into BIM (also known as 4D BIM) which can be exploited to further 

improve the Scan-vs-BIM comparison. 

The challenges concerning the as-planned model (lack of suitable detectable model), 

as-built model (errors including occlusions, outlier, registration, etc.) and then their 

imprecision comparison in the scan-to-BIM process that can significantly affect the 

accuracy and reliability of progress monitoring in the construction projects. 

Therefore, there is a strong need for a method that addresses these challenges and 

improves the Scan-vs-BIM process. Specifically, this method should be able to 

provide a suitable detectable model for comparison (as an alternate to the as-

planned BIM) and identify the occlusion in the captured as-built scan 𝑆 (by classifying 

the surfaces). Furthermore, it should also perform the precise comparison of 

detected as-built with the detectable as-planned model while reducing the possible 

errors E and considering the possible as-built in the occluded surfaces. Additionally, 

it should also introduce some measures to assist the Scan-vs-BIM comparison for 
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improvement by utilizing the semantic information from as-planned BIM through 

possible reasoning. Addressing these challenges will enable a more comprehensive 

and accurate Scan-vs-BIM comparison between the as-built scan and as-planned 

BIM, ultimately improving the reliability of progress monitoring in construction 

projects. Eventually, it will lead to better decision-making and more efficient 

resource allocation, which can positively impact the success of construction projects. 

4.4   Methodology 
The current research aims to propose an automated and improved method for 

enhancing the accuracy and reliability of progress monitoring in construction 

projects through the scan-vs-BIM comparison. The proposed mechanism aims to 

address the challenges by accurately identifying and predicting the detected and 

non-detected as-built points while reducing error points eventually to improve the 

comparison between the as-built scan and as-planned BIM. To achieve this goal, the 

proposed novel approach focuses on processing each individual component of the 

building model through different stages to ensure overall accuracy in the Scan-vs-

BIM comparison. By proposing a more improved and automated method, the 

proposed approach can enhance construction progress monitoring and improve the 

reliability of the scan-vs-BIM comparison. 

Ideally, the highest accuracy in Scan-vs-BIM comparison can be ensured if the total 

as-built scan 𝑆 consists completely of all the as-built points 𝐷 that is not possible in 

real life. The research study conducted in the current chapter, we define the 

undetected points 𝑂 as points that have not been captured (by data acquisition 

instrument) but are intended to represent the surface actually constructed/built 

structure; once captured, they become detected as-built points 𝐷. In actuality, the 

captured as-built scan  𝑆 = {𝒔𝒊}𝑖=1
𝑛  with ‘n’ no. of 3D points (𝒔𝒊) acquired from the 

construction site may include the detected as-built points 𝐷 along with error points 𝐸 

but also lacks (undetected) points 𝑂. The direct comparison of the captured as-built 

scan with BIM may not yield the optimum results due to error points 𝐸 and undetected 

points 𝑂. Mathematically, the detected as-built 𝐷, to be used for ideal Scan-vs-BIM 

comparison, can be written using equation 1 where all these 3D points are 

representing their respective types. 

𝐷 = [ 𝑆 −  𝐸 ] +  𝑂 (1) 

In the above equation, detected as-built 𝐷 consist of captured as-built scan 𝑆 along 

with undetected points 𝑂 but without the error points 𝐸. To improve the accuracy and 

reliability of the scan-vs-BIM comparison, the proposed approach is an effort to 

identify the most likely detected as-built 𝐷 in the captured as-built scan 𝑆, by 

reducing the error points 𝐸, and predicting the undetected points 𝑂, along with 

other reasoning measures. 
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To accomplish this, the proposed novel method involves three main stages to 

process the building components individually, beginning with a preliminary 

assessment to determine the need for comparison based on different logic and 

processing measures. In the next stage, detection analysis is performed to identify 

the detection model for comparison and classify the non-exposed surfaces that 

contain the undetected as-built points 𝑂. The final stage utilizes the surface 

classification information to perform the accurate estimation of the as-built progress 

through identification and prediction of detected as-built points 𝐷 and un-detected 

as-built points 𝑂, respectively. The stages of the proposed method are illustrated in 

Figure 4.3 while their details are as follows: 

 

Figure 4.3. The overall workflow of the proposed three-stage methodology. 

4.4.1   Preliminary Reasoning 
The proposed method performs the preliminary evaluation by utilizing the semantic 

time-related information of the BIM model through reasoning measures to improve 

progress monitoring. The time-related information includes the schedule of building 

components having their execution sequencing, dates, duration, and other related 

progress information related. The current stage relies on provided time-related 

information to carry out logical reasoning which allows the Scan-vs-BIM of only those 

components whose progress needs to be updated. By adopting this approach, the 

method enhances the understanding of the construction process and enables the 

detection of errors and inconsistencies in the construction progress monitoring, 

while reducing overall processing. 
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Figure 4.4. An example of time-related IFC entities associated with three walls having 

a sequential relationship with each other in IFC-based BIM model information. 

In IFC-based BIM, the time-related information is usually present in the ‘IfcTaskTime’ 

entity which is linked through a defined task entity ‘IfcTask’ that can be eventually 

linked to its corresponding building component through a representative entity 

under ‘IfcBuiltElement’ (like IfcWall). The ‘IfcTaskTime’ entity contains the time-

based attributes that describe the planned and actual schedule information while 

the ‘IfcRelSequence’ provides the relationship between entities. An example of three 

building components (Wall A, B, and C) connected to their respective time-related 

entity along with their sequencing relationship with each other using IFC4 schema, 

are shown in Figure 4.4. 

Algorithm 4.1: Preliminary Reasoning 

 Input: IFC-based BIM, As-built Scan 

1 Extract building components information from IFC-based BIM → 𝐶 𝑖 

2 Sort all building components according to their planned start date → 𝐶𝑆𝑜𝑟𝑡𝑒𝑑 𝑖 

3 for every 𝐶𝑆𝑜𝑟𝑡𝑒𝑑  𝑖 do  

4  if 𝑆𝑐𝑎𝑛𝑆𝑜𝑟𝑡𝑒𝑑  𝑖   exists and 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑆𝑜𝑟𝑡𝑒𝑑  𝑖   < 1 then 

5    do Schedule reasoning 

  
 

6        Proceed Scan-vs-BIM  

  
 

  
 

The current stage initially sorts the building components for processing based on 

their planned start dates and then applies reasoning based on some invariants for 

each component before proceeding to the Scan-vs-BIM comparison. The first 

reasoning ensures the obvious that the building component’s comparison is only 

performed if it is not completely built and it’s as-built scan is present, eventually 

reducing the processing. The next reasoning relies on the construction schedule 

invariant that the required building component can only begin if the preceding 
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components are already built, assuming the construction is being performed 

according to the planning schedule. The overall algorithm to perform the current 

stage based on the IFC schema is outlined in following algorithm (Algorithm 4.1) and 

the relevant details are as follows: 

At the start, the planned start dates of all building components are extracted using 

the relevant IFC entities (IfcBuiltElement → IfcRelAssignsToProduct → IfcTask → 

IfcTaskTime.ScheduleStart), and the components are sorted accordingly (line 2). The 

processing of components begins based on their planned start dates by performing 

two initial checks (line 4). The first check ensures that the as-built scan of the 

corresponding under-processed building component is available. If the dedicated 

point cloud of the required component is not provided, then the as-built scan is 

probed by cropping the relevant part using the oriented bounding box of the 

required component structurally covering in the as-planned BIM. The second check 

confirms whether the required building component has been built or not, based on 

the 'Completion' attribute of the IfcTaskTime entity linked to the required 

component (IfcBuiltElement → IfcRelAssignsToProduct → IfcTask → 

IfcTaskTime.Completion). If both checks are true, the building component progress 

is assessed using schedule reasoning (line 5) to ensure the completion of preceding 

building components based on time-related schedule information. For example, the 

construction of a structural roof can commence only after the completion of 

underlying walls or columns. This reasoning involves identifying the preceding 

building components and verifying their actual completion. The preceding 

components can be explored using the 'IfcRelSequence' entity 

(IfcBuiltElement→IfcRelAssignsToProduct→IfcTask→IfcRelSequence) to identify 

the other building components having a sequential relationship with the required 

building components through their tasks. After identification, the completion of all 

the preceding components is confirmed through the 'Completion' attribute of their 

'IfcTaskTime' entity. An example with technical details is visualized in Figure 4.5 in 

which ‘Wall 6’ is the successor building component to ‘Wall 5’ with a finish-to-start 

relationship, indicating that the construction of ‘Wall 6’ requires the completion of 

‘Wall 4’.  If all preceding building components (Wall 4, 5 & Floor) are already built, 

the required building component (wall 6) is further processed in the next stages for 

comparison to measure its progress. It is pertinent to mention here that the 

proposed schedule reasoning only uses schedule connectivity, not structural 

connectivity since the construction schedule follows structural connectivity. All 

those components that didn’t qualify the reasoning are not processed for Scan-vs-

BIM based on the reasons that they are already built, or they didn’t start as either 

their corresponding as-built scan is not provided, or their preceding components are 

not constructed. 
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(a) (b) 

 

 

Figure 4.5. Visualization of (a) Building 2D plan view and (b) Construction schedule.  

4.4.2   Detection analysis 
The objective of this stage is to transform the as-planned BIM model (Figure 4.6a) 

into a detectable model (Figure 4.6b) that represents the possible exposed surface 

of building components for comparison and then classifying those not exposed 

surfaces according to data acquisition and  possible occlusion present at site 

eventually to obtain a classified detectable model (Figure 4.6c). The detectable 

model provides the compatible surface of the as-planned BIM for accurate 

comparison with the corresponding as-built scan while the classification enables a 

better understanding of the as-built information by providing an additional 

parameter that defines the coverage for effective progress monitoring. Furthermore, 

the classification surfaces also play their part in the minimization of errors in the as-

built scan during comparison. Additionally, these classified surfaces can also aid the 

data acquisition process in the future by highlighting the surfaces where acquisition 

is required. 

(a) (b) (c) 

   

Figure 4.6. The 3D visualization of the (a) geometrical model from as-planned BIM, (b) 

detectable model, (c) classified detectable model. 

The detection analysis simulates the scene using the geometrical information from 

BIM and the captured as-built scan through the ray-casting approach. It is assumed 

in the simulation that the laser scanner is capturing the building structure in the 
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presence of other building structures as well as the external objects that are acting 

as obstacles or occluders. In the simulation, perspective-based multiple rays are cast 

in presence of the scene (obstacle) from the laser scanner location (origin) towards 

the surface of the required building component structure. The surfaces of the 

required structure where the rays intersect are identified. The standardized 

procedure of ray casting for the simulation in the proposed methodology is given in 

following algorithm (Algorithm 4.2), while the involved elements are demonstrated 

in Figure 4.7 respectively. Furthermore, the details about how this simulation is 

utilized to develop the detectable model and then perform the classification of its 

surfaces are summarized in the following sub-sections. 

 

Figure 4.7. Illustration of different elements involved in a ray casting scene. 

Algorithm 4.2: Simulation to find the detectable surface of structure 

using ray casting  Input: Origin, Structure, Occluder(s)         

 Output: Detectable Surface(s) 

1 Create scene with Structure and Occluder(s) 

2 Find Focal Point(s) from Structure 

2 for every Focal point(s) do  

3  Project multiple rays from Origin to Focal Point through ray casting 

4  Identify the ray intersecting surfaces of Structure  

5  Include the identified surfaces of Structure into the Detectable surface(s) 

6 end for 

4.4.2.1   Detectable Model 
The detectable model in this study is defined as the suitable 3D model having the 

possible exposed surface of as-planned BIM that can be used later for accurate 

comparison with the captured as-built scan. It is developed by analyzing the 

geometrical information from BIM to include only surfaces that are detectable to 

data acquisition instrument and remove those that are completely hidden (or 
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sandwiched) due to other building components. The flowchart to create the 

detectable model is highlighted (with yellow background) in Figure 4.8.   

 

Figure 4.8. Flowchart of the detection analysis stage outlining the steps for developing 

and classifying a detection model. 

To create a detectable model, ray casting simulation, as outlined in the Algorithm 

4.2, is performed to find the detectable surface of any building component. For 

simulation, the building component whose detectable model is required is utilized 

as a structure while the other building component components that are structurally 

joined with the required component (structure) are used as occluders. The other 

building components (occluder) are extracted from the IFC-based BIM by exploring 

the ‘IfcRelConnectsElements’ entity of the required element (structure) that 

contains information about its structural connectivity with other elements. The mesh 

models of these other building components are utilized in the simulation which is 

created by processing their respective geometrical details from the IFC-based BIM. 

Similarly, different data acquisition locations in 3D space are used as origin at a 

suitable distance and height set according to the laser scanner to make sure that the 

simulated data acquisition is performed. The location can be selected either around 

the required structure to ensure the coverage from every possible side (different 

angles) or only inside the building in case the data acquisition is performed indoors, 

as demonstrated in Figure 4.9(a-c) and around Figure 4.9(d-f) respectively. The 

various points uniformly distributed on the surface of the required component are 
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used as focal points for organizing rays, ensuring that the possible maximum surface 

is covered according to the dimensions of casted rays.  

(a) (b) (c) 

   

(d) (e) (f) 

 
   

Figure 4.9. An example of placing the scanner either around the required structure (a-

b) or only indoors (d-e) to obtain the respective detectable model (grey) of the required 

building component (structure) after ray casting simulation. 

Figure 4.9 illustrates the ray casting simulation used to obtain the detectable model 

of a wall. The resulting detectable model obtained for a scanner location placed 

around the structure includes both surfaces except for the joint part at the edges 

part that joins with other structures, as shown in Figure 4.9(c). However, when the 

laser scanner is placed only inside the structure, the resulting detectable model 

includes one inside surface as shown in Figure 4.9(f). This process is repeated for 

each building component to obtain its corresponding detectable model (𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛). 

4.4.2.2   Classification of surfaces 
After obtaining the detectable model, the identification of exposed and non-exposed 

surfaces is performed for classification according to the data acquisition instrument 

by examining both models e.g. as-built scan and BIM model. First, the BIM model is 

utilized by extracting geometrical information of all the building components for 

simulation to estimate the non-exposed surface (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑

). Later, the as-built 

scan surface is analyzed for identification of possible occlusion (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝐴𝑠−𝑏𝑢𝑖𝑙𝑡 ). Based 

on the information from both models, the detectable (𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒) and undetectable 
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surfaces (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒) are classified. The technique is designed to determine the 

level of exposure of a particular building component in the presence of other 

components and objects at the scene. The classification process is outlined in Figure 

4.8 through a flow chart. 

The classification using BIM information to determine the non-detectable surfaces 

for a required building component involves obtaining the detectable surface using 

the ray-casting simulation and then excluding that surface from the detectable 

model to obtain the un-detectable surfaces. The simulation, as described in 

Algorithm 4.2 and Figure 4.8, is performed while assuming that the data acquisition 

is performed for a specified location (origin) in the presence of other building 

components (occluders) to find the detectable surface of the required component 

(structure). The 3D origin point of the as-built scan is used as the location for the ray 

casting simulation. In the case of multiples scans registered together, their 

transformed origin are used. Once the simulation is performed, the detectable 

model of each building component is obtained with its surfaces classified based on 

the laser scanner location and possible occlusion present in the scene. In the end, 

the obtained surface is classified as the detectable surface (𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑) while all the 

surfaces of detectable models (𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛) obtained earlier except the detectable 

surface itself are classified as the un-detectable surfaces (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒

𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑
= 𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 −

 𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒

𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑) where 𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑

, 𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑

 ⊆ 𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛. Figure 4.10 illustrates the 

classification of detectable surfaces based on scanner location (Figure 4.10a), where 

the surfaces are classified (Figure 4.10b) into detectable and remaining (non-

detectable), represented in green and blue, respectively. The lower and side portions 

of the component surface are mainly classified as undetectable due to being 

sandwiched between other components that are joined. 

This is performed for each building component in the presence of other components, 

that were supposed to be built, to classify their respective surfaces based on a given 

location. In the case that there are multiple scans at different locations, then the 

same procedure is repeated with the respective locations of their scans. Please note 

that running the procedure for every targeted building component separately could 

result in redundant raycasts, however, this approach is adopted to ensure precision 

in the methodology.  
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(a) (b) 

 

 

 

Figure 4.10. Visualization of (a) detectable coverage of laser scanner from the top view, 

and (b) classification of building component surfaces into detectable (green) and non-

detectable (blue). 

After estimating the undetectable surfaces using the as-planned BIM model, its 

corresponding scan is analyzed for identification of the possible occlusion in it to 

verify the presence of different objects such as construction material, labor, or, 

machinery at the construction site. The corresponding as-built scan is initially 

obtained by cropping its specified part according to the bounding box of the un-

detectable surface with some tolerance. The building consists of planar building 

components, hence, this property is being exploited in this step to identify the 

occlusion possibly present within the scan point cloud. This assumes that if there is 

a gap within the scan point cloud then there is a possibility that either that gap is due 

to the occlusion because of any occluder object at the site, or the building 

component is not built at that particular gap. Hence, the occlusion is being identified 

to further confirm the built surface, eventually increasing the accuracy. The process 

of occlusion detection is demonstrated in Figure 4.11 and implementation details 

are as follows: 

 

Figure 4.11. Illustration of occlusion in as-built scan caused by obstacles in the scene, 

resulting in occluded point clouds of planar building component. 
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For occlusion detection, the cropped scan point cloud according to the detectable 

surface is being verified whether it contains any gap or not with some threshold. In 

the case that there is a gap, all the points present between the laser scanner location 

and the gap are projected into that gap based along the plane normal of the building 

component surface. If the projected points fill the gap then it means that there was 

an occlusion and that particular part was not directly exposed to the scanner due to 

occlusion, hence, that occluded part is classified as an un-detectable surface 

(𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝐴𝑠−𝑏𝑢𝑖𝑙𝑡 ).  Figure 4.1a shows a building scene with a laser scanner placed inside 

to scan a specific building component (highlighted in blue) in the presence of 3D 

obstacle/occluder (highlighted in orange). In Figure 4.12a, the same scene is displayed 

in a plan view to demonstrate how external obstacles affect the laser scanner's 

detectable coverage. After scanning, Figure 4.12b illustrates the classification of building 

component surfaces into detectable (green) and non-detectable (blue), with red 

markings indicating occluded surfaces due to the obstacle. 

