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Samenvatting 
 
 
Diepe hersenstimulatie (DHS) is een neurochirurgische behandeling voor verscheidene 
neurologische and psychiatrische aandoeningen, waarbij een electrode stereotactisch in een 
bepaalde hersenstructuur wordt ingebracht. Op die manier kunnen (hoog-frequente) elektrische 
impulsen worden doorgegeven aan de hersenstructuur via een elders in het lichaam geplaatste 
stimulator. DHS van de subthalame nucleus (STN) en DHS van de anterieure nucleus van de 
thalamus (ANT) zijn reeds FDA-goedgekeurd (Eng: Food and Drug Administration) voor de 
behandeling van respectievelijk, de ziekte van Parkinson en epilepsie. Klinisch onderzoek heeft 
reeds aangetoond dat DHS een effectieve alternatieve therapie is voor de onderdrukking van 
tremor of epilepstische aanvallen in patienten waarbij de verzorging op basis van medicatie 
onvoldoende blijkt te werken. Ondanks het bewezen succes van STN- en ANT-DHS als een 
alternatieve behandelingsmethode, zijn er nog steeds patienten die niet reageren op DHS-
therapie en/of bijwerkingen ondervinden. Bovendien is er slechts weinig geweten omtrent de 
onderliggende (therapeutische) werkingsmechanismen van DHS. Bijkomend onderzoek naar 
DHS van alternatieve potentiële hersenstructuren en de werkingsmechanismen van DHS is dus 
nodig om de effectiviteit van de behandeling te maximaliseren. Onderzoek in patienten is 
gelimiteerd omwille van ethische overwegingen, moeilijke rekrutering van patienten en de 
heterogeniteit binnen een groep patienten. Dierenproeven kunnen onder uiterst gecontroleerde 
experimentele condities doorgaan, en zijn bijgevolg onmisbaar in de studie naar de effecten van 
DHS en de zoektocht naar nieuwe potentiele DHS-structuren.  
 

In voorgaand dierenonderzoek werden voornamelijk electrofysiologische metingen gehanteerd, 
om het effect van DHS op neurale netwerken te bestuderen. Dergelijke metingen werden 
typisch uitgevoerd in vooraf gedefinieerde hersenstructuren die men belangrijk acht binnen het 
onderzoek. Echter, op deze manier wordt de identificatie van minder gekende maar mogelijks 
relevante DHS-structuren belemmerd. Deze limitatie kan omzeild worden door het gebruik van 
functionele beeldvormingstechnieken zoals fMRI (Eng: functional Magnetic Resonance 
Imaging) en PET (Eng: Positron Emission Tomography), die de visualizatie van het effect van 
DHS in het gehele brein toelaten. In dit proefschrift focussen we op de studie van nieuwe 
hersenstructuren binnen experimenteel DHS-onderzoek voor de behandeling van de ziekte van 
Parkinson en epilepsie. We definieren drie specifieke doelen 
 
 
 
 
 
 
 
 
 
 
 



 x 

 
 
1. De Substantia Nigra pars reticulata (SNr) en de Globus Pallidus externa (GPe) zijn 

twee potentiele hersenstructuren die momenteel onderzocht worden voor DHS-therapie 
van Parkinson patienten. Extra onderzoek is nodig om na te gaan hoe deze structuren 
functioneel geconnecteerd zijn met andere regio’s. Ons doel is om de functionele 
connectiviteit van deze kernen in kaart te brengen aan de hand van DHS en simultane 
fMRI metingen.  

  

2. Het toedienen van elektrische pulsen in een diepe hersenstructuur gebeurt echter niet 
specifiek. Naburig hersenweefsel ondervindt namelijk ook invloed van de elektrische 
stimulatie. Optogenetica is een zeer nieuwe techniek die gebruik maakt van licht ipv. 
electriciteit om hersencellen uiterst selectief te manipuleren. fMRI laat ons, net zoals bij 
DHS, toe om de effecten van optogenetische stimulatie te visualiseren. Het tweede doel 
is dan ook om de functionele connectiviteit van de GPe meer gedetailleerd te 
onderzoeken mbv. optogenetica en simultane fMRI metingen. 