(a) (b) 

 

 

 

Figure 4.12. Visualization of (a) detectable coverage of laser scanner from top view in 

the presence of an external obstacle, and (b) classification of building component 

surfaces into detectable surface (green) and non-detectable surface (blue) including the 

occluded surfaces marked in red due to the obstacle. 

In the final step, the undetectable surfaces obtained from the as-built scan (where 

external objects are occluder) are combined with the undetectable surfaces 

obtained from BIM simulation (where other building components are occluder) to 

obtain the final undetectable surface (𝜎𝑢𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) of the component detection 

model using equation 2 and 3. 

𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 = 𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑

 ∪  𝜎𝑢𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑏𝑢𝑖𝑙𝑡  (2) 

𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 = 𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 − 𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒  (3) 

In the above equations, 𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 , 𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 ⊆ 𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 and ∪ denotes the 

set union operation, whereas 𝜎𝑢𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑏𝑢𝑖𝑙𝑡  represents the set of undetectable 

surfaces obtained from the as-built scan, 𝜎𝑢𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒
𝐴𝑠−𝑝𝑙𝑎𝑛𝑛𝑒𝑑

 represents the set of 

undetectable surfaces obtained from BIM simulation, and 𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒  is the set of 
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detectable surfaces in the detectable model (𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛). Figure 4.13 illustrate the 

obtained classified detectable model of wall component in which the surfaces 

𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒  and 𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒  are highlighted in green and red respectively, as 

compared to their original as-planned surface (in grey).  

  
Figure 4.13. Visualization of obtained detectable model of building component 

classified with detectable surface (green) and un-detectable surface (in red). 

4.4.3   As-built Progress Detection 
The current stage initially performs the precise estimation of exposed as-built 

surfaces through their geometrical comparison with the as-planned model and then 

predicts the overall as-built surface by combining the information from the recently 

developed detectable model with classified surfaces. This approach enables the 

accurate estimation of as-built completion of buildings, considering both the 

exposed and non-exposed surfaces. The implementation details are as follow: 

4.4.3.1   Exposed as-built surface estimation 
As-built surface detection mainly involves the accurate comparison of captured as-

built scan with the as-planned detectable model by removing the possible errors. 

The flowchart for this comparison step is shown in Figure 4.14. 

 

Figure 4.14. Workflow for as-built surface detection. 
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The captured as-built scan of a building component consists of unclassified points, 

including both detected as-built 𝐷 points and error points 𝐸 caused by outliers or 

noise. As an optional preliminary step, the as-built scan can be down-sampled to 

ease the processing while the noise-reducing algorithm can also be applied to 

minimize the noise. On the other hand, the detectable model (𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛) includes 

classified surfaces designating the detectable (𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒) and undetectable 

(𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒) areas. We can also represent this in set 

operations: 𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 , 𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 ⊆ 𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 . However, the undetectable 

surfaces (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒)  in the detectable model represent the confirmed occluded 

areas in terms of laser scanner coverage and occluder object presence. Any points (if 

present) in these undetectable surfaces (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒) may belong to the errors 

(𝐸) due to outliers or noise in the overall scan. Therefore, the corresponding as-built 

points of these confirmed undetectable surfaces are removed to diminish the error 

points 𝐸 while retaining the as-built 𝐷 points. To achieve this, a bounding box is 

created using the classified detectable surfaces (𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒) of the detectable model 

with some suitable tolerance to accommodate the 3D points parallel to the surface. 

Subsequently, the as-built point cloud is cropped by filtering out the points outside 

the box, resulting in the remaining points that lie inside the detectable area 

representing the detected as-built 𝐷 points, as shown in Figure 4.15. Optionally, 

Iterative-closest-point [80] (ICP) algorithm can also be applied to accurately align the 

both models before creating bounding box to accommodate the registration error 

and ensure that the segregated points are accurately representing the detected as-

built 𝐷. 

 

Figure 4.15. An illustration of removing the most likely error points (red) by cropping 

the as-built scan of a wall component using a detectable surface bounding box (green) 

to retain the detected as-built points (black). 

Later, the cropped scan points are further processed for comparison with surface of 

(as-planned) detectable model and the points nearest to the surface are identified. 

To do that, the surface is voxelized into a voxel grid for accurate and efficient 

computation of the total surface coverage is performed, as demonstrated in Figure 

4.16. 
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Figure 4.16. Surface coverage determination based on 3D points within voxel grids. 

It involves computing the number of occupied voxels compared to the total number 

of voxels in the detectable model using the equation 4. This calculation takes into 

account the principle that the structure of a building component can be inferred 

from the surfaces that can be detected from any side. 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =
Covered voxels in detectable model 𝑖

Total no. of voxels in detectable model 𝑖 
 (4) 

The above equation provides information on the surface area covered by the as-built 

scan, which in turn indicates the extent to which the building component has been 

constructed. This parameter can be utilized for the progress estimation of building 

components, combined with classification data, to facilitate effective progress 

monitoring. Figure 4.17 demonstrate the obtained as-built surface detected (in blue 

color) in the detectable model of a wall component relative to original as-planned 

surface (grey). This gives a visual breakdown about the surfaces, which can be 

detected along with the actual as-built surface. 

 

Figure 4.17. Visualization of as-built surface detected (blue) on a classified detectable 

model having detectable surface (green) and un-detectable surface (red). 

4.4.3.2   Non-exposed as-built surface prediction 
Traditionally, the as-built surface coverage, computed in equation (4), is generally 

utilized as the parameter for the progress estimation parameter, representing the 

obtained completion ratio of the building structure. This as-built surface actually 

corresponds to the detected surface which is a percentage 𝜌𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒  (=
𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒

𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 
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) of the total surface of the detectable model. However, its direct adoption without 

considering the occluded surface/un-detectable surface (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒) may not be 

accurate as compared to actual progress. Therefore, the proposed method also 

calculates the predicted completion ratio based on the as-built surface of both 

detectable and un-detectable surfaces.  

The predicted values include the minimum, maximum, and expected value for the 

completion ratio corresponding to the possible status of the undetectable surface 

which can either be completely built, not built at all, or have a surface coverage 

similar to detectable surfaces. Taking these possibilities into account, the potential 

completion ratio of each building component is calculated by adding the potential 

completion of the un-detectable surface into the already calculated as-built (of the 

detectable surface). For any building component, the minimum predicted value 

would be equal to the as-built surface detectable (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =

 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑) while the maximum predicted value can be calculated using the 

following equation (5) which assume that the undetectable surfaces are representing 

as-built surface. 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝜌𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑  (5) 

Similarly, the projected predicted completion ratio, representing the equivalent 

completion as-built coverage in both detectable and non-detectable surfaces, can be 

calculated through equation 6. 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

= 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑  .  (1 − 𝜌𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑)

 𝜌𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

=  
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

 𝜌𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

(6) 

Later, the overall progress of the building is estimated for each type of completion 

(detected and predictive) through the weighted average of the completion ratios of 

individual building components according to their surfaces, using equation 7. 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑜𝑡𝑎𝑙   = 
∑ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑛

𝑖=1  .𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛

 ∑ 𝜎𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛
𝑛
𝑖=1

 
(7) 

4.5   Results and Discussion 
To comprehensively evaluate the proposed method, a combination of simulated (S1) 

and real-life datasets (R1, R2, R3) were employed. The simulated data was primarily 

used to validate the theoretical framework, while the real-life datasets provided an 

understanding of the practical challenges and limitations of implementing the 

proposed method in real-world building projects. This facilitated a thorough analysis 

of the proposed method's performance and its potential for practical applications in 

the construction progress monitoring of buildings. The proposed methodology was 
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implemented using a Python-based program all the processing was conducted on a 

laptop with an Intel i7-8850H CPU and 16 GB RAM.  

The proposed method utilized the IFC schema to process the as-planned BIM in the 

IFC4.x version format and performed the analysis of geometrical structures in the 

form of point clouds. The progress information obtained from the as-built surface 

coverage was integrated back into the BIM model using IFC schema as detailed in 

the next chapter 5.  

1. Simulated dataset 

The simulated dataset was designed to represent a challenging building model with 

various structural compositions that can allow a comprehensive assessment of the 

proposed method, as depicted in Figure 4.6. The same standard simulated dataset 

has also been utilized in all preceding and subsequent chapters throughout the 

thesis. Geometrically, it comprises 8 walls and 2 slabs (floor and roof), representing 

the main structural building components. Figure 4.5 shows the plan view of the 

simulated dataset, illustrating the positions, names, and dimensions (in meters) of 

the wall components while Figure 4.5b is demonstrating their schedule timeline 

providing insights into their construction order with the finish-start relationship. The 

as-planned BIM model was created in IFC format, while another modified model was 

developed from the as-planned model to represent the actually built condition of 

building construction as shown in Figure 4.18a. This as-built progress of the building 

components indicates the longest (front) wall of the building is partially constructed 

(80% complete), while all three walls on the left side are completely built and the 

three walls on the right side are not started yet, and the remaining wall with the 

attached door is partially built (50%). Later, the as-built scan model (as illustrated in 

Figure 4.18b) was generated from this model, which was then processed to 

demonstrate the indoor point cloud of the building coupled with a variety of errors 

while replicating real-life conditions.  

(a) (b) 

  

Figure 4.18. The 3D visualization from the simulated dataset demonstrates the 

geometrical difference between (a) a 3D model representing actual built components 

at the site, and (b) a 3D as-built scan model (colorized based on scalar fields) 

representing the actual conditions at the site according to laser scanner range. 
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During the testing, the developed detectable model of the simulated dataset mainly 

representing the indoor surface of the building is shown in Figure 4.19. Similarly, the 

classified detectable model highlighting the detectable surfaces is shown in Figure 

4.20, which is based on the data acquisition location illustrated in Figure 4.1.  

  

  

Figure 4.19. 3D visualization of (a) detectable model and (b) Classified detectable 

model with highlighted detectable surface (green) of the simulated dataset. 

Later, the as-built surface was detected through the comparison of obtained 

classified detectable model with the as-built scan. The comparison result is 3D 

demonstrated in Figure 4.20 through different visual perspectives in which the 

detectable model is marked with different colors representing the surface status. 

Surfaces marked with green and red color are representing the detectable and un-

detectable surfaces according to the given laser scanner location while the blue color 

is representing the detected surfaces being identified as as-built. 

  

Figure 4.20. 3D visualization of surfaces highlighting the as-built (blue) from detectable 

(green), and un-detectable (red). 

In the end, the as-built covered surfaces were quantified to estimate the progress of 

the building components and overall building structure. The obtained results of the 

simulated dataset through the proposed method are summarized in Figure 4.21. 



 

130 

According to the results, estimated building progress based on the weighted 

completion ratios of individual building components according to provided as-built 

scan is (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑜𝑡𝑎𝑙 =) 37.59%, while the predicted progress, with the 

prediction range of (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =) 37.59% to 

(𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =) 52%, is more likely to be around 

(𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =) 50%. Regarding the individual building component, wall 

1 has achieved a completion ratio of (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =) 56.26% with a detectable 

surface of (𝜌𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 =) 70.42%. It is predicted that if its complete surface is 

scanned, the completion ratio can attain a maximum of (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =) 

85.83%  while the expected completion is around (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =) 

79.89% based on the given detectable surface and completion ratio.  

 

Figure 4.21. Estimated and predicted completion ratios for building components and 

the overall building structure. 

The progress achieved by individual components is also visualized through color-

coding in Figure 4.22, represented by five levels. According to their obtained 

completion rates, the components are highlighted as follows: 90-100% in blue (Wall 

4), 70-90% in green (Floor), 50-70% in orange (Wall 1 & 5), 30-50% in yellow (Wall 2), 

and less than 30% in red (Wall 3, 6, 7, 8, and roof). 

Figure 4.22. Progress visualization of building components classified with four 

different colors (blue, green, orange, red) representing different ranges of respective 

completion ratio percentages (100-90, 90-70, 70-50, 50-30, 30-0). 

From the results, it is evident that the obtained completion ratios are accurate 

according to the given point cloud of the as-built scan (Figure 4.18b). The building 

components with fully visible surfaces to the laser scanner (including Wall 4, 5, 6) 

(a) (b) (c) 
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have reported the completion ratios that accurately reflect their as-built status, as 

demonstrated in Figure 4.18a. However, the remaining components with surfaces 

not completely exposed, have a completion that is different from their as-built. For 

example, Wall 1 has its surfaces partially exposed to a laser scanner which is evident 

in its classified detectable model, illustrated in Figure 4.13, and when it is compared 

with the corresponding as-built scan, the identified as-built surface is shown in 

Figure 4.17.  Similarly, the building components: wall 2, 3, and floor, are actually 

completely built but their surfaces are not fully detected, hence respective 

completion ratios are not adhering to that. Although, it is invariant that their 

accurate completion ratios can only be computed if their as-built scan model 

contained the complete as-built surface and that is only possible with another laser 

scan. If we assess the completion ratio of building components against their actual 

progress then it is apparent that relying solely on the completion ratio is insufficient 

progress due to limited coverage of as-built surfaces which is evident in wall 1, 2, 3, 

and floor.  

Similarly, the predicted completion ratios for all of these affected building 

components through the proposed method are very much accurate which is quite 

apparent in the results detailed in Figure 4.21. All of these components have 

precisely reported their projected completion ratio except Wall 3 whose projected 

parameter is relatively not accurate (76%). In this case, wall 3 has a very small 

percentage of the surface being exposed (𝜎𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 =4.6%) which leads to 

projected (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =) 76% completion, however, the maximum 

predicted value is (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =) 98.8%, which is almost equivalent to 

its actual status being completely as-built, that confirmed the utility of prediction 

range.  Overall, the predicted results of the simulated dataset clearly demonstrate 

that as the classified detectable surface completion increases, the accuracy of the 

prediction improves and the results bracket narrows, eventually assisting the 

progress monitoring process. 

It is pertinent to mention here that the built scan corresponding to wall 6 contains 

certain 3D points there that may be associated with different errors, while the wall 

component itself is not actually built at all, as shown in Figure 4.18. These points can 

be recognized as the as-built surface in traditional Scan-vs-BIM comparison and 

contribute to the false positives in the results. However, the proposed method didn’t 

determine the the inaccurate as-built completion corresponding to these error 

points mainly due to the preliminary reasoning stage, as this component was 

intended to be start after the completion of the preceding wall component (wall 5) 

which is still not completed (50%).  
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2. Real-life datasets 

To further assess the proposed method, testing was also performed on the real-time 

datasets to see how the method could aid current practices where extensive data 

acquisition is normally performed. Two real-life datasets representing a hall (R1) and 

a conference room (R2) were processed. The as-planned BIM and as-built scans of 

these two datasets are shown in Figure 4.23. The as-built scans for dataset R1 and 

R2, which contains 3,580,303 and 79,537,667 3D points, were captured through 

indoor laser scanning. The dataset R1 is a geometrically distinctive gabled roof 

structure that covers an area of 84.2 square meters per floor. Similarly, real-life 

dataset R2, whose as-built scan was captured through a Faro Focus 120 scanner, 

covers an area of 18.7 meters square. These scans exhibit slight geometric variations 

from their corresponding BIM models, thus providing an intriguing testing scenario 

for the proposed method. 

(a)  

  

(b)  

 

 

Figure 4.23. 3D Visualization of as-planned BIM and as-built scan for real-time 

datasets: (a) RT-1 and, (b) RT-2. 
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The classified detectable models obtained from these two datasets are shown in 

Figure 4.24. Both models represent small-scale indoor spaces that can be captured 

with good coverage, which is also confirmed through their detectable models. The 

large glass window at the front of dataset R2 is visible in the classified detectable 

model. Generally, the scan point cloud obtained from the windows may not be 

accurate due to their reflective surface, hence, resulting in incorrect as-built 

information regardless of the comparison approach. Consequently, this particular 

component, using its IFC entity (IfcWindow) was excluded from the proposed 

method. It is important to mention here that the occlusion projection, to determine 

the undetectable surface (𝜎𝑢𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝐴𝑠−𝑏𝑢𝑖𝑙𝑡 ) in as-built scan, which is very minor fraction 

of complete undetectable surface (𝜎𝑈𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 ), was not performed during the 

classification of the detectable model for real-life datasets. The underlying reason is 

that the projection approach is not refined to a sufficient level as the determined 

undetectable surfaces through projection was not giving desired results. Hence, the 

occluded surfaces due to external objects present at the scene were not identified. 

Furthermore, the IFC-based BIM models of the real-time datasets did not include the 

time-related information, hence the schedule reasoning was not performed during 

processing in stage 1. 

(a) (b) 

  

Figure 4.24. 3D visualization of classified detectable model obtained for dataset (a) RT-

1 and, (b) RT-2. 

The results of these two datasets, as summarized in Table 4.1, shows the precise as-

built computation of the as-built surface. In actuality, both building structures are 

completely constructed which is also evident from their as-built scan models.  The 

obtained completion ratio of dataset R-1 demonstrates the almost completion of 

building structures where the slight difference can be attributed to a few surface 

areas of as-built scan that are geometrically different from their corresponding 

surfaces of as-planned BIM, hence, they were not recognized. Similarly, dataset R-2 

demonstrates nearly 90% completion which has a moderate difference from the 
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actual 100% that can be associated with the occlusion in its as-built scan which was 

mainly present due to the presence of different external objects (including human 

personnel) at the site, also evident in corresponding as-built scan (Figure 4.23b). 

Furthermore, both datasets have fully detectable surfaces in their detectable model, 

hence their projected and maximum completion ratios are not changed. 

Additionally, a large real-time dataset (R-3) was also analyzed for the as-built 

progress estimation through Scan-vs-BIM comparison. This is a publically available 

ISPRS benchmark dataset [81] that has been used in numerous studies [82-85]. The 

as-built scan model is an indoor point cloud of the building captured through a 

mobile laser scanner, containing 32,597,694 3D points. Similarly, the corresponding 

as-planned IFC-based BIM model containing 69 IFC elements was modeled by 

experts on Autodesk Revit™ software. As compared to other datasets, this dataset 

contains many structural components. The as-built BIM and as-built scan model 

utilized for testing are shown in Figure 4.25a and Figure 4.25b, respectively. 

Table 4.1. Summary of results for simulated and real-life datasets. 

Dataset 

Classified 

detectable Surface 

(%) 

Completion Ratio 

Obtained  

(%) 

Predicted Completion Ratio 

Projected  

(%) 

Maximum  

(%) 

S 68.87 37.59 50.69 52.05 

R-1 100 98.13 98.13 98.13 

R-2 100 89.81 89.81 89.81 

R-3 94.26 93.98 96.73 96.78 

The trajectory of the mobile scanner during data acquisition is shown in Figure 4.26a, 

while the classified detectable model developed according to the data acquisition 

trajectory with observation points all around the model, is shown in Figure 4.26b. 

From the classified detectable model (Figure 4.26b) and classified surface detection 

parameter (Table 4.1), it is obvious that the data acquisition trajectory route was 

remarkably effective as it successfully captured the possibly exposed surfaces of all 

the building components, except those that are situated outside the indoor area with 

surfaces inaccessible for scanning. This also confirmed that the as-built scan of this 

ISPRS benchmark dataset is comprehensive enough to benchmark indoor modeling. 
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(a)  

 

 

 

(b)  

 

Figure 4.25. 3D Visualization of as-planned BIM (a) and as-built scan (b) for real-time 

datasets RT-3.  

While processing the dataset R-3, it was also observed that the method took a 

relatively higher time as compared to other datasets and the reason can be linked to 

the higher number of IFC elements present in it. The proposed method employed a 

component-based approach in which each IFC element is individually processed and 

undergoes iterative ray-casting during detection analysis which eventually increased 

the processing time. If we analyze the results for dataset R3, then it is apparent that 

the proposed method successfully recognized all the as-built surfaces of all the 

component structures with precision. Apart from the accurate results, it is 

interesting to observe that the reporting of detectable surfaces along with its 3D 
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visualization combined with completion ratios is offering insight for the progress 

monitoring team. The absence of this additional information in traditional Scan-vs-

BIM may lead to poor understanding and a misleading impression of achieved 

progress. In addition, the classification of undetected surfaces, as highlighted for RT-

3 in Figure 4.26b, can also serve as a valuable input for the data acquisition process 

in the future. 

(a)  

 

(b)  

 

Figure 4.26. Visualization of the (a) Data acquisition trajectory in plan view and, (b) 

Classified detectable model representing detectable and non-detectable surfaces, for 

real-time datasets RT-3. 
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4.6   Conclusion 
The Scan-vs-BIM comparison has been extensively explored for automated 

construction monitoring of building projects. However, the reliability of the 

traditional methods is often compromised by imprecise results, primarily attributed 

to various errors, especially the occluded surfaces, in the as-built scan.  The method 

proposed in the current chapter is an effort to improve the Scan-vs-BIM comparison 

by addressing these challenges. First, reasoning measures are introduced that 

leverage the semantic information in the IFC-based BIM to detect progress errors 

and inconsistencies. Later, a detectable is developed from the geometrical 

information of IFC-based BIM, which provides a suitable surface for a more precise 

comparison with the as-built scan. The surfaces of the detectable model are then 

classified according to their exposure to data acquisition instrument and occlusion, 

eventually to identify the possible as-built coverage. The additional coverage 

information is further utilized during comparison to not only identify the accurate 

as-built exposed surface but also predict the non-exposed surface. Through these 

significant advancements, the proposed novel method provides a more accurate 

computation of as-built detection with additional parameters, enabling reliable 

progress monitoring of building projects. 

The novel method is tested on a range of simulated and real-time datasets. The 

experimental results highlight its capability in the accurate detection of as-built 

structures with their precise estimation of their progress. Moreover, the 

incorporation of additional progress parameters has allowed valuable insights and a 

more comprehensive understanding of progress information, surpassing the 

limitation of traditional comparison methods that lack these enhancements. This 

also serves as the perfect example of how BIM can be effectively utilized for the 

accurate detection of as-built progress from error-prone scans of buildings. Overall, 

the research study conducted in the current chapter contributes to the advancement 

of construction progress monitoring techniques, offering significant potential to 

improve the accuracy and success of construction projects. The findings of this study 

pave the way for further advancements in construction monitoring techniques, 

ultimately leading to improved efficiency and better decision-making in the 

construction industry.  
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Abstract 
 

BIM has become an intrinsic tool in managing building projects due to its ability to 

comprehensively represent information in digital form. However, using BIM as an 

information exchange tool is still in its infancy, particularly with regard to 

construction progress monitoring beyond time schedule information. The current 

chapter describe the thorough research which focuses on the development of an 

automated progress monitoring framework based on an IFC-based BIM and provides 

an extensive methodology based on a structured task-based approach in accordance 

with the latest IFC4.x schema in four stages. The first stage creates the appropriate 

IFC entities, which are then enriched with their values in the second stage. The third 

stage integrates the actual progress information, which requires regular updating 

from the construction site. Finally, the fourth stage enables the retrieval of progress 

information, which is then reported in a user-friendly format along with the 

estimation of additional progress indicators. The proposed method successfully 

integrated the progress information into their IFC-based BIM models, demonstrating 

its practical use for monitoring construction progress. In the end, a web-based 

application was also developed that made use of progress information stored within 

the standardized hierarchy of the updated IFC-based BIM to facilitate efficient 

reporting. 

Keywords: BIM updating, progress monitoring, IFC-based BIM, automation, Building 

Information Model, scheduling 
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5.1   Introduction 
Effective project management is crucial for the timely completion of building 

projects within schedule, budget, and quality requirements, and it necessitates 

constant monitoring and control of construction progress. Precise and efficient 

monitoring of the as-built status of construction has been widely recognized as a 

critical component of the building process [1-4]. It not only ensures adequate project 

management but also enables the early detection of deviations from the plan, 

providing opportunities to adopt early stage remedial actions, which can result in 

precious time and cost saving [5-7]. Hence, accurate and efficient tracking of the as-

built status of under-construction buildings is critical for successful project control. 

To address this need, Building Information Modeling (BIM), with the capability of 

facilitating communication and collaboration among project stakeholders, has 

evolved as a valuable tool for construction project management [8-11]. 

BIM is a comprehensive and precise representation of a building in digital form. It 

includes information related to geometry, spatial relationships, and non-graphical 

information such as cost and schedule data.  The application of BIM in the 

construction process, particularly in the design and planning phases, has improved 

accuracy, reduced errors, and increased efficiency. The construction industry has 

undergone significant changes with the adoption of Building Information Modeling 

(BIM) technology, which has allowed effective project management through 

enhanced collaboration, communication, and project control [2,12-14]. However, 

despite the benefits and advancements of BIM, its full potential has yet to be realized 

in construction progress monitoring and reporting [15]. A major challenge in this 

regard is the effective exchange and management of information throughout the 

entire construction process. 

Consequently, there is a strong need to explore BIM for communicating progress 

information during construction monitoring eventually unlocking its potential for 

effective project management. The study in this chapter aims to do so by 

investigating the use of Industry Foundation Classes (IFC), an open standard to 

exchange BIM data, as a means of effectively communicating progress information 

through BIM during construction progress monitoring. The IFC is a widely recognized 

open and neutral file format for standardized BIM data and acknowledged by 

prominent international standardization organizations, including the International 

Organization for Standardization (ISO), the European Committee for Standardization 

(CEN), and the German Institute for Standardization (DIN) [16-19]. The IFC standard 

is maintained by the non-profit entity BuildingSMART [20] that facilitates the 

interoperability of BIM software applications. It is described by a general schema, 

also known as the IFC schema, which is used to formally describe the semantic 

information related to buildings and infrastructure [21]. The implementation of IFC-

based BIM models requires the extraction of relevant information through the IFC 

schema while updating the model involves creating, modifying, or updating IFC 
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entities [3]. However, this process can be challenging to perform, especially given 

the complexity of the data and the specific objectives required. 

Recent studies have highlighted the potential of IFC-based BIM for various purposes 

[22-32] including the domain of construction monitoring [2,3,5,33-35]. However, 

there is a gap in the research when it comes to utilizing IFC-based BIM for updating 

progress information beyond just schedule updates. Furthermore, there is a need for 

a comprehensive approach to exchanging progress information using IFC-based BIM, 

leveraging the latest IFC4 schema.  

In comparison to the outdated IFC2×3 schema, the IFC4.x [36] schema represents a 

significant advancement in BIM technology due to several improvements and new 

features; hence, it is a more suitable schema for progress monitoring. One major 

difference is that IFC4.x now uses the ISO 8601 string format for date and time 

definitions, reducing the model footprint. In addition, time-related information such 

as schedule or actual Start/finish/duration, completion, status time, etc. are stored 

in the ‘IfcTaskTime’ entity in IFC4.x, while in IFC2×3, they were stored in 

‘IfcScheduleTimeControl’. Furthermore, the definitions for construction resources 

have been reworked and now include the notion of resource types, which has 

improved the assignment of resources to schedules and costs. Similarly, the concept 

of a process type and relevant subtypes has been introduced, allowing for the 

sequencing of tasks. The new process and cost definitions in IFC4.x significantly 

reduce the model footprint when capturing the geometrical details along with time, 

cost, and other information, making it a more effective schema for progress 

monitoring in BIM projects. 

The research detailed in this chapter focuses on the development of an automated 

progress monitoring framework that adopts a structured task-based approach and 

utilizes the IFC-based BIM to exchange progress information (independent of data 

collection technique), including time, cost, and other additional progress parameters 

for construction progress monitoring. This framework leverages the latest IFC4 data 

to ensure standardized and consistent progress monitoring without any software 

dependency, providing project stakeholders with up-to-date and accurate insights 

into the project’s status. The aim is to improve the accuracy and efficiency of 

progress monitoring and control in construction projects. The methodology 

presented in this chapter involves four main steps: (1) integration of progress-related 

entities with the IFC-BIM; (2) inputting planned parameters according to progress 

information obtained from construction; (3) updating actual progress into the IFC-

based BIM model; and (4) reporting progress information directly from the updated 

BIM. The updated (obtained) IFC-based BIM model reflects both the as-planned and 

as-built progress information, which provides a comprehensive and up-to-date view 

of the project status. In addition, this also allows the progress information to be 

reported with additional progress parameters, such as earned value, estimated 

completion time, and inspection comments, providing a detailed and holistic 
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understanding of the project progress, and ultimately facilitating effective project 

tracking. 

The chapter is organized as follows: Section 2 provides a literature review of the 

existing research on construction progress monitoring related to IFC-based BIM and 

focuses on the methodologies used and the progress parameters monitored. The 

proposed methodology for automated progress monitoring using IFC-based BIM is 

detailed in the Section 3 while the Section 4 presents the results and related 

discussion of the implementation of methodology. Finally, Section 5 concludes the 

chapter by summarizing the key contributions of the study and highlighting its 

significance for the field of construction progress monitoring. 

5.2   Literature Review 
Efficient progress monitoring and control are critical elements of successful 

construction project management [4,6,37-40]. Numerous studies have expressed 

the significance of accurate monitoring in the field of construction management by 

highlighting its pivotal role in ensuring project completion within specified timelines 

and budgets, while also emphasizing its ability for the timely identification of any 

potential issues that may arise during the construction process [3,5,41-43]. 

Efficient construction progress monitoring requires up-to-date and accurate as-built 

progress information. However, the traditional methods for collecting and 

processing this information are time-consuming and labor-intensive, leading to the 

possibility of missing or inaccurate information [42,44-48]. Although automated 

progress monitoring systems are being developed with time to address this issue, 

there are still significant challenges in performing the exchange of progress 

information in terms of automation, accuracy, standardization, and interoperability 

[33]. This highlights the necessity for a proficient solution that allows the automated 

exchange of progress information from a construction site into a centralized digital 

platform, such as BIM. The current research exploits the use of BIM to facilitate 

information exchange for automated construction progress monitoring. 

To achieve this goal, it is important to understand the potential benefits of BIM in 

the construction industry. BIM is positioned at the forefront of digitization initiatives 

in the construction industry and is becoming progressively integrated with other 

digital technologies as part of the broader Industry 4.0 framework [49-51]. There are 

numerous studies demonstrating the transformative impact of Building Information 

Modeling (BIM) on the design, construction, and operation of buildings, where it 

serves as a valuable repository of information to enhance these processes [8,52-54]. 

Moreover, digital planning and construction supported by BIM have the potential to 

yield significant cost reductions of 13% to 21%, while the operation phase may see 

cost reductions ranging from 10% to 17% [19,55]. Additionally, BIM integration with 

other technologies also presents an opportunity to revolutionize infrastructure 

construction and maintenance [56].  



 

150 

Consequently, BIM has gained popularity in construction projects, with several 

countries mandating its use in large projects. In Europe, there has been a substantial 

increase in BIM applications from 2012 to 2017 [57,58]. Therefore, it is essential to 

explore the potential of integrating BIM with automated progress monitoring 

systems to optimize the construction progress monitoring process, which can result 

in better project outcomes and increased efficiency. 

Building Information Modeling (BIM) is a digital representative of a construction 

project, providing comprehensive information about its physical and functional 

characteristics. The information content of BIM is diverse and tailored to specific 

project requirements, implying that it is not standardized. BIM encompasses both 

3D geometry and semantics, where the former provides the cornerstone for 

consistent technical drawings and enables clash detection [59] and collision 

resolution during the design phase [60]. On the other hand, semantics complements 

the meaning of objects by providing alphanumeric data, including mechanical and 

thermal properties, associations, materials, aggregation, and other relationships 

between objects in the model [61]. Consequently, various analyses, simulations, and 

advanced controls can be performed on BIM model, facilitating effective 

collaboration, coordination, and decision-making throughout the project lifecycle 

[52].  

In the realm of construction management, 4D BIM (BIM with time-related schedule 

information) has improved project management efficiency. It has been utilized for 

progress monitoring through comparison with 3D scan models [43,62,63]. Other 

studies have demonstrated its use in quality monitoring and project scheduling 

improvements by combining it with quality information models and tabu-search 

algorithms, respectively [64,65]. Although 4D BIM offers benefits for on-site 

construction management, it also poses challenges such as labor-intensive and time-

consuming updating of models to reflect as-built conditions during construction 

[33,66] and difficulties in interoperability between stakeholders, phases, and BIM 

software [67,68]. Additionally, 4D BIM models rely on specific software, which can 

make information inaccessible once separated from the software, leading to 

inefficiencies in managing buildings and creating a dependence on specific tool 

vendors [69,70]. 

To address these challenges, it is vital to establish standardized BIM content with 

comprehensive guidelines and standards to govern BIM content across the 

construction industry. However, the successful adoption of BIM relies heavily on 

integrating mono-discipline BIM models into a cohesive, multi-disciplinary model. 

This demands the development of standardized and interoperable information 

exchange between individual models using specialized BIM software tools to achieve 

a neutral and universal data format [52,71]. This challenge can also be addressed 

using the IFC data format, which is globally recognized as the standard for BIM data 

exchange and sharing. 
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IFC is an internationally accepted standard for data sharing in construction and 

facility management. It allows BIM data to be exchanged and shared between 

various software applications used in construction and facility management for both 

buildings and infrastructure. For the purpose of information exchange and data 

sharing, the IFC standard serves as the basis and provides a universal and consistent 

file format. IFC is an open and non-proprietary schema based on the EXPRESS 

language for data specifications, ensuring a consistent approach to data transfer. 

This eventually enables some certified BIM software applications to convert their 

BIM models into the neutral IFC model, facilitating interoperability and collaboration 

among different stakeholders in the construction industry [16,52]. Despite some 

drawbacks, such as the incomplete association of modeled elements with semantics 

and potential loss of information during export to the IFC format [42,72,73], the IFC-

based BIM schema continues to be enhanced and is widely employed in 

contemporary construction projects. The IFC standard has been widely utilized and 

studied in various areas of the construction industry, such as data standards for 

facilities management classes [22], energy consumption [23,24], virtual construction 

[25,26], and project performance evaluation [27]. In addition, several scholars have 

extended the IFC standard for construction management information, including the 

integration of completion and design information [28], plan information storage 

[29], quantity take-off [30,31], GIS integration [74], and daily 4D BIM visualization 

[32].  

In the field of construction progress monitoring, Golparvar-Fard, Pena-Mora and 

Savarese [2] and Son, Kim and Kwon Cho [35] employed the IFC-based BIM, with 

manually integrated time-related schedule information, for progress detection by 

comparing it with reconstructed as-built point cloud obtained from photographs and 

laser scans, respectively. Similarly, there are some studies [3,5] that performed the 

registration of an as-built model with the IFC-based BIM model where geometrical 

details were extracted from the latter to obtain matching features for alignment. 

Although these methods utilized the IFC-based BIM as the as-planned model, they 

did not address the exchange of progress information using IFC-based BIM models. 

In addition, Hamledari, McCabe, Davari and Shahi [33] developed an automated 

method using the IFC-based BIM for updating time-related schedule information. 

This method involved adjusting the task-object relationship based on the level of 

progress details, updating actual progress entities according to their completion 

ratios, and estimating the non-completed planned entities based on actual progress. 

Although this method automates the updating process, it is limited in its scope as it 

only focuses on time-related schedule information and does not incorporate cost or 

other crucial factors for effective progress monitoring. Furthermore, the method was 

based on the IFC2×3 schema, which may not be compatible with the latest IFC4.x 

schema as the latter schema natively supports progress information with new 

entities and different approaches. This highlights a research gap that demands the 

development of a comprehensive and integrated approach that leverages the full 
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potential of BIM for construction progress monitoring. It also requires the 

investigation of BIM as an information exchange tool by incorporating different types 

of progress parameters such as time, cost, or any additional information using the 

latest IFC4.x schema. 

The current study aims to address this gap and explores the application of IFC-based 

BIM models for construction progress monitoring. A methodology is proposed that 

the model with current progress information, including scheduling, cost, and other 

key performance indicators, to improve the accuracy and effectiveness of project 

monitoring. The proposed methodology not only enables the updating of progress 

information but also supports the addition of semantic information such as 

comments, notes, and delay reasons. In the end, the visualization and reporting of 

progress information from the updated IFC-based BIM model through the use of 

color-coded 3D models, graphs, and other critical information is also demonstrated. 