   

3. DHS in de hippocampus, ook hippocampale DHS genoemd, wordt momenteel 
onderzocht als therapie voor de behandeling van temporal kwab epilepsie. Voorgaand 
onderzoek in diermodellen heeft een gedaalde perfusie in het limbisch systeem van de 
hersenen aangetoond tengevolge van hippocampale DHS. Het derde doel van deze thesis 
is tweeledig: (1) onderzoek naar het effect van hippocampale DHS op het glucose 
metabolisme in de hersenen, en (2) de visualisatie van het hersennetwerk dat 
gemoduleerd wordt door hippocampale DHS. 

 
 
Om deze onderzoeksdoelen te verwezenlijken, hebben we vier afzonderlijke preklinische 
beeldvormingsstudies uitgevoerd; toegelicht in deel II en III van dit proefschrift. Deel I van 
deze thesis geeft meer achtergrondinformatie rond DHS, de ziekte van Parkinson, epilepsie, de 
gebruikte functionele beeldvormingstechnieken en optogenetica. 
 
 
Deel I – Achtergrondinformatie 
 
Hoofdstuk 1 start met een beschrijving van DHS therapie. Vervolgens, lichten we de ziekte van 
Parkinson toe, nl. de basisbeginselen, het hersennetwerk dat aangetast is, en toepassingen van 
DHS-therapie bij Parkinson patienten. Tenslotte wordt epilepsie op een gelijkaardige manier 
uitgelegd, nl. basisbeginselen, het hersennetwerk dat aangetast is, en toepassingen van DHS-
therapie bij epilepsie patienten. 
 

Om onze onderzoeksdoelstellingen te bereiken, hebben we gebruik gemaakt van een combinatie 
van functionele beeldvormingstechnieken (fMRI en PET) en neuromodulatietechnieken (DHS 
en optogenetica). De basisprincipes en huidige DHS-gerelateerde applicaties van fMRI, PET en 
optogenetica worden toegelicht in hoofdstuk 2 van dit proefstuk. De functionele beeldvorming 
laat toe om op een niet-invasieve manier in vivo metabole- of bloedstroom-parameters, welke 
gekoppeld zijn aan hersenactiviteit, van de volledige hersenen te visualizeren. Het gebruik van 
deze technieken is bijgevolg cruciaal om meer te weten te komen over hoe de hersenen 
functioneren in gezonde en zieke toestand, alsook hoe een therapie, zoals bijvoorbeeld DHS, de 
hersenfunctie kan beinvloeden. In dit proefschrift hebben we voornamelijk fMRI gebruikt om 
de modulatiepatronen van DHS of optogenetica in kaart te brengen. fMRI metingen opgenomen 
tijdens elektrische stimulatie of optogenetische stimulatie benoemen we verder als “DHS-fMRI” 
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en “opto-fMRI” respectievelijk. Bovendien hebben we in 1 studie PET gebruikt om het effect 
van DHS op het glucoseverbruik in de hersenen te analyseren,  
Elektrische stimulatie wordt gekenmerkt door diffuse “off-target” effecten omdat de 
toegediende stroom ook steevast naburig hersenweefsel beinvloedt. Met DHS-fMRI kunnen we 
dus geen gedetailleerde respons op de neuromodulatie van een bepaalde hersenstructuur 
waarnemen. Het gebruik van opto-fMRI zou deze limitatie grotendeels kunnen omzeilen. 
Optogenetica is immers een nieuwe techniek binnen de neurowetenschappen die revolutionair 
beschouwd wordt owv. zijn voordien ongeziene cellulaire, spatiele en temporele specificiteit. 
 
 
Deel II – Parkinson: Twee DHS-structuren 
 
In deel II van dit proefstuk beschrijven we twee preklinische beeldvormingsstudies waarbij we 
de connectiviteit van twee potentiele DHS-structuren in kaart brachten, die relevant zijn voor de 
behandeling van de ziekte van Parkinson. 
 
Hoofdstuk 3: Visualisatie van de functionele connectiviteit van twee “striatal” 
outputkernen, mbv. simultane “DHS-fMRI” metingen. 
 