With these measures, the research aims to provide a comprehensive solution for 

information exchange to facilitate effective construction project monitoring. 

5.3   Methodology 
The proposed methodology presents a systematic approach that mainly consists of 

four stages, as shown in Figure 5.1. The first stage involves the integration of 

progress-related entities with the IFC-BIM according to progress information 

obtained from construction. In the second stage, the planned parameters are 

inputted into the relevant entities of the IFC-based BIM while the third stage allows 

the updating of actual progress into the IFC-based BIM model. Finally, the last stage 

details the reporting of progress information directly from the updated BIM to 

provide stakeholders with up-to-date and accurate insights into the project’s status. 

Using these different stages, the proposed methodology enables the effective 

communication of progress information between IFC-based BIM and construction 

sites for efficient and accurate construction progress monitoring. 

 

Figure 5.1. Flowchart of the proposed methodology. 
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The proposed methodology requires the input of planned and actual progress from 

the construction site. The planned progress comprises the IFC-based BIM model, the 

planned progress schedule, and the budgeted cost schedule. Similarly, the actual 

information includes the actual progress, actual cost information, and comments 

related to individual building components obtained from the construction site. 

The construction of a building includes various physical components such as walls, 

doors, slabs, etc. The overall completion of the building depends on the individual 

progress of each of these components so that any delays or cost overruns can be 

traced back to their performance. These building components are constructed 

through a set of different work activities (or tasks), and the completion status of the 

component is signified by the advancement of these tasks. For example, the 

construction of a wall may involve tasks such as layout, bricklaying, and plastering, 

which together determine the completion status of the wall. An effective and 

accurate approach to monitoring construction progress requires a framework that is 

centered around the individual tasks of the building components. In all stages of the 

proposed methodology, a task-based approach is adopted in which the progress 

entities for tasks, building components, and the overall project are designed 

accordingly. 

IFC schema for progress monitoring 
The proposed methodology leverages the IFC schema for exchanging progress 

information during construction monitoring. This IFC schema [75] follows an object-

oriented data model that organizes concepts into four layers: core, interoperability, 

domain, and resource. The (first) core layer includes the most general classes, such 

as IfcRoot, IfcRelationship, and IfcObject, that are used to define objects, 

relationships, and properties. Similarly, the interoperability layer includes classes 

that specialize in the product extension schema and provide more detailed 

information. The domain-specific layer describes classes for particular domains, 

while the resource layer further describes objects at other levels. A key feature of 

the schema is inheritance between classes, with the IfcRoot class serving as the initial 

root class from which other classes are derived in three directions: conceptual and 

physical objects (IfcObjectDefinition), relations a objects (IfcRelationships), and 

object properties (IfcPropertyDefinition). The schema is organized in a hierarchy, 

with layers grouped according to their function and specialization. 

An IFC entity consists of attributes and their corresponding values. The attributes 

represent the type of information, while its corresponding values provide specific 

details about the object being represented. This allows for a standardized and 

structured way of representing building information throughout the construction 

process, making it easier to exchange and interpret data between different software 

applications and stakeholders. The proposed method is in line with the IFC4.3 

schema, and the IFC entities used in the method are shown in Figure 5.2 with their 

hierarchy. 
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Figure 5.2. IFC entities related progress information in hierarchy. 

In the IFC-based BIM model, building components such as walls, slabs, columns, and 

doors can be represented by corresponding subtype IFC entities of ‘IfcBuiltElement’, 

such as ‘IfcWall’, ‘IfcSlab’, ‘IfcColumn’, and ‘IfcDoor’, respectively. The work tasks 

involved in the construction of these components are represented by the ‘IfcTask’ 

entity. Furthermore, a suitable relationship entity such as ‘IfcRelAssignsToProduct’ 

is used to express their association between entities. In cases where there are 

multiple activities or tasks, additional ‘IfcTask’ entities can be assigned and linked to 

the main task entity through a nest relationship ‘IfcRelNests’ entity. Furthermore, 

property entities can also be linked to store additional information. An example of 

the IFC representation of tasks with their defined sequences involved in the 

construction of the wall is illustrated in Figure 5.3. 
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Figure 5.3. An example of entities associated with a building component in the IFC-

based BIM model. 

The utilization of IFC-based BIM not only enables the updating of the progress 

entities related to schedule, cost, and other indicators but also other semantic 

information such as comments, important notes, delay reasons, etc. Furthermore, it 

is not necessary for the planned information, such as the planned schedule or cost 

schedule, to be integrated into the IFC-based BIM model beforehand, as the 

proposed method deals with this challenge (stages 1 and 2) in an automated way. 

Similarly, the proposed method not only updates the IFC-based BIM with progress 

information (stages 2 and 3) but also enables the retrieval of progress information in 

the form of progress indicators for construction progress monitoring in the last stage. 

5.3.1   Integrating the Progress Entities into IFC-Based BIM 
The first stage of the proposed methodology involves upgrading the IFC-based BIM 

by integrating additional IFC entities to accommodate progress information related 

to time, cost, and other relevant data. The original BIM model may lack the necessary 

progress entities; hence, the model is adapted by automating the creation process 

of standardized progress entities using the IFC4 schema. The resulting BIM model 

incorporates these IFC entities to comprehensively represent planned and actual 

progress information.  

In this stage, the IFC-based BIM and planned progress information are processed to 

output a revised BIM model that includes progress-related entities. The aim is to 
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minimize the overall size of the output IFC BIM and prevent an increase in the 

complexity of IFC entities. To achieve this goal, the process is formulated to create 

only the necessary IFC entities for adjusting the maximum progress information into 

the suitable IFC4 entities without any duplication. 

To include any progress information in BIM, the appropriate IFC entities are created 

along with their linkage with other entities within an IFC-based BIM. A verification 

step has been implemented to establish that the appropriate IFC entity, preferably 

an IFC4 native entity, is opted for specific progress information while preventing the 

duplicate creation of that entity. This step determines the presence of the entity 

responsible for storing the specific information in the input BIM model. In the event 

that the entity is absent, the process of its creation is initiated that utilizes the native 

IFC4-based entities, as demonstrated in Figure 5.4. 

 

Figure 5.4. Flowchart of verification step to create an IFC entity based on progress 

information. 

The proposed method, through this approach, facilitates the creation of progress 

entities within any IFC-based BIM, regardless of the presence of an integrated time 

or cost schedule. Additionally, the method remains effective irrespective of whether 

the IFC-based BIM model is being processed for the first time or not. For example, in 

the case when the same BIM model is again processed for updating or retrieval of 

progress information, the proposed method will skip this creation stage as all the 

required entities were already created during the first processing. In this way, the 

creation of progress entities is standardized and efficient while ensuring compliance 

with the IFC4 schema at all stages. 

The proposed method utilizes the IFC4 schema to store progress information in the 

IFC model by creating appropriate IFC entities and linking them with other organized 

entities in the hierarchical structure. Each IFC entity has a defined number of IFC 

attributes and may have additional IFC properties. The IFC attributes, with their fixed 

names defined by buildingSMART, play an important role in the identification of the 

entities. The IFC entities inherit attributes from their supertype or parent entities in 

the hierarchy (demonstrated in Figure 5.5), in addition to their directly attached 

entity attributes. This hierarchical organization of information ensures consistency 
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while maintaining data integrity in the IFC model. By following this standardized 

structure, the creation and retrieval of progress entities can be streamlined and 

automated, making the process more efficient and accurate. 

Figure 5.5 highlights the hierarchy of some object classes. The object classes IfcSlab 

and IfcWall are the subtypes of IfcBuiltElement and thus share the common 

attributes (highlighted in green and blue) between them, with the exception of their 

direct attributes. In contrast, IfcTask also shares some attributes (highlighted in 

green) with both IfcSlab and IfcWall; however, only up to the IfcObject level. As a 

result, IfcTask has the same initial attributes as the other two classes, while the 

remaining attributes differ based on their position in the hierarchical structure. 

 

Figure 5.5. IFC entities IfcSlab, IfcWall, IfcTask having common attributes based on 

their hierarchical structure. 

To add new information to the IFC-based BIM, it is necessary to create a new entity 

with the appropriate IFC subtype. This defines the set of attributes and properties 

applicable to the entity. The entity can be linked to other entities using required 

relationship classes, such as ‘IfcRelAssignsToControl’, allowing the establishment of 

relationships between entities and ultimately enabling the organization of 

information using the IFC schema. Compliance with the IFC schema is critical while 

creating new entities to ensure that the correct attributes and properties are 

included and the relationship with other entities is established correctly, which in 

turn facilitates the organization of information using the IFC schema. 
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The IFC-based entities in the proposed method are always created with IfcRoot 

attributes, such as GlobalId, Name, and Description. The GlobalId attribute is 

populated with a 22-character string based on the IfcGloballyUniqueId type. The 

OwnerHistory attribute records the identification details of the person responsible 

for creating the entities and is populated using the IfcOwnerHistory entity. The Name 

and Description attributes are filled with relevant information pertaining to the 

entity. 

The process of integrating progress information into the IFC-based BIM requires a 

specific approach to ensure that the relevant entities are created and linked 

appropriately. This involves creating separate IFC entities for time, cost, and other 

information and establishing the necessary connections between them. The detailed 

procedures outlined below for each type of information are essential for ensuring 

that the resulting BIM model comprehensively represents progress information. 

5.3.1.1   Time-Related Entities 
The IFC4 schema already supports scheduling information for individual building 

components. Hence, the proposed method creates appropriately supported entities 

to store the relevant information as per IFC standards. The inclusion of time-related 

information into BIM includes creating native entities such as IfcTask, ifcTaskTime, 

IfcWorkPlan, IfcWorkSchedule, IfcWorkCalendar, etc. for each building component 

‘IfcBuiltElement‘ along with their respective relationships, as shown in Figure 5.6. 

 

Figure 5.6. Structure of IFC-based entities created to include time-related progress 

information. 

The proposed method is a task-based approach; hence, the entities are created 

accordingly. The Algorithm 5.1, as shown below, outlines the steps to create time-

related IFC entities in a Building Information Model (BIM) to include information on 

planned and actual scheduling parameters. It inputs the IFC-based BIM and the 

planned work schedule to output an updated BIM with the necessary schedule 
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entities created in accordance with the work activities or tasks. The algorithm creates 

entities for (i-th) work main tasks and their (n-th) sub-tasks under each building 

component, establishes their sequential relationship, and links them with relevant 

time-related schedule entities such as task time, work plan, schedule, and calendar. 

Algorithm 5.1: Creating time-related IFC entities into IFC-based BIM model 

 Input: IFC-based BIM, Planned Time-related Schedule 

 Output: Updated IFC-based BIM 

1 for each ‘IfcBuiltElement 𝒊’ in IFC-based BIM do  

2  create an ‘IfcTask 𝒊’ entity 

3  create an ‘IfcTaskTime 𝒊’ entity 

4  link ‘IfcTask 𝒊’ with ‘IfcTaskTime 𝒊’ as TaskTime 

5  create relationship ‘IfcRelAssignsToProduct’ to assign ‘IfcTask 𝒊’ with 

‘IfcBuiltElement 𝒊’ 

6  if  sub-activities exist then 

7  create relationship ‘IfcRelnests’ to assign ‘IfcTask 𝒊’ as RelatingObject 

8   for each sub-activity do 

9    create ‘IfcTask 𝒏’ entity 

10    create ‘IfcTaskTime 𝒏’ entity 

11    link ‘IfcTask 𝒏’ with ‘IfcTaskTime 𝒏’ as TaskTime 

12    link ‘IfcRelnests’ with ‘IfcTask 𝒏’ as RelatedObjects 

13   end for 

14  end if 

15 end for 

16 create relationship ‘IfcRelSequence’ to establish sequential relationship 

between all ‘IfcTask’ entities 

17 create ‘IfcWorkSchedule’ 

18 create relationship ‘IfcRelassignsToControl’ to assign ‘IfcWorkSchedule’ 

with all ‘IfcTask’ entities 

19 create ‘IfcWorkPlan’  

20 create relationship ‘IfcRelassignsToControl’ to assign ‘IfcWorkPlan’ with 

all ‘IfcTask’ entities 

21 create relationship ‘IfcRelAggregates’ to assign ‘IfcWorkPlan’ with 

‘IfcWorkSchedule’ 

22 create ‘IfcWorkCalender’ 

23 create relationship ‘IfcRelassignsToControl’ to assign ‘IfcWorkCalender’ 

with all ‘IfcTask’ entities 
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The workflow of the algorithm is briefly explained below. 

The algorithm starts by looping through each ‘IfcBuiltElement’ in the IFC-based 

Building Information Model (BIM). For each i-th building component represented by 

the ‘IfcBuiltElement’ entity, the algorithm creates an ‘IfcTask’ entity that represents 

a specific piece of work that is to be accomplished. The attribute ‘IsMilestone’ of 

‘IfcTask’ represents whether the particular task is critical for completion; it is not 

optional, and it is initially set to ‘False’ with the intention to revise it at the final 

updating stage. To associate the time-relation information with the task, a new 

entity ‘IfcTaskTime’ is created and linked to the ‘IfcTask’ through the TaskTime 

attribute such that IfcTask.Tasktime = IfcTaskTime. Through this linkage, the time-

related information of tasks, including their start and end dates as well as duration, 

is stored in the attributes of ‘IfcTaskTime’ that are illustrated in Figure 5.6. The 

‘IfcRelAssignsToProduct’ relationship entity is then created to assign the ‘IfcTask’ to 

the ‘IfcBuiltElement’ through the attributes in such a way that 

IfcRelAssignsToProduct.RelatingProduct = IfcBuiltElement and 

IfcTask.HasAssignments  =  IfcRelAssignsToProduct. 

Next, if there are multiple sub-tasks present under the main task in planned 

information, then the already created ‘IfcTask’ acts as the main task, and the sub-

tasks are created separately. The algorithm creates another loop to go through each 

sub-task. For each n-th sub-task, the algorithm creates a new ‘IfcTask’ and 

‘IfcTaskTime’ entity and links the ‘IfcTaskTime’ to the ‘IfcTask’. The algorithm then 

creates the ‘IfcRelNests’ relationship entity to assign the sub-task to the main task of 

the building component. 

After creating all the entities for ‘IfcBuiltElement’, the algorithm creates the 

‘IfcRelSequence’ relationship entity to establish the sequential relationship between 

‘IfcTask’ entities according to planned tasks using the attributes RelatingProcess and 

RelatedProcess that represent the predecessor and successor tasks, respectively. To 

manage the work schedule, the algorithm creates an ‘IfcWorkSchedule’ entity and 

assigns it to all ‘IfcTask’ using the ‘IfcRelAssignsToControl’ relationship entity, linking 

the entities through relationship IfcRelAssignsToControl.RelatingControl = 

IfcWorkSchedule. Similarly, an ‘IfcWorkPlan’ entity is then created to represent the 

detailed plan of the work schedule, assigns it to all ‘IfcTask’ using the 

‘IfcRelAssignsToControl’ relationship entity, and aggregates it to the 

‘IfcWorkSchedule’ using the ‘IfcRelAggregates’ relationship entity. Finally, the 

algorithm concludes by creating an ‘IfcWorkCalender’ entity to represent the 

working days and hours and assigning it to all ‘IfcTask’ entities in the same way, using 

the ‘IfcRelAssignsToControl’ relationship entity. 

The algorithm creates the time-related information for tasks (under the building 

component) and sub-tasks (under the main tasks) with appropriate entities in a 

standardized form. However, the project-based time-related entities are not created 
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as they already exist in IFC-based BIM through a project-related IfcPropertySet 

(Pset_ConstructionResource) and are updated based on tasks and subtasks in the 

later stage. 

5.3.1.2  Cost-Related Entities 
The proposed method creates cost-related entities in the form of resources and cost 

items. The resource entities, such as ‘IfcContructionMaterialResource’ are assigned 

for the cost of tasks, while the ‘IfcCostItem’ entities are employed to represent the 

costs of building components and the overall project. Figure 5.7 illustrates the 

structure of IFC entities being created to represent the cost parameters for 

construction progress monitoring. 

 

Figure 5.7. The Structure of IFC-based entities was created to include cost-related 

progress information. Entities on the left and right sides representing the planned and 

actual cost information. 

Algorithm 5.2, as shown below, creates the appropriate cost-related entities along 

with the corresponding relationships to retain the clearly defined cost information 

of each work task, building component, and overall project in a standardized form. 

The algorithm is processed in two phases to create IFC entities, both for planned and 

actual progress, respectively. In each phase, the ‘PredefinedType’ attribute of the 

‘IfcCostSchedule’ entity is set to ‘Budget’ and ‘USERDEFINED’ to specify the cost of 

planned or actual work, respectively. Hence, two entities, indicating the cost 

associated with planned and actual work, will be created in the end for each task or 

building component, as shown in Figure 5.7, where the left and right sides, 

respectively, represent the planned and actual entities created to represent the cost. 

Additionally, the program assumes that the input IFC-based BIM has already been 

processed with the previous algorithm (Algorithm 5.1) and therefore contains the 

relevant ‘IfcTask’ entities that will be further utilized in this algorithm. 
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Algorithm 5.2: Creating cost-related entities into IFC-based BIM model 

 Input: IFC-based BIM, Planned Cost-Related Schedule 

 Output: Updated IFC-based BIM 

1 create an ‘IfcCostSchedule’ entity 

2 create an ‘IfcRelAssignsToControl’ entity 

3 link ‘IfcRelAssignsToControl’ with ‘IfcCostSchedule’ as RelatingControl 

4 create an ‘IfcCostValue 𝑡’ entity 

5 create an ‘IfcPhysicalQuantity 𝑡’ entity 

6 create an ‘IfcCostItem 𝑡’ entity 

7 link ‘IfcCostItem 𝑡’ entity with ‘IfcCostValue 𝑡’ and ‘IfcPhysicalQuantity 𝑡’ entity 

8 create a relationship ‘IfcRelnests’ entity to assign ‘IfcCostItem 𝑡’ as RelatingObject 

9 for each ‘IfcBuiltElement 𝑖’ in IFC-based BIM do 

10  create an ‘IfcCostValue 𝑖’ entity 

11  create an ‘IfcPhysicalQuantity 𝑖’ entity 

12  create an ‘IfcCostItem 𝑖’ entity  

13  link ‘IfcCostItem 𝑖’ entity with ‘IfcCostValue 𝑖’ and ‘IfcPhysicalQuantity 𝑖’ entity 

14  
create a relationship ‘IfcRelAssignsToControl’ entity to assign ‘IfcCostItem 𝑖’ 

with ‘IfcBuiltElement 𝑖’ 

15  link ‘IfcRelAssignsToControl’ with ‘IfcCostItem 𝑖’ as RelatedObjects 

16  link ‘IfcRelnests’ entity with ‘IfcCostItem 𝑖’ as RelatedObjects 

17  if  sub-activities exist then 

18   for each sub-activity do 

19    create an ‘IfcCostValue 𝑛’ entity 

20    create an ‘IfcPhysicalQuantity 𝑛’ entity 

21    create an ‘IfcConstructionMaterialResource 𝑛’ entity 

22    
link ‘IfcConstructionMaterialResource 𝑛’ with ‘IfcCostValue 𝑛’ and 

‘IfcPhysicalQuantity 𝑛’ entity 

23   
 

 

create a relationship ‘IfcRelAssignsToProcess 𝑛’ entity to assign 

‘IfcTask 𝑛’ with ‘IfcConstructionMaterialResource 𝑛’ 

   end for 

24  else 

25  create an ‘IfcCostValue 𝑖’ entity 

26  create an ‘IfcPhysicalQuantity 𝑖’ entity 

27  create an ‘IfcConstructionMaterialResource 𝑖’ entity 

28  
link ‘IfcConstructionMaterialResource 𝑖’ with ‘IfcCostValue 𝑖’ and 

‘IfcPhysicalQuantity 𝑖’ entity 

29  
create a relationship ‘IfcRelAssignsToProcess 𝑖’ entity to assign ‘IfcTask 𝑖’ 

with ‘IfcConstructionMaterialResourc𝑒 𝑖’ 

30  end for 
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The details of this algorithm are as follows. 

The algorithm begins by creating an ‘IfcCostSchedule’ entity with a value of a ‘Pre-

defined Type’ attribute, which has the type of ‘IfcCostScheduleTypeEnum’, set at 

‘Budget’ or ‘USERDEFINED’ corresponding to the planned or actual type of 

information, respectively.  

Subsequently, the relationship entity ‘IfcRelAssignsToControl’ is established for the 

connection of the ‘IfcCostSchedule’ entity (IfcRelAssignsToControl.RelatingControl = 

IfcRelAssignsToControl) with the cost item entities that will be created for each 

building component. Next, the algorithm creates an ‘IfcCostItem’ entity and links it 

with the ’IfcCostValue’ entity to represent the total cost of the building. Later, an 

‘IfcCostItem’ entity along with ‘IfcCostValue’ are created to represent the cost 

information for each ‘IfcBuiltElement’. This ‘IfcCostItem’ is then assigned to 

‘IfcBuiltElement’ using the relationship ‘IfcRelAssignsToControl’ entity such that 

IfcRelAssignsToControl.RelatingControl = IfcCostItem and 

IfcBuiltElement.HasAssignments = IfcRelAssignsToControl. 

Later in the algorithm, for each work activity, the ‘IfcTask’ entity linked to the 

‘IfcBuiltElement’, resource entities are created. The process begins by creating the 

‘IfcConstructionMaterialResource’ entity along with the linked ‘IfcCostValue’ and 

‘IfcPhysicalQuantity’ entities. This entity is then linked with ‘IfcTask’ using the 

relationship ‘IfcRelAssignsToProcess’ entity, where 

IfcRelAssignsToProcess.RelatingProcess = IfcTask and 

IfcConstructionMaterialResource.HasAssignments = IfcRelAssignsToProcess. 

Finally, all the individual ‘IfcCostItem 𝑖’ entities of building components are nested 

with the ‘IfcCostItem 𝑡’ to ensure their linkage for the representation of the total 

building cost. Similarly, these entities are linked with the initially created 

‘IfcCostSchedule’ using the relationship ‘IfcRelAssignsToControl’. In this way, all the 

required cost-related entities are created either for cost, planned, or actual progress. 

5.3.1.3   Additional Information 
During construction progress monitoring, it is common to collect additional 

information that may not fit into standard IFC entities. This information, such as 

progress-related comments and non-standard progress parameters, can be stored in 

customed '‘IfcPropertySets’ to accommodate project-specific data. This approach 

allows construction stakeholders to ensure that valuable project information is not 

overlooked or lost and can be utilized for progress tracking and analysis. 

To enable the communication of additional progress information, such as textual 

comments and estimated finish dates, IfcPropertySets can be created using 

Algorithm 3. The name, description, and value of the IfcPropertySets can be 

customized for the specific types of information being stored. For example, an 

IfcPropertySet can be created for progress comments with the name ‘Progress 
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Comments’ and a value in the IfcText type. Similarly, an IfcPropertySet can be 

created for estimated finish dates with the name ‘EstimatedFinish’ and a nominal 

value (e.g., 2022-12-27T14:57:48.803492) set as a normal date in the IfcDateTime 

representation. 

Algorithm 5.3: Creating IFC-based entities for additional progress information into IFC-
based BIM 

 
Input: IFC-based BIM, Additional information details (Name, Description and     

Value) 

 Output: Updated IFC-based BIM 

1 for each ‘IfcBuiltElement 𝑖’ in IFC-based BIM do  

2  create an ‘IfcPropertySingleValue’ entity 

3  
Input Name, Description and Value into ‘IfcPropertySingleValue’ attributes 

Name, Description, Nominal Value 

4  create an ‘IfcPropertySet’ entity 

5  link ‘IfcPropertySet’ with ‘IfcPropertySingleValue’ as HasProperties 

6  
create relationship ‘IfcRelDefinesByProperties’ to assign ‘IfcPropertySet’ with 

‘IfcBuiltElement’ 

7 end for 

 
The algorithm creates an ‘IfcPropertySingleValue’ entity with attributes such as 

name, description, and NominalValue to store additional information associated 

with it and later assign it to the building components. This allows for any information 

that is not represented in the native IFC schema to be stored in the IfcPropertySets 

of the required components. By utilizing IfcPropertySets and 

IfcPropertySingleValues, all relevant progress-related information can be accurately 

documented and made available for analysis in BIM models. 

5.3.2   Inputting the Planned Progress Information into IFC-
Based BIM 

Once the progress-related entities are created and linked in the IFC-based BIM 

model, the proposed method inputs the planned information into the task and the 

building component-based entities of BIM model. The planning information mainly 

includes the time and cost schedules of planned tasks. To achieve this, the planned 

parameters of tasks are stored in the relevant entities, followed by the estimation 

and updating of relevant building components. This process enables the updating of 

building component parameters, which are essential for tracking project progress. 

The current stage is designed to only enrich those planned entities that do not 

require regular updating. These entities, which are also shown in Figure 5.6 and 

Figure 5.7, are detailed in Table 5.1.  
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Table 5.1. Details of planned progress entities. 

Level of 
Information 

IFC Entity 
Attribute/ 
Property 

Data Type Decription 

Task(s)/ 
SubTask(s) 

IfcTaskTime 

ScheduleStart IfcDateTime 
Schedule start time 
of the task/subtask 

ScheduleFinish IfcDateTime 
Schedule finish time 
of the task/subtask 

ScheduleDuration IfcDuration 
Schedule duration of 

the task/subtask 

StatusTime IfcDateTime 

Time at which the 
status of the 

task/subtask was 
last updated 

IfcConstructionM
aterialResource 

BaseCosts 
IfcMonetary

Measure 
Planned cost of the 

task 

Building 
Component 

IfcTaskTime 

ScheduleStart IfcDateTime 
Schedule start time 

of the building 
component 

ScheduleFinish IfcDateTime 
Schedule finish time 

of the building 
component 

ScheduleDuration IfcDuration 
Schedule duration of 

the building 
component 

StatusTime IfcDateTime 

Time at which the 
status of the 

building component 
was last updated 

IfcCostItem CostValues 
IfcMonetary

Measure 
Planned cost of 

building component 

To perform this, the required planning information from the construction site is 

acquired in the form of a list that includes the respective schedule information. The 

time-related planned information includes the start and finish dates of tasks along 

with their duration, while the cost-related information lists the total cost planned for 

the completion of the tasks. 

This information is then inputted into BIM using the appropriate IFC type through a 

program that identifies the tasks from the list using the name and then enriches the 

corresponding entities or attributes of the corresponding task present in BIM with 

the planned information. From the corresponding task in the schedule list, the 

program later infers all the ‘IfcTaskTime’ and IfcContructionMaterialResource’ that 

are the sub-types of the ‘IfcTask’ entity and inputs their attributes. 
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The algorithm for the enrichment of planned entities is explained in Algorithm 5.4. 

Initially, the task-level entities are inputted from the given planned information, i.e., 

time and cost-related parameters of the task from the schedule list. The start date, 

finish date, and duration of each task are enriched into the relevant attributes 

(ScheduleStart, ScheduleFinish, ScheduleSDuration) of the ‘IfcTaskTime’ entity under 

the corresponding ‘IfcTask’. Similarly, the task cost is stored in the attribute 

(AppliedValues) of the ‘BaseCosts’ entity under ‘IfcConstructionMaterialResource’, 

which is linked with the corresponding ‘IfcTask’. The information regarding the task 

is critical for the timely completion of the building and is directly stored in the 

corresponding ‘IfcTask’ entity. In the case of building components containing several 

subtasks, the main task duration is also updated based on the attributes of the sub-

task by using the following Equations (1)–(3): 

Algorithm 5.4: Inputting planned information into IFC-based BIM 

 Input: IFC-based BIM, Planned time-related Schedule, Planned cost Schedule 

 Output: Updated IFC-based BIM 

1 for each ‘IfcBuiltElement 𝑖’ in IFC-based BIM do  

2  if  sub-activities exist then 

3   for each sub-activity do 

4    Input the attributes of ‘IfcTaskTime 𝑛’ entity under ‘IfcTask 𝑛’ entity 

5    
Input the attributes of ‘IfcCostValue 𝑛’ entity under 

‘𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑛
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 ’ entity 

6   end for 

7   Update the attributes of ‘IfcTaskTime 𝑖’ entity under ‘IfcTask 𝑖’ entity 

8  else 

9   Input the attributes of ‘IfcTaskTime 𝑖’ entity under ‘IfcTask 𝑖’ entity 

10   
Input the attributes of ‘IfcCostValue 𝑖’ entity under  

‘𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 ’ entity 

11  end if  

12  
Update the attributes of ‘IfcCostValue 𝑖’ entity under   ‘𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 ’ 

entity 

13 end for 

IfcTaskTime 𝑖.ScheduleStart =  𝑚𝑖𝑛[ 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑛 . 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑡𝑎𝑟𝑡 ]𝑛=1,2,3..,𝑁 (10) 

IfcTaskTime 𝑖.Schedulefinish =  𝑚𝑎𝑥[ 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑛 . 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑡𝑎𝑟𝑡 ]𝑛=1,2,3..,𝑁 (2) 

IfcTaskTime 𝑖.ScheduleDuration = IfcTaskTime 𝑖.Schedulefinish − 

IfcTaskTime 𝑖.ScheduleStart] 
(3) 
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In the above equations, IfcTaskTime 𝑛 and IfcTaskTime 𝑖  represent the ‘IfcTaskTime’ 

entity of sub-task ‘n’ and main task ‘i’ associated with the building component, 

respectively, while min and max are the minimum and maximum parameters from 

the N number of total sub-tasks having attributes: ScheduleStart, ScheduleFinish, and 

ScheduleDuration. 

In the end, the ‘IfcCostItem’ entity representing the cost of the building component 

is also estimated for updating using Equation (4). It is based on the total costs of all 

the task(s) that are required for the completion of a building component, and the 

task costs are stored under the ‘IfcConstructionMaterialResource’ entity. 

𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑

. 𝐶𝑜𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝑠

=  {
∑(𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑛

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 . 𝐵𝑎𝑠𝑒𝐶𝑜𝑠𝑡𝑠)           𝑖𝑓𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑒𝑥𝑖𝑠𝑡

𝑁

𝑛=1

𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑  . 𝐵𝑎𝑠𝑒𝐶𝑜𝑠𝑡𝑠                         𝑒𝑙𝑠𝑒

 
(4) 

 

In the above equation, 𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑and 

𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑛
𝑃𝑙𝑎𝑛𝑛𝑒𝑑  are the planned resource entities of 

i-th task and the n-sub task respectively whereas 𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑  is the entity 

representing the total planned cost of the i-th building component. 

The values of the progress parameters are stored in their relevant entities in the form 

of suitable data types. For example, ‘ScheduleStart’ and ‘ScheduleFinish’ attributes 

should be updated with values having the IfcDateTime data type, which has the 

representation of YYYY-MM-DDThh:mm:ss defined by ISO 8601. The data types of 

other planned entities are given in the column ‘Data type’ of Table 5.1. 

These entities are those that do not update regularly. Hence, the current stage is 

only performed if these entities are empty, which is possible for the first time. This 

stage is designed to only input the planned entities and does not need to be executed 

every time if the planned entities are already there. 

5.3.3   Updating the Actual Progress into IFC-Based BIM 
The objective of this stage is to enrich the actual progress-related IFC entities in the 

BIM model based on the progress information obtained from the construction site. 

It not only updates the task and building component-based entities according to the 

given actual progress but also revises the project-based entities to express the 

overall building progress, as shown in Figure 5.8. The updating stage mainly involves 

inferring the required entities, estimating their values, and then adding progress 

values to them. 
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Figure 5.8.  An example of IFC content. 

The actual information includes the progress of completion (or completion ratios) 

and the actual cost of the tasks that are either under progress or completed, along 

with the inspection date. This actual information is sufficient to estimate the 

concerned attributes and the respective entities that are being updated. The details 

of the actual progress-related entities, also shown in Figure 5.6 and Figure 5.7, are 

given in Table 5.2. 

The procedure to update the IFC-based BIM model in this stage is outlined in 

Algorithm 5.5, while the estimation required for this updating, along with the 

procedure for all three steps, is detailed below: 

Algorithm 5.5: Updating actual information into IFC-based BIM 

 Input: IFC-based BIM, Actual progress Information 

 Output: Updated IFC-based BIM 

1 for each ‘IfcBuiltElement 𝑖’ in IFC-based BIM do  

2  if sub-activities exist then 

3   for each sub-activity do 

4    Update the attributes of ‘IfcTaskTime 𝑛’ entity under ‘IfcTask 𝑛’ entity 

5    
Update the attributes of ‘IfcCostValue 𝑛’ entity under 

‘𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑛
𝐴𝑐𝑡𝑢𝑎𝑙 ’ entity 

6   end for 

7   Update the attributes of ‘IfcTaskTime 𝑖’ entity under ‘IfcTask 𝑖’ entity 

8  else 

9   Update the attributes of ‘IfcTaskTime 𝑖’ entity under ‘IfcTask 𝑖’ entity 

10   
Update the attributes of ‘IfcCostValue 𝑖’ entity under 

‘𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 ’ entity 

11  end if  

12  
Update the attributes of ‘IfcCostValue 𝑖’ entity under   

‘𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 ’ entity 

13  
Update the attributes of ‘IfcCostValue 𝑖’ entity under   ‘𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖

𝐴𝑐𝑡𝑢𝑎𝑙 ’ 

entity 

14  Update the attributes ‘IfcTask 𝑖’ entity 

15  Update the propertyset ‘EstimatedFinishDate 𝑖’ entity 

16 end for 

17 Update the propertyset ‘Pset_ConstructionResource’ entity 
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Table 5.2. Details of actual progress entities. 

Level of 
information 

IFC Entity 
Attribute/ 
Property 

Data Type Decription 

Task(s)/ 
SubTask(s) 

IfcTaskTime 

Completion 
IfcPositiveRatioM

easure 
Completion ratio of the 

task/subtask 

ActualStart IfcDateTime 
Actual start time of the 

task/subtask 

ActualFinish IfcDateTime 
Actual finish time of the 

task/subtask 

ActualDurat
ion 

IfcDuration 
Actual duration of the 

task/subtask 

StatusTime IfcDateTime 
Time at which the status of 
the task/subtask was last 

updated 

IfcConstructionMate
rialResource* 

BaseCosts 
 

IfcMonetaryMeas
ure  

Planned cost of the 
construction material 

resource 

IfcConstructionMate
rialResource* 

BaseCosts 
 

IfcMonetaryMeas
ure  

Base cost of the 
construction material 

resource 

Building 
Component 

IfcTaskTime 

Completion 
IfcPositiveRatioM

easure 
Completion ratio of the 

building component 

ActualStart IfcDateTime 
Actual start time of the 

building component 

ActualFinish IfcDateTime 
Actual finish time of the 

building component 

ActualDurat
ion 

IfcDuration 
Actual duration of the 
building component 

StatusTime IfcDateTime 
Time at which the status of 

the building component 
was last updated 

IfcTask 

IsMileStone IfcBoolean 
Indicates if the task is a 

milestone 

Status IfcLabel 
Status of the task 

(NOTSTARTED/ STARTED/ 
COMPLETED) 

IfcPropertySet 
EstimatedFi

nish 
IfcDateTime 

Estimated finish time of the 
property set 

IfcCostItem*  CostValues  
 

IfcMonetaryMeas
ure  

Cost value of the cost item 

Overall 
Project 

Pset_ConstructionRe
source 

ScheduleCo
mpletion 

IfcNormalisedRati
oMeasure 

Planned completion ratio 
of the overall project 

ActualCom
pletion 

IfcNormalisedRati
oMeasure 

Actual completion ratio of 
the overall project 
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ScheduleCo
st 

 
IfcMonetaryMeas

ure  

To-date scheduled cost of 
the overall project 

ActualCost 
 

IfcMonetaryMeas
ure  

To-date actual cost of the 
overall project 

5.3.3.1   Tasks/Sub-Task 
As the planned information for tasks/subtasks is already inputted into the IFC-based 

BIM, the actual progress entities are estimated based on actual progress to update 

fully completed or partially completed tasks. For time-related updates, the 

‘IfcTaskTime’ entity is updated with different attributes related to actual progress, 

such as ‘Completion’, ‘ActualStart’, and ‘ActualFinish’, while the resource entity 

‘IfcConstructionMaterialResource’ with attribute ObjectType = ‘Actual’ is designated 

for the actual cost. Algorithm 5.6, as shown below, estimates the actual attributes 

based on the completion ratio of each task using their ‘IfcTaskTime’ entity. 