Bij de ziekte van Parkinson zijn de basale kernen (ook: basale ganglia) van de hersenen 
aangetast. De basale ganglia bevatten twee belangrijke kernen die de output van het striatum 
reguleren, namelijk de substantia nigra pars reticulata (SNr) en de globus pallidus externa 
(GPe). Onderzoek naar de verbindingen, tussen deze kernen en met andere hersenstructuren, is 
noodzakelijk om de impact van een therapie zoals DHS op de werking van de basale ganglia te 
begrijpen. Elektrische stimulatie van de SNr en GPe kent reeds enkele successen als DHS-
therapie bij Parkinson (en ook andere aandoeningen). Desalnietemin, is er weinig bekend hoe 
deze therapie de netwerken in het brein beinvloedt, voornamelijk het effect van verschillende 
stimulatie frequencies op netwerkmodulatie. Om deze reden willen we met deze preklinische 
studie de connectiviteit van de SNr en GPe in de normale rathersenen in kaart brengen mbv. 
simultane DHS-fMRI metingen; dit onder verchillende DHS-frequenties gaande van 20-400Hz. 
Onze analyse heeft mogelijks nieuwe modulatiepatronen binnen de basale ganglia kenbaar 
gemaakt, namelijk de modulatie van de prefrontale cortex door GPe-DHS en de bilaterale 
modulatie van het striatum door SNr- en GPe-DHS. Bovendien bleek de aard van deze 
modulaties gecorreleerd te zijn aan de frequentie waarmee de kernen gestimuleerd werden. De 
ipsilaterale netwerkenverbindingen toonden namelijk een verhoogde functionele connectiviteit 
tov. de contralaterale hersenhelft bij hogere frequenties. Dit effect verdween onmiddelijk na het 
stoppen van de elektrische stimulatie. 
 
Hoofdstuk 4: Visualisatie van de functionele connectiviteit van de Globus Pallidus externa 
in normale en Parkinson ratten, mbv. simultane “opto-fMRI” metingen. 
 

DHS heeft echter zijn tekortkomingen. De toegediende elektrische pulsen bereiken namelijk 
niet enkel de specifieke zenuwcellen waarop wordt gemikt, maar beïnvloeden ook naburig 
hersenweefsel. Dit zorgt voor diffuse “off-target” effecten, dewelke aan de basis van de 
therapeutische effecten en/of neveneffecten kunnen liggen. De toepassing van de nieuwe 
neuromodulatietechniek, optogenetica, in preklinisch DHS-onderzoek laat toe om hersencellen 
veel selectiever te manipuleren. Bij optogenetische stimulatie gebruikt men licht in plaats van 
elektriciteit voor het aansturen van zenuwcellen die voor dit doel genetisch gemodificeerd 
werden tot lichtgevoelige cellen. Maar, er is weinig bekend in hoeverre optogenetica de effecten 
van elektrische stimulatie kan weerspiegelen. Daarom doelden wij in deze studie op het in kaart 
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brengen van het modulatiepatroon van optogenetische stimulatie van de GPe in gezonde en 
Parkinson dieren, mbv. fMRI. 
In tegenstelling tot de voorgaande DHS-fMRI experimenten, resulteerden de opto-fMRI 
experimenten enkel in ipsilaterale modulatie. Met optogenetische stimulatie van de GPe was er 
geen effect in de prefrontale cortex. Onze resultaten benadrukken de verhoogde selectiviteit van 
optogenetica tov. elektrische stimulatie om neuronen te manipuleren. Bovendien waren de 
modulatiepatronen zeer verschillend tussen de normale en Parkinson ratten (e.g., sterkere 
positieve modulatie in de GPe). Dit toont aan dat de “zieke” basale kernen anders 
communiceren dan de “gezonde” ten gevolge van het afsterven van de dopamine-producerende 
zenuwcellen. Verder onderzoek is nodig naar het verband tussen onze bevindingen en een 
therapeutisch effect in Parkinson ratten om zo de potentiele rol van GPe-neuronen in DHS-
therapie te achterhalen. 
 
 
Part III – Epilepsie: Hippocampale DHS 
 

In deel III van dit proefstuk beschrijven we twee preklinische beeldvormingsstudies waarbij we 
het effect van hippocampale DHS in de hersenen van normale ratten onderzochten.  
 
Hoofdstuk 5: Onderzoek van het effect van hippocampale DHS op het glucoseverbruik in 
de hersenen, mbv. FDG-PET 
 

Uit de resultaten van voorgaand SPECT (Eng: Single Photon Emission Computed 
Tomography)- onderzoek bleek dat hippocampale DHS lokaal hypoperfusie (i.e. verminderde 
bloeddoorstroming) veroorzaakte in beide hippocampi. Bovendien bleek de aard van de 
hypoperfusie gecorreleerd te zijn met de stimulatie parameters. Om uit te sluiten dat dergelijke 
hypoperfusie niet veroorzaakt werd door DHS-geinduceerde vasoconstrictie (i.e. vernauwen van 
de bloedvaten), is er bijkomend onderzoek nodig. Omdat fluorodeoxyglucose-PET (FDG-PET) 
een directe maat van het glucoseverbruik voorziet, hebben we een FDG-PET-studie uitgevoerd 
in een gelijkaardige experimentele setting als gebruikt in de SPECT-studie. In die studie was de 
hippocampus het doelwit, omdat er een aanzienlijke hoeveelheid bewijs voorhanden is dat 
aantoont dat de hippocampus een belangrijke rol heeft in de aanvalsinitiatie in temporale kwab 
epilepsie. 
Onze analyse wijst op DHS-geinduceerde lokale verminderingen in het cerebraal 
glucoseverbruik ter hoogte van beide hippocampi en bijkomende hersenregio’s binnen het 
limbisch systeem. Deze bevindingen ondersteunen de voorgaande SPECT-studie en suggereren 
een functioneel inhiberend effect van DHS. 
 
Hoofdstuk 6: Onderzoek naar het effect van hippocampale DHS op neurale netwerken, 
mbv. DHS-fMRI 
 

Met deze studie wilden we het effect van hippocampale DHS op cerebrale netwerken in kaart 
brengen mbv “DHS-fMRI”.  
Statische analyse van de opgenomen fMRI data toonde positieve modulatie tijdens DHS in 
beide hippocampi en bijkomende hersenstructuren van het limbisch systeem. Dit was te 
verwachten, aangezien de hippocampus een belangrijke component is binnen het limbisch 
netwerk. Deze “activatie” staat in contrast met de waargenomen DHS-geinduceerde dalingen in 
het cerebral glucoseverbruik. Dit contrast kan te wijten zijn aan het verschil in stimulatieduur 
binnen beide experimentele protocol; in de PET-studie werd er immers 60 minuten continu 
gestimuleerd, terwijl in de fMRI-studie slechts blokken van 20 seconden DHS toegediend 
werden.  Dit verschil was noodzakelijk gezien het onderliggende verschil in temporele resolutie 
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tussen beide modaliteiten. Wanneer we beide bevindingen samen beschouwen, zou dit kunnen 
wijzen op (1) een initieel acuut “activerend” effect van DHS op hersenregio’s die geconnecteerd 
zijn met de gestimuleerde structuur; en mogelijks op (2) een “inhiberend” effect van DHS op 
langere termijn effect dat gepaard gaat met een verminderd glucoseverbruik. Dit laatste kan 
mogelijks verklaard worden door homeostatische neerregulatie mechanismen die plaatsvinden 
ten gevolgde van de 1-uur-durende toelevering van elektrische pulsen. Bovendien benadrukken 
deze studies de toegevoegde waarde van multi-modale beeldvorming binnen het onderzoek naar 
DHS en neurologische aandoeningen. 
 
  
Part IV – Conclusies en toekomstmogelijkheden 
 

We hebben drie specifieke doelen binnen experimenteel DHS-onderzoek verwezenlijkt. Ten 
eerste, hebben we mogelijks nieuwe verbindingen, binnen het netwerk gemoduleerd door SNr- 
en GPe-DHS, kenbaar gemaakt. Ten tweede, hebben we de toegevoegde waarde van “opto-
fMRI” aangetoond om de onderliggende mechanismen van DHS en neurologische 
aandoeningen nauwkeuriger te onderzoeken. Ten derde, hebben we het effect van hippocampale 
DHS op het glucoseverbruik in de hersenen gevisualizeerd. Hiermee valideren we een 
voorgaande SPECT-studie. Beide studies wijzen op een onderliggend functioneel inhiberend 
effect van DHS. Bovendien, waren we in staat om het effect van hippocampale DHS op neurale 
netwerken te visualiseren met fMRI. 
 