Algorithm 5.6: Updating IfcTaskTime entity using actual progress information 

 Input: ‘IfcTaskTime’ entity, Time-related progress information 

 Output: Updated IFC-based BIM 

1 If IfcTask.Tasktime.ActualStart = Nil then 

2  if  IfcTask.Tasktime.Completion > 0 and IfcTask.Tasktime.Completion < 1 then 

3   IfcTask.Tasktime.ActualStart = InspectionDate 

4   IfcTask.Tasktime.Statustime= InspectionDate 

5  end if 

6 end if 

7 If IfcTask.Tasktime.ActualFinish = Nil then 

8  if  IfcTask.Tasktime.Completion = 1 then 

9   IfcTask.Tasktime.ActualFinish = InspectionDate 

10   
IfcTask.Tasktime.ActualDuration = IfcTask.Tasktime.ActualFinish - 

IfcTask.Tasktime.ActualStart 

11   IfcTask.Tasktime.Statustime = InspectionDate 

12  end if 

13 end if 

5.3.3.2   Building Components 
After updating the entities of individual tasks, the progress entities of individual 

building components are processed. This includes updating the ‘IfcTaskTime’ and 

‘IfcCostItem’ entities associated with each component according to the estimated 

parameters from tasks. If that building component contains only one task, then this 

task will act as the main task, having attributes already updated in the last step. 

However, if there are subtasks in the building component, then the actual attributes 

of the ‘ifcTasktime’ entity will be estimated. The actual start, finish, and duration 

attributes are estimated similarly to the planned attributes in Equations (1)–(3). 



 

171 

Later, the completion of the building component is estimated using the following 

Equation (5), which takes the weighted average of the included tasks based on their 

schedule duration: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

=
𝛴 (𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑛. 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑥  𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑛. 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

𝛴 (𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑛. 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
 

(5) 

In the above equation, 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑖
𝐴𝑐𝑡𝑢𝑎𝑙  is the actual completion ratio of 

particular building component ‘i’ whereas 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 and 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 are 

representing the completion ratio and schedule duration of sub-task ‘n’, 

respectively. Based on the estimated completion value, the ‘Status’ attribute of 

‘IfcTask’ associated with the building component is also updated. It is set as 

‘NOTSTARTED’ and ‘COMPLETED’ for completion values of 0 and 1, respectively, 

while ‘‘STARTED’ is for values in between. In the end, the critical path method is 

performed using all the time-related information about building components to 

calculate the building components that are critical for completion. Correspondingly, 

these building components were marked as critical by updating the “IsMilestone” of 

their associated ‘IfcTask’ entity to “True” and the non-critical components are 

marked as “False”. 

Regarding the cost of a building component, already created entities ‘CostItem’ for 

actual progress under each ‘IfcBuiltElement’ are updated based on the cost values 

of individual tasks represented with the ‘IfcConstructionMaterialResource’. The 

actual cost is estimated using the following Equation (6): 

    𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 . CostValues = 

∑ (𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑛
𝐴𝑐𝑡𝑢𝑎𝑙 . BaseCosts x Completion 𝑛)

𝑁
𝑛=1  

(6) 

In the above equation, 𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝐴𝑐𝑡𝑢𝑎𝑙  Represents the actual cost of building 

component ‘i‘ that has been spent to date, whereas 

𝐼𝑓𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑛
𝐴𝑐𝑡𝑢𝑎𝑙  represents the actual cost of sub-task 

‘n’ in that component with a completion ratio Completion 𝑛. The attributes 

CostValues and BaseCost of both entities are linked to ‘IfcCostValue’ to represent 

their cost.  

In the end, the estimated finish date is also calculated for each building component 

‘i’ using time attributes based on the actual progress rate of all the individual tasks 

involved in that component, using the following Equation (7): 

    EstimatedFinishDate 𝑖  

= 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . ActualStart   

+  
(InspectionDate −  𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . ActualStart) 

I𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . Completion
 

(7) 
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5.3.3.3   Project 
After updating the entities of all the individual building components with progress 

information, the overall progress of the project is estimated for updating the 

supported IFC entity. It includes the up-to-date total completion and cost 

parameters for both planned and actual progress. These project-based parameters 

are updated in the native IfcPropertySet ‘Pset_ConstructionResource’ defined for 

storing the parameters to track the project's progress over time. In this property, the 

to-date planned and actual completion progress is stored in properties 

‘ScheduleCompletion’ and ‘ActualCompletion’, whereas the to-date total planned 

and actual cost are stored under ‘ScheduleCost’ and ‘ActualCost’, respectively. 

Initially, the parameters for up-to-date planned and actual completion are estimated 

based on the individual progress parameters of building components. To date, actual 

completion of the project can be calculated using Equation (8), which considers the 

weighted average of individual completion ratios of building components for actual 

progress. Similarly, the to-date planned completion ratio of the project is calculated 

using Equation (9), which takes into account the overall time-related project 

parameters. 

To − date Actual Completion

=
Σ (𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛  x  𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . 𝐴𝑐𝑡𝑢𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

Σ (𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . 𝐴𝑐𝑡𝑢𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
 

(8) 

To − date Planned Completion

=  
 (InspectionDate −  𝑚𝑖𝑛[ 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑡𝑎𝑟𝑡 ]𝑖=1,2,3..,𝐼)

  𝑚𝑎𝑥[ 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐹𝑖𝑛𝑖𝑠ℎ ]𝑖=1,2,3..,𝐼 −  𝑚𝑖𝑛[ 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖 . 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑡𝑎𝑟𝑡 ]𝑖=1,2,3..,𝐼
 

(9) 

In the above equations, 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖  is the time-related progress entity of 

building component ‘i’ having attributes 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑡𝑎𝑟𝑡 , 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑡𝑎𝑟𝑡, 𝐴𝑐𝑡𝑢𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 whereas 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒 

represents the date of progress inspection performed at the construction site. 

After that, the to-date total planned and actual costs are estimated. The cost item 

entities are defined in the project 𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑡
𝑃𝑙𝑎𝑛𝑛𝑒𝑑  and 𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑡

𝐴𝑐𝑡𝑢𝑎𝑙  

represent the sums of cost items of individual building components due to the 

nested relationship. As all the planned costs are already inputted while the actual 

costs are only added with time as per the actual progress, hence, 

𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑡
𝑃𝑙𝑎𝑛𝑛𝑒𝑑  and 𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑡

𝐴𝑐𝑡𝑢𝑎𝑙  entities are representing the total 

planned cost and to-date actual cost (total), respectively. Therefore, the individually 

planned completion of building components until the inspection date is initially 

estimated using Equation (10), and then, based on that to-date total planned cost of 

the project, it is computed using Equation (11). 
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𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑

= {

                                                   1                                                   𝑖𝑓 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒 > 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖. 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐹𝑖𝑛𝑖𝑠ℎ

 (𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒 −  𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖. 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑡𝑎𝑟𝑡)

 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖. 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
      𝑒𝑙𝑖𝑓 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒 > 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑖. 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑡𝑎𝑟𝑡  

0                                     𝑒𝑙𝑠𝑒

 
(10) 

    𝑇𝑜 − 𝑑𝑎𝑡𝑒 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 = Σ (𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 . CostValue x Completion 𝑖

𝑃𝑙𝑎𝑛𝑛𝑒𝑑) (11) 

     To-date Actual Cost =  𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑡
𝐴𝑐𝑡𝑢𝑎𝑙. 𝐶𝑜𝑠𝑡𝑉𝑎𝑙𝑢𝑒 (12) 

In the above equation, ScheduleStart, ScheduleFinish, and ScheduleDuration are 

the attributes of the ‘IfcTaskTime’ entity associated with the main task ‘IfcTask’ of 

building component ‘i‘ to estimate its completion ratio 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑  till 

inspection date, which is represented as 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒. Similarly 

𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑡
𝑃𝑙𝑎𝑛𝑛𝑒𝑑  and 𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑡

𝐴𝑐𝑡𝑢𝑎𝑙  are representing the cost item nest 

with the individual cost items of building component ‘i’. It is pertinent to mention 

here that the proposed method does not create new entities for time- or cost-related 

information for the overall project as the project IfcPropertyset 

(Pset_ConstructionResource) already has the entities of these project-based 

progress information. 

After estimating all these parameters, they are updated into their respective entities 

with appropriate data types as given in Table 5.2. The use of proper and relevant 

data types and units of measure for each attribute is crucial in ensuring the accuracy 

of the information added to the IFC-based BIM model.  

5.3.4   Reporting the Progress from Updated IFC-Based BIM 
The proposed method not only updates progress information in the BIM model but 

also extracts this information for efficient and user-friendly progress reporting. The 

extracted information can be used to assess progress by comparing the planned 

progress information with actual information. Additionally, the extracted progress 

parameters are processed based on their combination to find the earned value 

parameters for valuable insights about progress to ensure the project stays within 

budget and on schedule. Moreover, this stage makes use of BIM information to 

create more automated representations of extracted progress through 2D charts 

and 3D models, providing a clearer visualization of the project than traditional 

reporting. Overall, this approach enhances project monitoring by utilizing BIM 

technology to provide more accurate and detailed progress tracking. 

The updated progress information is retrieved by accessing the corresponding IFC 

entities that were processed during the update. These entities are organized in the 

standard hierarchical structure of the IFC schema, which provides a clear path to 

access them. The proposed method links the progress-related entities to their 

corresponding building components. For example, for a particular building 

component ‘IfcSlab’, the time-related progress information is accessed through the 
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subtype ‘IfcTaskTime’ entity of ‘IfcTask’ with linkage (IfcTask → 

IfcRelAssignsToProduct → IfcSlab), while the cost information is accessed through 

the subtype entity ‘IfcCostValue’ of ‘IfcCostItem’ respectively with linkage 

(IfcCostItem → IfcRelAssignsToControl → IfcSlab). The building component entities 

(e.g., IfcSlab, IfcWall, IfcDoor, etc.) are the subtypes of ‘IfcBuildingElement’ that are 

present under the hierarchy ((IfcBuiltElement → IfcElement → IfcProduct → 

IfcObject → IfcObjectDefinition → IfcRoot) in the IFC schema. The extracted progress 

information from the entities is later used to report the progress monitoring of the 

construction project. In this way, information is directly retrieved from the 

concerned entities in the same way they were accessed to store information, which 

ultimately ensures the accurate and reliable communication of information within 

BIM. 

The retrieved progress information can be further utilized to perform the earned 

value analysis, which is a well-accepted and common progress measurement in the 

construction industry [76]. The earned value analysis provides additional progress 

indicators that act as an early warning of performance problems. Integrating this 

analysis into the current method can facilitate the reporting stage. The updated BIM 

model contains both cost and schedule information, which is stored in the 

appropriate work breakdown structure in the BIM model being linked through the 

IFC schema. This presence of information entities in this standardized form enables 

the computation of earned value indicators such as variances (cost/schedule, 

variance at completion), performance indices (cost/schedule performance index), 

and forecasts (estimate at completion, estimate to completion). The proposed 

method also performs the earned value analysis of individual building components 

to analyze each component for comprehensive project tracking. The approach to 

performing the earned value analysis is illustrated in Figure 5.9. 

 
Figure 5.9.  Flowchart to estimate the earned value parameters. 

Initially, the earned value measures are calculated, which include the budgeted cost 

of work scheduled (BCWS), the budgeted cost of work performed (BCWP), and the 

actual cost of work performed (ACWP). The formulas to calculate these measures for 

i-th building components using their IFC entities are given in Equations (13)–(15). 

𝐵𝐶𝑊𝑆 𝑖 = 𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 . CostValues  x   Completion 𝑖

𝑃𝑙𝑎𝑛𝑛𝑒𝑑
 (13) 
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𝐵𝐶𝑊𝑃 𝑖 =  𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 . CostValues  x   Completion 𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
 (14) 

𝐴𝐶𝑊𝑃 𝑖 =  𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 . CostValue (15) 

After calculating these measures, the variances and the performance indices are 

calculated. The variances, including the schedule variance (SV 𝑖= BCWP 𝑖 − BCWS 𝑖) 

and cost variance (CV = BCWP 𝑖 − ACWP 𝑖) are calculated. Similarly, the performance 

indices including the schedule performance index (SPI 𝑖 = BCWP 𝑖/BCWS 𝑖) and cost 

performance index (CPI 𝑖 = BCWP 𝑖/ACWP 𝑖) are calculated.  

After calculating the earned value parameters for the individual building 

components, earned value analysis at the project level is performed, which includes 

the calculation of earned value parameters based on the progress parameters of the 

overall project. The earned value measures for the project are computed by 

summing up all the measures of building components, including BCWS 𝑡 = 

∑ (𝐵𝐶𝑊𝑆 𝑖)
𝐼
𝑖=1 , BCWP 𝑡 = ∑ (𝐵𝐶𝑊𝑃 𝑖)

𝐼
𝑖=1 , 𝐴CWS 𝑡 = ∑ (𝐴𝐶𝑊𝑃 𝑖)

𝐼
𝑖=1 . Additionally, 

the budget at completion (BAC = Total Planned Cost) is also calculated. After that, 

the variances and performance indices are calculated using these cumulative 

measures. Furthermore, the forecast parameters are also calculated, including the 

‘Estimate To Complete’ (𝐸𝑇𝐶 =  𝐸𝐴𝐶 − 𝐴𝐶𝑊𝑃 𝑡) and ‘EstimateAtCompletion’ 

(EAC = 𝐴𝐶𝑊𝑃 𝑡 + ((𝐵𝐴𝐶 −  𝐵𝐶𝑊𝑃 𝑡)/𝐶𝑃𝐼 𝑖) values describing the estimated cost 

to complete remaining works and the estimated total cost required for completion, 

respectively. These calculated earned value parameters can also be updated into an 

IFC-based BIM using IfcPropertySet if required. 

The progress parameters extracted from the updated BIM model, along with the 

estimated additional parameters, can be utilized to report the construction progress 

of the project. However, additional efforts were made to further exploit the 

capabilities of the BIM model to facilitate the reporting process and make it more 

user-friendly. By leveraging BIM model’s rich (non-progress-related) information, 

progress information can be reported more efficiently and accurately using various 

techniques such as bar charts, Gantt charts, and 3D model visualization. This 

approach not only enhances the visual presentation of the progress but also provides 

a better understanding of the project’s status to all the stakeholders involved. Table 

5.3 provides details on the different types of reporting utilized for different types of 

progress information to report construction progress. It is worth noting that this is 

solely based on BIM information without relying on any third-party software. 
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Table 5.3. Details of different reporting types for different categories of progress 

information. 

Category of 

Progress 

Information 

Type of 

Reporting 
Purpose 

Time-related 

progress 

information 

3D color-

coded 

visualization 

Provides a quick overview of time performance and highlights 

areas where the project is ahead/behind schedule for individual 

building components and the overall project. 

3D 

visualization 

of model 

Allows for visual inspection of progress and identification of 

potential issues for individual building components and the 

overall project 

2D Gantt 

chart 

Shows the overall project schedule, critical path, and delays for 

individual building components and the overall project 

Cost-related 

progress 

information 

3D color-

coded 

visualization 

Provides a quick overview of cost performance and highlights 

areas where costs are over/under budget for individual 

building components and the overall project 

2D bar chart 
Allows for a detailed comparison of planned versus actual 

costs for individual building components and overall project 

Earned value 

parameters 

3D color-

coded 

visualization 

Provides a quick overview of earned value indicators and 

highlights components where indicators are over/under budget 

for individual building components 

Table form 

Provides a detailed analysis of project performance by 

comparing planned versus actual costs and schedule for 

individual building components and overall project 

Line graph 
Shows the trend of earned value parameters over time for 

individual building components and overall project 

Additional 

information -

estimated 

finish date 

Textual form 

Provides a simple and easy-to-understand summary of project 

status and estimated completion date for individual building 

components and overall project 

3D 

visualization 

of model 

Shows the expected completion of activities in the coming 

week/month for individual building components 

Additional 

information-

textual 

comments 

Textual form 

Allows for a detailed explanation of project status and any 

issues that may be affecting progress for individual building 

components and overall project 

An automated program was developed to extract the necessary information on 

building components and generate the appropriate construction progress 

monitoring reports. Time-related progress information is extracted from the entities 

 𝐼𝑓𝑐𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒𝑖, Pset_ConstructionResource, and the cost-related information is 

extracted from entities 𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 ,
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𝐼𝑓𝑐𝐶𝑜𝑠𝑡𝐼𝑡𝑒𝑚 𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 , Pset_ConstructionResource. Earned value parameters and 

additional information are extracted from IfcPropertySet. To create the 2D charts, 

graphs, and textual information, the relevant progress parameters are extracted into 

a suitable arrangement accordingly. To perform the 3D visualization, the geometrical 

information of each building component is extracted from the BIM model using the 

different subtypes of geometrical entities such as ‘IfcRepresentation’, 

‘IfcGeomtricRepresentationItem’, ‘IfcSpatialElement’, and ‘IfcOpeningElement’. 

Later, a 3D mesh model is developed using the geometrical information where the 

individual building components are color-coded according to their progress 

indicators obtained from comparison or earned value parameters. In addition, the 

mesh model can also be used to show only the planned or actual completed building 

components for more detailed understanding, if desired. 

In the end, a web-based application was developed to allow for real-time reporting 

of all this progress information from the BIM model in the recommended format of 

texts, 2D charts, and 3D models. The application enables users to view the progress 

information of building components at any given time and to track the project’s 

progress status efficiently. This approach enhances the visual presentation of 

progress information and provides stakeholders with a better understanding of the 

project’s status. 