Een belangrijke bijdrage van dit werk, is de aanzienlijke vooruitgang die we geboekt hebben in 
de ontwikkeling en toepassing van preklinische fMRI procedures om de effecten van DHS en 
optogenetica te bestuderen. Voor zover we weten, zijn dit de eerste preklinische “DHS-fMRI” 
experimenten om de SNr, GPe en hippocampus in vivo te onderzoeken, en de eerste “opto-
fMRI” studie van de GPe in gezonde en Parkinson ratten. De kennis en praktische ervaring die 
we vergaard hebben doorheen de uitvoering van deze experimenten zal toekomstig 
dierenonderzoek, naar de onderliggende mechanismen van neurologische aandoeningen en 
DHS-therapie, mbv “DHS-fMRI” en “opto-fMRI” vergemakkelijken. We zouden immers 
“opto-fMRI” gebruiken in toekomstig epilepsie-onderzoek, om bijvoorbeeld de rol van een 
specifieke neuronengroep in aanvalsinitiatie/propagatie of aanvalsonderdrukking te 
onderzoeken. 
 

Dit onderzoek werd uitgevoerd in de onderzoeksgroep MEDISIP (Eng: MEDical Image and 
Signal Processing) en het INFINITY lab (Eng: in vivo small animal imaging lab), beide van de 
vakgroep ELIS van de faculteit ingenieurswetenschappen van de Universiteit van Gent (UGent). 
Dit onderzoek werd uitgevoerd in samenwerking met het Shihlab van het BRIC (Eng: 
Biomedical Research Imaging Center) aan de Universiteit van North Carolina (UNC), LCEN3 
(Eng: Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and 
Neuropsychiatry) van de faculteit biomedische wetenschappen van de UGent. De experimenten 
beschreven in deel II van dit proefstuk werden uitgevoerd in het Shihlab (UNC). Het 
voorgestelde werk resulteerde in 4 A1-tijdschrifpublicaties 1 ingediend en 1 in voorbereiding), 
2 A1-tijdschriftpublicaties als co-auteur (1 ingediend en 1 in voorbereiding) en 13 bijdrages op 
internationale conferenties. De referenties van deze publicaties zijn in het hoofdstuk “list of 
publications” opgesomd. 
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Summary 
 
 
Deep brain stimulation (DBS) is a neurosurgical therapy for multiple neurological and 
psychiatric disorders. In DBS, an electrode is stereotactically implanted in a specific region of 
the brain and (usually) high frequency electrical stimulation is delivered using a subcutaneous 
pacemaker-like stimulator. Currently, DBS is FDA (Food and Drug Administration) approved 
in the subthalamic nucleus and the anterior thalamic nucleus for Parkinson’s disease (PD) and 
epilepsy, respectively. It has been shown that DBS is an effective therapy to suppress tremor in 
PD or seizures in epilepsy, when pharmacological treatment becomes inadequate or symptoms 
become intolerable.  
 

Despite the rapidly growing use of DBS as a possible treatment, the mechanisms underlying the 
effects of DBS are poorly understood, representing a major challenge to refinement for 
enhanced efficacy and reduced side-effects. Research is necessary to explore whether other 
brain structures might have therapeutic potential as well. However, research in patients is 
restricted because of ethical reasons, difficult patient recruitment and the large variation among 
patients. Thus, in order to better understand the effects of DBS and to search for potential new 
DBS targets, animal research becomes indispensable because it offers highly controlled 
experimental conditions. Previous animal studies of DBS-relevant circuitry largely relied on 
electrophysiological recordings at predefined brain areas with assumed relevance to DBS 
therapy. Due to their inherent regional biases, such experimental techniques prevent the 
identification of less recognized (non-canonical) brain structures that might be suitable DBS 
targets. Therefore, we wanted to overcome this limitation by using functional neuroimaging 
techniques, such as functional Magnetic Resonance Imaging (fMRI) and Positron Emission 
Tomography (PET), which allow to visualize and to analyze the whole brain during DBS. In 
this work, we will focus on two neurological disorders, namely PD and epilepsy. The three 
major research goals of this thesis are: 
 
 

1. The Substantia Nigra pars reticulata (SNr) and the Globus Pallidus externa (GPe) are 
currently being explored as potential non-canonical DBS targets for PD. However, 
more research is necessary to explore how these striatal output nuclei are 
interconnected to other brain regions. Our aim is to use fMRI to visualize other brain 
areas that are functionally interconnected to these potential DBS targets. 

 
2. Optogenetics, or stimulation using light, is a state-of-the-art neuromodulation 

technique that has been proposed as a more selective alternative to electrical 
stimulation (DBS). Our aim is to combine optogenetics and fMRI, to investigate how 
other brain regions respond to optogenetic stimulation of the GPe. 

 
3. Hippocampal DBS has been proposed as an effective treatment for refractory temporal 

lobe epilepsy. Previous animal research has shown that electrical stimulation of the 
hippocampus results in reduced perfusion of several region of the limbic system. Our 
third aim is twofold: 1) to investigate whether hippocampal DBS also results in a 
reduced glucose metabolism using PET, and 2) to visualize the brain network 
modulated during hippocampal DBS using fMRI. 



 xvi 

In order to meet our research goals, we performed four preclinical neuroimaging studies, 
explained in part II and III of this thesis. In order to fully understand our preclinical 
investigations, some background information on DBS, PD, epilepsy, the functional 
neuroimaging techniques used and optogenetics is provided in the first part of this thesis. 

 

Part I - Background 

In chapter 1 of this dissertation we first describe DBS therapy more in detail. Second, we 
explain the basic principles of PD pathology, the brain circuitry affected by PD pathology and 
the state-of-the-art of DBS as a treatment in drug resistant PD. Finally, we discuss the basic 
principles of epilepsy, the brain circuitry affected by epilepsy and the state-of-the-art of DBS as 
a treatment in drug resistant epilepsy.  
In order to meet our research goals we used a combination of functional imaging techniques, 
DBS and optogenetics. The basic principles and current DBS-applications of fMRI, PET and 
optogenetics are explained in chapter 2 of this thesis. Functional imaging techniques allow 
non-invasive in vivo visualization of the brain’s metabolism, blood flow or blood volume, 
which are assumed to reflect neural activity. Therefore, these techniques are crucial for gaining 
insight in the brain circuitry and its function, and how the brain circuitry is affected by 
neurological disorders and treatments such as DBS. In this dissertation we used mainly 
functional Magnetic Resonance Imaging (fMRI), which is a well-established research tool to 
investigate alterations in brain circuitry, induced by an external stimulus such as DBS or 
optogenetics. Additionally, we used the nuclear imaging technique Positron Emission 
Tomography (PET) in order to evaluate how DBS affects the glucose metabolism. 
Because DBS can recruit connected brain areas through both ortho- and antidromic signal 
propagation across fibers, functional circuit mapping using DBS-fMRI cannot readily 
distinguish between up- and downstream circuit elements. The use of optogenetics should 
provide a more precise means for functional imaging-based circuit mapping. Optogenetics is a 
new revolutionary technique in the field of neuroscience that provides a means to control cell 
behavior by using light with unprecedented cellular, spatial and temporal specificity.  
 
 
Part II - Parkinson’s Disease: Two DBS targets 
 

In part II of this dissertation we describe the two preclinical imaging studies we performed in 
order to explore how potential DBS targets, relevant for the treatment of Parkinson’s disease, 
are interconnected, using DBS-fMRI (chapter 3) and opto-fMRI (chapter 4). 
 
Chapter 3: Functional Circuit Mapping of Striatal Output Nuclei using Simultaneous 
DBS-fMRI 

 

Parkinson’s disease is associated with dysfunction within the basal ganglia. The identification 
of functional circuit or network connections among the basal ganglia’s two major striatal output 
nuclei, i.e. substantia nigra pars reticulata (SNr) and external globus pallidus (GPe), is necessary 
to elucidate basal ganglia function in the healthy brain, PD brain and treatment strategies such 
as DBS. DBS-therapy, targeting the SNr or GPe, has already demonstrated some therapeutic 
potential. However, very little is known about how this treatment influences neural circuitry, 
particularly at different stimulation frequencies. Therefore, this preclinical study aimed to map 
the network-level connectivity of the SNr and GPe in the healthy rat brain, using simultaneous 
DBS and fMRI, also called “DBS-fMRI”, at different frequencies ranging from 20Hz-400Hz.  
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Remarkably, statistical analysis revealed potentially new findings related to basal ganglia 
circuitry, in particular activation of the prefrontal cortex by GPe-DBS and local signal changes 
in the striatum by SNr- and GPe-DBS, in a frequency-dependent manner. Additionally, 
functional connectivity was generally enhanced in the hemisphere ipsilateral to SNr or GPe 
stimulation in a frequency-dependent manner, and readily reversed following cessation of 
stimulation.  
 