5.4   Result and Discussion 
The proposed method was tested on several IFC-based BIM models to assess the 

exchange of progress information. A program was developed in Python language 

based on the proposed methodology which was tested on a laptop with an Intel i7-

8850H CPU and 16 GB RAM. A BIM model, as shown in Figure 5.10, is a standard 3D 

BIM without any additional IFC entities, making it ideal for testing, which focuses on 

incorporating progress-related entities. This same building model is also used in all 

the previous chapters as well. 

 
Figure 5.10. Geometrical visualization of an IFC-based BIM model illustrating various 

building components. 
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To perform BIM updating effectively, the actual progress information was obtained 

after the Scan-vs-BIM comparison. The proposed method was applied to the original 

IFC-based BIM model to obtain the updated model integrated with the progress 

entities according to the planned progress information, including time, cost, and 

other additional parameters. A segment of the IFC code snippet is shown in Figure 

5.11 from the updated BIM model, in which some newly integrated progress entities 

of the building component (#197) are populated with the planned and actual 

progress parameters. If we examine the given code, then it is evident that the new 

entities were created according to the proposed framework. The time-related 

parameters stored in the ‘IfcTaskTime’ entity (#2269) being linked to its 

corresponding task entity (#2270) are present along with the other time-related 

entities. Similarly, the planned and actual cost entities (IfcCostItem), represented by 

#2339 and #2394, respectively, linked to their respective cost schedules (#2265, 

#2267) are brought to the forefront. These time and cost-related entities, through 

their respective task (#2270) and schedule (#2265, #2267) entities, are linked to their 

corresponding building component (#197) through relationship entities (#2271, 

#2266, #2268). 

 
Figure 5.11. IFC code snippet expressing the newly integrated IFC entities. 

Figure 5.12 shows the progress information related to that building component 

(#197), retrieved from BIM model, which is reported in the Python environment. The 

estimated actual progress parameters, related to time, cost, and other additional 

information in the form of an expected finish date, corresponding to the 

approximately 56% completion of the component, are also presented. Although the 

actual costs were relatively high, the estimated actual cost for the component (#197) 

is lower, mainly due to the fact that the component is more than half built. 

Furthermore, the earned value indicators are also estimated to individually analyze 

each component for improved project tracking. The performance indices of the 

component (#197) are less than 1 for both schedule and cost, highlighting how much 

the component is behind/over the planned schedule/cost. 
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Figure 5.12. Retrieval of progress information for the building component (#197) using 

Python. 

Furthermore, the same updated BIM file was exported into the external IFC-based 

software to confirm the successful storage and accessibility of information with the 

other applications. The building component (#197) along with its attributes are 

highlighted in Figure 5.13, where the BIM model was exported in ‘Open IFC Viewer 

version 23.3.0 [77], as also used in another study [78]. The parameter 

‘EstimatedFinish’ is also noticeable, which was stored under the property set mainly 

because this additional information did not fit into the standard entities of the IFC 

schema. The successful export of the updated BIM model in the external software 

also confirms that the proposed method performed the successful update according 

to the IFC schema, as minor deviation while creating and updating IFC entities can 

corrupt the complete IFC file. 
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Figure 5.13.  Building component (#197) highlighted in the exported BIM model, along 

with its attribute details, viewed in the external software (Open IFC Viewer, version 

23.3.0). 

In the end, the progress results were also color-coded according to the completion 

ratios of building components to assess the progress made. For this purpose, the 

geometrical information of the components is extracted into mesh form, and then 

four colors are assigned based on their completion ratios: 0–30% (red), 30–50% 

(yellow), 50–70% (orange), 70–90% (green), and 90–100% (blue). The color-coded 

models of the updated BIM model are illustrated in Figure 5.14 from different 

viewpoints. 

(a) (b) 

  

Figure 5.14. Visualization of building components using different colors (red, yellow, 

orange, green, and blue) corresponding to their respective completion ratios (0–30%, 

30–50%, 50–70%, 70–90%, and 90–100%) in two different viewpoints. 
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Furthermore, a web-based application was also developed to effectively report the 

progress information from the updated IFC-based BIM model. The application only 

requires the updated BIM model and then details all the progress-related 

information in real-time through the different types of reporting. A screenshot of the 

application is shown in Figure 5.15, displaying the project-level progress details of 

the updated BIM model in the form of charts, graphs, and 3D visualization. The 

developed application makes use of different progress parameters present within 

the standardized hierarchy of IFC-based BIM to facilitate reporting. It is pertinent to 

mention here that the proposed method does not store the individually earned 

parameter values, mainly to ensure a possible reduction of the IFC file size. The 

parameters are computed in real-time based on the already-stored schedule and 

cost parameters; however, they can be stored in a separate property set if required. 

 

Figure 5.15. A screenshot of the developed web-based application demonstrating the 

project-level progress details of the updated BIM model. 

The effectiveness of the proposed method was further evaluated by applying it to 

other IFC-based models, including the ISPRS model studies dataset [79]. These BIM 

models, as shown in Figure 5.16(a) and Figure 5.16(b), are representing a university 

and fire brigade building respectively. The IFC-based BIM model of first dataset 

contains 69 IFC elements while the second IFC-based BIM model contains 157 IFC 

elements. Both the model were modeled by experts on Autodesk Revit™ software. 

In the evaluation, random progress information was exchanged with BIM models to 

access its updating framework, as the proposed method enables the incorporation 

of input data from various sources. The method successfully updated the progress 

information for these models as well. Figure 5.16 shows the visualization of the two 

ISPRS models, in which their building components are color-coded according to their 

time-related progress details after exchanging progress information. 
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    (a) 

 
    (b) 

 

Figure 5.16. Color-coded visualization of two different BIM models (a,b) highlighting 

the progress status of their building components: 0–30% (Red), 30–50% (Yellow), 50–

70% (Orange), 70–90% (Green), and 90–100% (Blue). 

From the results, it is evident that the proposed method is capable of updating IFC-

based BIM models with progress information. The method processed the IFC models 

by creating the new entities, accurately estimating their progress parameters, 

updating existing entities, and then successfully reporting the progress information 

in a user-friendly manner. These IFC-based BIM models, updated with progress 

information, can be utilized for construction progress monitoring, facilitating the 

automated transfer of information in construction. Similarly, the development of a 

web-based application also proved that progress details can be effortlessly reported 

without any reliance on third-party commercial software if the information is stored 

in a structurally organized way through a standard framework, eventually leveraging 

the potential of BIM technology in construction projects. This proposed method 

holds significant potential for enhancing the efficacy of other construction progress 

monitoring studies [3,5,42,63] by providing them with a standardized solution for 

information exchange. 

5.5   Conclusions 
BIM provides an extensive and accurate digital representation of a building in the 

form of geometrical and semantic information that describes its physical and 

functional characteristics. However, its potential is not fully realized in construction 

progress monitoring and reporting. IFC is a widely recognized open standard for BIM 

exchange; however, its utility needs to be addressed for exchanging progress 
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information based on the latest IFC4.x schema, which encompasses not only time-

related information but also cost and other non-standardized information. In the 

current chapter, a research study is presented that detailed a comprehensive 

methodology with a task-based approach to exchange the progress information of 

under-construction buildings with the BIM model using the latest IFC4 schema in four 

stages. The progress information is integrated into the BIM model through structural 

organization in the form of appropriate IFC entities. Apart from the standard 

progress information, including the time-related schedule or cost, the method also 

allows the integration of additional semantic information that may not fit into the 

defined IFC entities to ensure that valuable information is not overlooked. To enable 

effective progress monitoring, the method not only updates the BIM model but also 

allows the efficient retrieval of progress information, which is reported in the form 

of additional progress indicators, including earned value analysis, to offer valuable 

insights. Furthermore, it is also ensured that the estimated progress values of the 

building components and project are being revised according to their corresponding 

tasks or sub-tasks. 

The testing demonstrated the successful updating of BIM models to accommodate 

the progress information while demonstrating a web-based application that reads 

the intricate information from the IFC entities and then reports it in a user-friendly 

format. The exchange of progress information using the IFC-based BIM is a significant 

step towards automation in construction progress monitoring that enables the 

ability to accurately track construction progress and timely identify deviations, which 

eventually improves decision-making, increases efficiency, and enhances project 

management.  
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6.1   Concluding Remarks 
The dissertation focuses on improving automated construction progress monitoring 

by addressing the challenges during different phases of model-based assessment. 

The main contributions of the research are outlined as follows: 

Chapter 2 presents a novel registration approach that aims to exploit the orthogonal 

geometry of building structures containing an abundance of plane segments with 

high robustness and accuracy. Initially, it extracts the plane segments from the 

models and then clusters them according to their directions, which are then 

processed to identify the possible rotation matrices for the registration of models. 

Later, the correspondence between potential plane segments in each rotation matrix 

is measured through directional and translational assessment to identify the matrix 

with the highest matching. In the end, the translation vector is calculated from the 

relatively best-matched plane segments.  

This technique was tested with a variety of datasets that represented the different 

types of buildings. The results demonstrated the successful registration of all the 

datasets with a high degree of accuracy. The errors such as noise and occlusions were 

also analyzed and they slightly affected the registration success. During the testing, 

it was found that the technique is robust but the processing time is dependent on 

the plane segments present in the models. In the end, the incomplete as-built scan 

was also tested for registration to confirm its application for partially constructed 

buildings through model-based assessment. The method exhibited reliable results 

for incomplete models too with the only requirement that both models should have 

at least three non-parallel matching plane segments. From the standpoint of keeping 

track of the construction progress of under-construction buildings, this technique 

represents a significant advancement as it ensures their application in model-based 

assessment.  

In the next chapter, another registration technique is developed that also makes use 

of the dominant planar geometry of building structures, similar to the earlier 

technique described in Chapter 2. The new approach instead of directly employing 

the plane segments of the building, leverages them to extract the evident corner 

points from both models. The procedure to extract plane segments from a BIM 

model is also detailed in which direct geometrical details from BIM are directly 

obtained using the IFC schema that is later processed to create the plane segments. 

The extracted corner points are then processed through a RANSAC-based pairwise 

assessment to identify their potential matching points. The assessment involves a 

pruning of the corresponding pair of corner points from the model through a 

sequence of discriminative geometric invariants concerning their distance, angle, 

rotation, and translation. The potential matching points are further evaluated 

through their transformations to identify the actual matching corner points. In the 

end, the most optimal rotation and translation parameters are estimated from the 
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transformation of matched corner points that offer the maximum overlap of both 

models. In addition, this technique also addressed the first research question (RQ 1) 

as it allows the application of a BIM model as an as-planned model and details the 

process of extracting lossless geometrical information to develop the respective 3D 

model using the IFC schema.   

The method was also tested with numerous datasets having different geometries 

and it successfully validated the novel approach for registration. Results confirmed 

the method's high degree of precision, largely because it was possible to identify 

multiple matching corner points from which the most precise transformation 

parameter is estimated. The technique also proved to be capable of registering as-

built scans of under-construction buildings with their BIM models with the exception 

that the models must have distinct corner points. 

Chapter 3 also compares the corner point-based registration method to the plane-

based method which is presented in Chapter 2.  It is pertinent to mention here that 

both registration methods are accurate as their dependence on plane segments 

reduces their sensitivity to noise and outliers, however, the corner point-based 

method is slightly more accurate. Similarly, both methods also detect the matching 

plane segments leading towards the identification of the corresponding building 

components, eventually assisting their individual inspection during progress 

monitoring. Furthermore, the application of both methods in partially constructed 

building structures is also successful, provided some boundary conditions are met. 

The plane-based method requires the presence of at least three plane segments in 

distinct directions in the as-built and the surfaces of plane segments corresponding 

to their matching plane segments in the as-planned model. The corner point-based 

method demands at least two corner points with one point located at the 

asymmetric position should be present in the as-built scan for matching, hence, 

requires the presence of six plane segments in total.  

In summary, the plane-based method is better suited for datasets having scan 

models that have a limited number of structural components, even though the 

corner point-based method is relatively more accurate. Chapters 2 and 3 addressed 

the second research question (RQ 2) by introducing the two successful techniques 

tailored for under-construction building structures. 

Chapter 4 deals with the core phase of model-based assessment which involves the 

structural comparison of the as-built scan and BIM model to determine the as-built 

completion of the building. The overall comparison process is extensively analyzed 

in terms of construction progress monitoring to identify inaccuracies. Consequently, 

numerous improvements are introduced with the aim of increasing the overall 

accuracy without using external input. Initially, it employs the semantic information 

from BIM to perform the reasoning measures based on component sequencing and 

then performs in-depth detection analysis on the surfaces of models. The detection 
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analysis exploits the ray-tracing technique in combination with BIM geometrical 

information to develop a revised as-planned model for suitable comparison and then 

classify its surfaces according to the possible occlusion in the as-built scan. In the 

end, the as-built scan is compared with the classified revised as-planned model while 

reducing the effects of different errors along with the coverage information to 

precisely detect the exposed as-built surface. The approach measures the 

completion ratios of each building component, and then based on their weightage 

average according to their surface areas, it computes the overall completion ratio of 

the building.  

This approach is tested successfully with different datasets, demonstrating its 

precise detection of as-built surfaces. It not only determined their accurate 

completion ratios but also the percentage of surfaces that were exposed to the data 

acquisition instrument have been quantified. The information about how much the 

surface of each building component can be scanned and how much of that scanned 

surface has been actually built enables the better realization of as-built progress. 

Apart from that, the overall completion ratios of those building components whose 

surfaces are not fully scanned, are also estimated by providing a range of predicted 

completion parameters including projected, minimum, and maximum values. This 

improved comparison process with significant advancements not only estimates the 

accurate completion ratios but also provides additional parameters that give 

valuable insights and a comprehensive understanding of as-built progress, 

surpassing the limitation of traditional comparison. This chapter particularly 

addressed the third research question (RQ 3) by exploring the challenge in the 

comparison phase and improving the accuracy of comparison for reliable 

construction progress monitoring. 

The estimation of progress information and then performing it exchange in an 

automated way is presented in Chapter 5. This chapter is an effort to fully realize the 

potential of BIM for automated construction progress monitoring by allowing the 

effective and standardized exchange of progress information from construction sites 

to stakeholders. A four-step framework is presented that estimates the progress 

information, including the time-related schedule, cost, and other non-standard 

information such as inspection notes, particular dates, construction comments, etc., 

and makes use of the BIM model to update them in a structurally organized way. The 

framework utilizes a task-based approach in accordance with the latest IFC4.x 

schema to integrate the relevant IFC entities into the BIM model to accommodate 

the different types of progress information. Initially, the relevant entities are 

integrated into the BIM model according to the progress information, and then their 

planned values are enriched in the second stage. The third stage updates the actual 

values and the last stage enables the reporting of all the information in a user-

friendly way accompanied with the additional progress indicators.  
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The method was tested with several BIM models and it successfully performed the 

automated exchange of as-planned and as-built progress information by 

incorporating the related native and non-native IFC entities in a standardized way. 

The automated method without any reliance on third-party commercial software 

created the IFC entities, estimated their progress parameters, and updated the 

existing entities while adhering to the IFC hierarchical structure. The accessibility of 

information in updated IFC-based BIM was also validated through the IFC-compatible 

program as well as the external IFC-based application. The method not only 

performed the updating of progress information but also efficiently retrieved them 

for progress reporting. For progress monitoring visualization, the models were also 

color-coded according to the completion ratios of their building components. 

Furthermore, a web-based application was also developed which presents overall 

progress information of buildings eventually to practically enable effective reporting 

and visualization using the only IFC-based BIM model. The formulation of a standard 

framework for automated updating and reporting of progress information from the 

construction site represents an accomplishment of a crucial milestone in 

construction monitoring using model-based assessment. This chapter completely 

addressed the last research question (RQ 4) by utilizing the BIM model as an 

information exchange tool with the capability to estimate and integrate different 

types of progress information. 

To address the traditional manual progress monitoring methods at construction 

sites, which are inaccurate, time-consuming, and labor-intensive, this dissertation 

facilitates automated construction progress monitoring by providing significant 

improvements across all major phases of the model-based assessment method. It 

introduced the fully automated and precise registration techniques to achieve the 

alignment of models, improved the traditional comparison process to accurately 

estimate the as-built completion of the building and provide better valuable insights 

about the as-built with supplementary information, and developed an automated 

framework that supports the estimation and exchange of progress information. On 

top of that, the research utilizes a consistent BIM model throughout each phase to 

facilitate automation in model-based assessment while providing an outline for 

integration, updating, and retrieval of progress information. Improving the 

automated construction progress monitoring process can result in considerable 

savings in both cost and time for the construction industry, leading to improved 

efficiency and productivity. 

These improvements and breakthroughs signal a meaningful advancement toward 

the practicality of automating progress monitoring in the construction industry, 

however, there is still a long way to go. The results of this dissertation open the door 

for further advancements in construction progress monitoring which will ultimately 

result in improved efficiency and better decision-making in the construction sector.  
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6.2   Discussion 

6.2.1   Boundaries and Limitations 
Efficient construction progress monitoring of buildings entails addressing a wide 

range of challenges. Therefore, this research domain is quite extensive. It is 

important to realize that the present study does not claim to solve all of these issues. 

This section discusses the main limitations of the proposed solutions. 

The registration methods, as detailed in Chapters 2 and 3, are dependent on plane 

segments. The strategy of these methods is designed to make use of the orthogonal 

geometry of most building structures having the dominant planar features. However, 

it is imperative to acknowledge that there are some limitations associated as well 

due to this dependency which should also be considered. For example, these 

methods may fail if the building models do not have enough plane segments to be 

extracted which is possible when the building structure exhibits a non-planar or 

curved structural design. Similarly, the methods also require that the extracted plane 

segments should have distinct directions, and failure to this requirement is possible 

if all the extracted planes are parallel with no distinct direction. Apart from that, 

building models should not be completely symmetrical to each other otherwise the 

methods may fail due to difficulties in identifying the matching segments. For 

example, if rooms located on different floors of a building have symmetrical designs, 

registration may not be able to accurately identify the corresponding room in the 

BIM model based on a scan point cloud. However, this challenge can be addressed 

through necessary geo-referencing, specifying the floor information from which the 

scan was acquired. The geo-referencing data can provide information about the 

location of the scan model, which can later be used to differentiate the actual as-

built part of the building from its symmetrical counterparts. In the future, it is 

planned to integrate the additional semantic information including the geo-

referencing data to further increase the applicability of the proposed methods. 