Chapter 4: Functional Circuit Mapping of the Globus Pallidus externa in the healthy and 
PD brain using Opto-fMRI 
 

DBS broadly modulates neural circuits and networks, which may be important for its diverse 
therapeutic as well as side-effects. It is therefore highly interesting to gain insight in the 
functional contribution of a certain group of neurons to DBS-therapy. Preclinical DBS studies 
allow for the experimental introduction of optogenetic tools, which provide superior neural 
circuit stimulation specificity compared to electrical DBS. Specifically, in addition to 
modulation of neuronal populations proximal to the electrode, electrical DBS can also recruit 
undesirable neighboring fibers of passage. In contrast, optogenetic stimulation is generally 
confined to only the cells that express light-sensitive proteins and their efferent outputs. 
Furthermore, the presence of an optic fiber introduces less artifact in the MR image, as opposed 
to a metal DBS-electrode. Because of this added specificity for neural modulation, optogenetic 
tools have been employed to inform potential circuit mechanisms of DBS therapy in preclinical 
models. However, little is known regarding the extent to which optogenetic stimulation mirrors 
the circuit-level responses achieved with electrical DBS. Therefore, in the present study, we 
aimed to evaluate the circuit modulation profile achieved by selective stimulation of GPe 
neurons, in a healthy and PD rat model, using opto-fMRI. 
As opposed to electrical stimulation of the GPe (chapter 3), fMRI responses were observed only 
ipsilaterally using optogenetic stimulation of the GPe, and we were unable to achieve detectable 
circuit modulation in the prefrontal cortex, confirming the selectivity of the optogenetics 
technology. Electrical stimulation of the GPe likely affects passing fibers as well as input- and 
output projections from/to the prefrontal cortex, whereas optogenetic stimulation is mostly 
restricted to output projections. In PD rats, we observed larger positive responses as opposed to 
healthy rats, suggesting GPe circuit remodeling following dopamine loss. Correlation of these 
findings to motor improvement in these rats could reveal the therapeutic role of the GPe 
neurons in DBS.  
 
 
Part III - Epilepsy: Hippocampal DBS 
 

In part III of this dissertation we describe two preclinical imaging studies we performed to 
investigate DBS of the hippocampus, an experimental DBS target that is relevant for the 
treatment of epilepsy, by investigating how hippocampal DBS affects the brain’s glucose 
metabolism (chapter 5), and the brain circuitry (chapter 6). 
 
Chapter 5: Investigation of the Glucose Metabolism during Hippocampal DBS using 
FDG-PET  
 

A previous Single Photon Emission Computed Tomography (SPECT)-study revealed DBS-
induced hypoperfusion in both hippocampi. Moreover, a clear distinction in spatial extent and 
intensity of hypoperfusion was observed between stimulation parameters. Extra research is 
necessary to confirm that this hypoperfusion is caused by actual DBS-induced decreases in the 
brain’s metabolism, as opposed to pure DBS-induced vasoconstriction. In order to have a direct 
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measure of the glucose metabolism, we therefore performed an fluorodeoxyglucose-PET (FDG-
PET) study in the same experimental set-up as used in the SPECT-study previously performed 
in our lab. In that study, the hippocampus was chosen as DBS target, because there is 
considerable evidence that the hippocampal formation is involved in seizure initiation in 
refractory temporal lobe epilepsy 
Complementary to the earlier SPECT-study, we observed significant decreases in the glucose 
metabolism in the ipsi- and contralateral hippocampus, as well as in other areas of the limbic 
network. These findings suggest an underlying functional inhibition mechanism of hippocampal 
DBS. The net effects of DBS in a certain target structure vary depending on the composition of 
the inhibitory and excitatory axon terminals. 
 