It is worth mentioning here that the proposed method identifies the building 

components requiring scanning as well as its exact non-scanned surface, as detailed 

in Chapter 4. However, it does not give any location information, including the 

viewpoint and optimal scanning location, for data acquisition, which is another broad 

research domain. Similarly, the current study doesn’t address the quality monitoring. 

Consequently, if an as-built component is not constructed in its planned location, the 

proposed method will not be able to perform its surface comparison. In this 

particular situation, there will be no progress update, which will eventually alert the 

management to investigate the issue. 

Although the current research work covers a large research area for progress 

monitoring using model-based assessment, however, there are still some challenges 

that need to be addressed. The first area is the exploration of the planar 

segmentation technique as the proposed registration methods are dependent on 
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that. The new segmentation techniques should be developed in context to progress 

monitoring taking into account the various errors present in point cloud data 

acquisition, inherent to construction environments. 

Furthermore, the scalability of the proposed technique is a critical aspect to 

consider, especially when dealing with datasets featuring larger models. The detailed 

analysis of time efficiency conducted in this study sheds light on the significant 

impact of voxel size, the number of plane segments, and IFC elements in models, as 

well as the iterative nature of the methodology on computation time. The finding 

suggests that as datasets grow in size or complexity, the method's ability to handle 

them efficiently may be challenged. Hence, scalability may become a concern when 

dealing with large models or datasets with extensive plane segments. Therefore, 

future efforts aim to address this concern by optimizing the computational processes 

to minimize processing time. By doing so, we aim to enhance the method's suitability 

for broader applications, even in scenarios involving larger datasets and more 

complex project requirements. 

It is pertinent to mention here that when discussing the minimum requirements for 

model representation, the current research requires that both models effectively 

represent the surface geometry. BIM, being used to accurately represent the design 

model of the building, can be sufficiently achieved with LOD 300. This level of detail 

is practically attainable, especially since progress monitoring occurs during the 

construction phase when the BIM model design is supposed to be developed up to 

LOD 400. Correspondingly, the as-built point cloud should also be having a quality 

that it must adequately represent the as-built surface for subsequent processing in 

registration and as-built detection. The current research mainly concentrates on 

employing the as-built point clouds obtained through laser scanning, as they tend to 

provide precise data. However, it is essential to delve deeper into the use of lower-

quality point clouds obtained from image-based reconstruction or other methods. 

This investigation, planned for the future is vital for understanding the potential 

limitations and challenges in utilizing diverse point cloud data sources, particularly 

within Building Information Modeling (BIM) applications. 

In practical terms, the research is structured around progress monitoring, an 

iterative method used to measure progress after following specific events in 

construction, such as completion or planned completion of a building component, or 

if there is a requirement for progress update after a certain time. The current study 

utilized a systematic approach to integrate this procedure into practical application, 

as detailed in the methodologies of chapters 4 and 5.  

The research study divides the entire building based on its individual components to 

facilitate its accurate progress monitoring, aligning with the construction industry 

practices. It prioritizes building components based on their proximity to the expected 

completion date, a defined additional parameter, ensuring timely data collection. 
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When the expected completion date of a specific building component is reached, a 

call for data collection is initiated for that component. This involves performing a 3D 

scan of the component's current state, ensuring comprehensive coverage of its 

surface. If the initial scan does not adequately capture the as-built surface, additional 

scanning sessions may be required, focusing on surfaces where data collection was 

insufficient. Subsequently, the scanned surface is registered (chapters 2 and 3) and 

compared (chapter 4) with its corresponding BIM model to accurately measure the 

component's as-built completion status. Time-related and other progress 

information is then measured based on the completion status and later updated 

within the model, as detailed in Chapter 5. If the component is not completed, the 

expected completion date is re-calculated to determine when the component is 

supposed to be completed eventually to plan another scanning session. This iterative 

process continues until the building component achieves full completion, with 

overall progress monitoring concluding upon the completion of all components. 

Additionally, the approach utilized in the current research study is highly flexible as 

it allows the processing of the entire point cloud against the BIM model to measure 

progress comprehensively. In this scenario, the as-built completion of all building 

components is estimated simultaneously. 

6.2.2   Directions for Future Research 

Improvement within scope 
In the comparison phase, the current research performed the detection analysis in 

which classification is performed according to occluded surfaces due to two cases. 

The first case involves occlusion caused by the presence of other building 

components, while the second case involves occlusion arising due to external objects 

placed at the scene. The current study presents and implements the solutions for 

identifying occluded surfaces for both cases for simulated datasets. For real-life 

datasets, only the solution for the first case was applied, but the second case was 

not implemented. The underlying reason is that during the testing it was found that 

the real-life datasets are complex enough for the identification of external objects 

placed on site. The proposed solution required some maturity and advancement, 

which in turn required a great deal of research. Therefore, it is planned to work in 

this particular case in the future to further develop it for practical application in real-

life datasets for complete identification of all possible occluded surfaces.  

The current doctoral research improves the construction progress monitoring by 

geometry analyzing the 3D as-built point cloud and BIM model in which the as-built 

is obtained after laser scanning the site. Although, the as-built model obtained from 

the image-based reconstructed 3D point cloud through photogrammetry can also be 

utilized in the current study, however, the accuracy of results may be affected as the 

laser-scanned as-built model is relatively more precise but lacks color information. 

In the future, another study will be performed which investigates the current 
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approaches implemented with image-based reconstructed as-built which aims to 

utilize their color information as well to further optimize the process. 

Currently, there is an unavailability of standardized data for testing the model-based 

assessment techniques. It is planned to address this limitation in the future for the 

establishment of comprehensive standardized datasets for benchmarking purposes. 

The focus is to arrange the datasets that encompass diverse building models, 

including scans and their corresponding BIM models, augmented with essential 

planning information, particularly time-related data for components and their 

construction sequences. Efforts will be directed towards the collaborative endeavors 

to curate, share, and expand datasets, eventually to facilitate robust evaluations and 

advancements in model-based assessment techniques. 

The detection analysis proposed in Chapter 5 identifies the building component 

whose as-built completion has to be determined and then classifies its surfaces 

based on exposure to the data acquisition equipment through simulation. This 

simulation can be further leveraged to estimate the optimum location for data 

acquisition based on their non-exposed surface. A potential approach involves 

dividing the floor into different zones for data acquisition and then measuring the 

exposure of each zone according to the classified non-exposed surfaces. Eventually, 

this process aims to determine the optimum zone with the most favorable location 

for accurate data collection. A conceptual demonstration of this approach is also 

presented in Appendix 4. 

Chapter 6 of this dissertation introduced a comprehensive methodology for 

exchanging progress information using the collaborative and standardized open file 

format of IFC. This approach addressed the significant gap, as there was previously 

no solution available that presented how the IFC-based BIM model can be natively 

leveraged to perform the progress updating without relying on commercial software 

support. The proposed method effectively demonstrated how the progress 

information could be natively stored, and retrieved natively without requiring the 

support of any commercial software. However, integrating with the software poses 

a challenge due to the inherent mapping of data to their internal data structures, 

hindering interoperability. While some commercial software now supports exporting 

models as IFC, this process often involves conversion and can result in information 

loss. To overcome this limitation, future research should focus on accurately 

mapping data using linked data technology. Leveraging linked data technologies with 

standardized ontologies presents a promising avenue for achieving seamless 

integration, capitalizing on the interoperable nature of information in the IFC 

schema. 

New research directions 
Current research focuses mainly on building structures for progress monitoring. 

Future research will focus on other infrastructures such as roads, bridges, water 
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supply, etc. for their progress monitoring. In this respect, the approaches of all three 

phases will be modified to take into account their different geometric structure. 

Similarly, BIM information extraction approaches will be adapted according to the 

IFC hierarchy of these new structures. 

There is another novel method planned for the future to perform the registration. 

The method involves the identification of potential matching plane components of 

building through machine learning. After that, the evaluation approaches and their 

combinations described in the current study, particularly in Chapters 2 and 3, can be 

exploited to find the confirmed matches of components which can be further 

processed to find registration. This new method requires the implementation of 

machine learning to identify the 3D planar objects from real-life as-built scans and 

computer-generated as-planned models of buildings and therefore presents unique 

challenges. 

The current research already covers a wide spectrum within the field of construction 

progress monitoring and introduced several innovative methodologies. These 

methodologies not only enhance the scope of current research work but also benefit 

the related research areas, particularly in the field of data acquisition. Appendix 5 

highlights the potential extension of the current research to contribute to the 

advancement of data acquisition research areas, thereby demonstrating the 

versatility and applicability of the methodologies developed herein. In the future, it 

is planned to integrate the data acquisition research with the current BIM-based 

study, with a specific focus on identifying the optimal data acquisition locations 

within construction constraints. This integration aims to enhance the efficacy and 

precision of data acquisition processes, ultimately contributing to more informed 

decision-making in construction projects. 

In addition, it is also planned in the future to carry out detailed research with a new 

approach that performs the construction progress monitoring by using 2D images 

instead of the laser-scanned 3D point cloud. The reconstructed 3D point cloud 

obtained from the 2D images may not be as accurate as the laser-scanned point 

cloud, but it contains additional color information that can be used. Furthermore, 

the mass availability of mobile phones in today's working environment makes it quite 

convenient for construction workers to use them to capture images, as opposed to 

laser scanners which are very expensive and require adequate training to operate. 

The newly proposed technique will explore the photogrammetry techniques in 

combination with current registration approaches to register the images into the 

corresponding BIM model to capture the as-built surfaces. This technique will 

perform the registration and comparison simultaneously, instead of processing them 

in stages, and can facilitate the progress monitoring process with the captured 

images at the site.  
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In the future, a key focus will be on real-time implementation of the proposed 

methodologies. This involves the development of algorithms and technologies 

capable of processing and analyzing data in real-time by increasing the time 

efficiency thereby enabling continuous monitoring of construction progress. 

Achieving real-time implementation will not only enhance the efficiency of progress 

monitoring but also provide stakeholders with timely insights, facilitating prompt 

decision-making and intervention when necessary.  

The future plans also include the further enhancement of the developed web-based 

application (mentioned in Chapter 5) by integrating it with other useful progress 

indicators and important information to practically normalize its utilization at 

construction sites. In addition, dedicated applications for hand-held smartphones 

can also be developed. The main aim improve the progress monitoring process using 

the web-based real-time application that effectively fulfills the needs of construction 

staff adequately and gives more insights for decision-making. 
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Appendix 1: Corner-Point Based Registration Workflow 

 

 

Figure 7.1. Overall workflow of Corner-point based registration method detailed in 

Chapter 3. 
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Appendix 2: Corner Point Matching Process Flowchart 

 

  

Figure 7.2. The Flowchart showing the process of identifying potential matches 

between pairs of corner points from as-built and as-planned models using various 

geometric invariants. 
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Appendix 3: Corner Point Matching with Distance and Translation 

Invariants 

 

’ 

Figure 7.3. Demonstration of distance and translation invariants for matching corner 

points in as-built (highlighted in yellow) and as-planned (highlighted in green) 

models. 
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Appendix 4: A Conceptual Illustration of Optimal Grid-Based Data 

Acquisition Analysis 

 

 

 

Figure 7.4. A conceptual illustration showing the partitioning of a plane space of  

model into uniform grids, followed by the detection analysis of the grids with the 

eventual aim to identify the optimal location for data acquisition. 
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Appendix 5: Graphical Representation of Extended Research 

Methodologies 

 

 

 

Figure 7.5. Graphical representation highlighting the potential extension of current 

research methodologies with data acquisition domain, highlighting key parameters 

utilized in the current study (highlighted in blue) and those critical for future 

investigations (highlighted in red). 
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Appendix 6: UML Representation of IFC Schema for IfcSlab, 

IfcWall, and IfcTask 

 

Figure 7.6. UML representation of the IFC schema for IfcSlab, IfcWall, and IfcTask. 
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Appendix 7: Plane-Based Registration Methodology Algorithm 

 

Algorithm 7.1: Methodology of plane-based registration 

 Input:  

    As_builtModel: 3D geometrical as-built Model 

    As_plannedModel: 3D geometrical as-planned Model 

 Output:  

    R_o, T_o: Transformation parameters to register the as-built and as-

planned models 

1 PSegments_AsBuilt_list = PlaneSegmentation(As_builtModel) 

2 PSegments_AsPlanned_list = PlaneSegmentation(As_plannedModel) 

3 Cl_PSegments_AsBuilt= ClusterSegment(PSegments_AsBuilt_list) 

4 Cl_PSegments_AsPlanned= ClusterSegment(PSegments_AsPlanned_list) 

5 possible_R_all=CalculatePossibleRotation(Cl_PSegments_AsBuilt, 

Cl_PSegments_AsPlanned) 

6 R_o, T_o = ComputeMostLikelyTransformation(possible_R_all) 

7 return R_o, T_o 
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Appendix 8: Parallel Plane Segments Clustering Algorithm 

 

Algorithm 7.2: Clustering Parallel Plane Segments 

 Input:  

        PSegments_list: List of plane segments 

        angle_threshold: Threshold angle for considering plane 

segments as parallel 

 Output:  

     clustered_segments_list: List of clustered parallel plane 

segments 1 for each plane_segment in PSegments_list do 

2  cluster_total = 0 

3  if clustered_segments_list != 0 then 

4   for each existing_cluster in clustered_segments_list do 

5    angle = ComputeAngle(plane_segment, existing_cluster) 

6    if angle < angle_threshold then 

7     cluster_total = cluster_total + 1 

8    end if 

9   end for 

10  end if 

11  if cluster_total == 0 then 

12   Add plane_segment to clustered_segments_list 

13  end if 

14 end for 

16 return clustered_segments_list 
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Appendix 9: Creating Corner points from Plane Segments 

Algorithm 

 

Algorithm 7.3: Create Corner points from plane segments 

 Input:  

    vab1: Coefficients of the first plane segment (a1, b1, c1, d1) 

    vab2: Coefficients of the second plane segment (a2, b2, c2, d2) 

    vab3: Coefficients of the third plane segment (a3, b3, c3, d3) 
 Output:  

    CornerPoint: Computed corner point coordinates (x, y, z) 

1 Unpack the coefficients from vab1, vab2, and vab3: 

     (a1, b1, c1, d1) = vab1 

     (a2, b2, c2, d2) = vab2 

     (a3, b3, c3, d3) = vab3 

2 Create ‘matrix A’ using the coefficients extracted from the plane 

segments: 

    A = [     [a1, b1, c1], 

                 [a2, b2, c2], 

                 [a3, b3, c3]        ] 3 Calculate the inverse of ‘matrix A’ and store it as ‘in_matrixA’: 

    in_matrixA = Inverse(A) 

4 Create ‘matrix B’ using the negative of the coefficients d1, d2, and d3: 

    matrix_B = [  [-d1], 

                           [-d2], 

                           [-d3]   ] 
5 Compute the dot product of in_matrixA and matrix_B to obtain the 

corner point matrix:    corner_matrix = DotProduct(in_matrixA, matrix_B) 

6 Extract the corner point coordinates (x, y, z) from the ‘corner_matrix’ 

   

  



 

211 

Appendix 10: Corner Point Filtering Algorithm 

 

Algorithm 7.4: Filtering the actual corner points 

 Input:  

    list_cornerpoints: List of corner points with potential duplicates 

    threshold: Threshold distance for considering points near the surface 

 Output:  

     verified_list_cornerpoints: List of filtered corner points lying near the 

surface 

1 for each corner_point in list_cornerpoints do 

2  Extract the coordinates of the corner_point (c_point_coordinates). 

3  Extract the corresponding parent plane segments of corner_point → 

(p_segment1, p_segment2, p_segment3). 

4  Compute the distance between c_point_coordinates & p_segment1 → 

dist_segment1. 

5  Compute the distance between c_point_coordinates & p_segment2 → 

dist_segment2. 

6  Compute the distance between c_point_coordinates & p_segment3 → 

dist_segment3. 

7  if dist_segment1 < threshold and dist_segment2 < threshold and 

dist_segment3 < threshold then 

8   Add corner_point to verified_list_cornerpoints 

9  end if 

10 end for 

11 return verified_list_cornerpoints 
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Appendix 11: Geometric Invariants-Based Corner Point Matching 

Algorithm 

Algorithm 7.5: Identifying potential matching corner points through geometric invariants 

 Input:  

    corner_points_asbuilt: List of corner points from the as-built model 

    corner_points_asplanned: List of corner points from the as-planned model 

    all_thresholds: Dictionary containing all threshold values for geometric 

invariants 

 Output:  

     p_matched_corner_pairs_list: List of potential matching corner point pairs from 

both models 1 for for iterate from 0 to number of iterations do 

2  [d_a, d_b] = RandomlySelect(corner_points_asbuilt) 

3  [m_a, m_b] = RandomlySelect(corner_points_asplanned) 

4  threshold_distance, threshold_angle, threshold_rotation, threshold_translation = 

all_thresholds ['distance', 'angle', 'rotation', 'translation']) 

5  distance = ComputeDistance([d_a, d_b], [m_a, m_b]) 

6  if distance < threshold_distance then 

7   angle_a = ComputeAngle([d_a, m_a]) 

8   angle_b = ComputeAngle([d_b, m_b]) 

9   if angle_a < threshold_angle and angle_b < threshold_angle then 

10    rotation_invariant_a = CheckRotationInvariant([d_a, m_a]), threshold_rotation) 

11    rotation_invariant_b = CheckRotationInvariant([d_b, m_b]), threshold_rotation) 

 12    if rotation_invariant_a = True and rotation_invariant_b  = True then 

13     translation_invariant = CheckTranslationInvariant([d_a, d_b], [m_a, 

m_b], threshold_translation) 

                 14     if translation_invariant = True then 

15      Add ([d_a, m_a], [d_b,m_b]) to p_matched_corner_pairs_list 

16     end if 

17    end if 

18   end if 

19  end if 

20 end for 

21 return p_matched_corner_pairs_list 

  