Chapter 6: Functional Circuit Mapping of the Hippocampus using Simultaneous DBS-
fMRI 
 

In this study, we aimed to map the brain network modulated by acute hippocampal DBS using 
fMRI. 
Statistical analysis of the fMRI data revealed positive signal modulation in the hippocampus 
and other structures of the limbic network during DBS. This is not surprising, since the 
hippocampus is a key structure within the limbic system and therefore connects to several areas 
of the limbic system. In contradiction to the DBS induced metabolic signal drop in the limbic 
system, our DBS-fMRI study demonstrates DBS-induced activation of the limbic system. This 
may be attributed to the difference in length of stimulation in both experimental protocols, i.e. 
60min of continuous DBS (PET-study) vs. blocks of 20s of DBS (fMRI-study). This difference 
in stimulation duration was necessary considering that PET and fMRI are characterized by a 
different temporal resolution. Taken together, these studies suggest that DBS leads to an initial 
(order of seconds) activation of the brain network related to the target; and probably leads to a 
metabolic decrease over time due to homeostatic downscaling mechanisms that occur in 
reaction to 60min of continuous electrical stimulation. Moreover, these studies highlight the 
importance of multi-modal imaging in the investigation of DBS and neurological disorders. 
 
 
Part IV- Conclusions and future perspectives 
 

Three major research goals have been achieved. First, we identified pathways that are less well 
known using DBS-fMRI of the SNr and GPe. Second, we employed opto-fMRI for selective 
modulation of GPe neurons alone, and hereby demonstrated the potential of opto-fMRI, to 
unravel DBS- and pathology-mechanisms in a far more selective manner than with the use of 
electrical stimulation. Third, we demonstrated that hippocampal DBS causes hypometabolism in 
the limic system, hereby further validating a previous SPECT-study showing bilateral 
hypoperfusion in the hippocampus during hippocampal DBS. Both studies indicate DBS-
induced decreases in the brain’s metabolism, suggesting underlying functional inhibition 
mechanisms of DBS. Additionally, we were able to visualize the brain network modulated by 
hippocampal DBS using fMRI. 
 

Our considerable progress in the development and application of fMRI procedures to study the 
effects of DBS and optogenetics in rats, tackling several of the major technical hurdles, can be 
seen as one of the major contributions of this research. To our knowledge, these are the first 
preclinical DBS-fMRI studies to investigate the SNr, GPe and hippocampus in vivo, and the 
first opto-fMRI study of the GPe in healthy and Parkinsonian rats. The knowledge and 
experience obtained throughout these studies, enables further preclinical investigation using 
DBS- and opto-fMRI to explore neurological disorders and DBS-therapy. More specifically, we 
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want to apply opto-fMRI in future research to investigate the role of a specific group of neurons 
in seizure initiation/propagation or seizure suppression in rodent models of epilepsy.  
 
 

This research was performed at the research group MEDISIP (MEDical Image and Signal 
Processing) and the INFINITY lab (in vivo small animal imaging lab), both part from the ELIS 
department of the faculty of engineering at Ghent University, in collaboration with Shihlab at 
the Biomedical Research Imaging Center from the University of North Carolina (UNC), 
LCEN3 (Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and 
Neuropsychiatry) of the faculty of biomedical sciences at Ghent University. The experiments 
described in part II of this thesis were all performed at Shihlab (UNC). The work presented in 
this dissertation resulted in 4 A1 journal papers as a first author (1 submitted and 1 in 
preparation), 2 A1 journal publications as a co-author (1 submitted and 1 in preparation), and 13 
contributions at international conferences.  
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Introduction 

 
 
The work presented in this dissertation uses functional imaging techniques and optogenetics to 
investigate the mechanism of deep brain stimulation (DBS) in Parkinson’s disease and epilepsy. 
The rationale behind this investigation, research goals and outline of the thesis are described in 
this introductory chapter. 
 
 

Rationale 
 
In DBS, electrical pulses are delivered to specific brain targets by means of stereotactically 
implanted deep brain electrodes (Fig. 0.1). In contrast to resective surgery, DBS is an adjustable 
and reversible therapy. DBS has become the preferred surgical treatment for advanced 
Parkinson’s disease (PD) and is a promising therapy for other neurological and psychiatric 
disorders, such as other movement disorders (Birdno et al., 2008; Benabid 2003), refractory 
epilepsy (Fischer et al., 2010; Boon et al., 2009; Vonck et al., 2013) and obsessive-compulsive 
disorder (Nuttin et al., 1999; Abelson et al., 2005).  

 
 
 
 
Figure 0.1: Illustration of an implanted Deep Brain Stimulation 
system in humans. A multi-contact DBS-electrode is implanted in a 
deep brain structure, fixed to the skull and connected to a 
subcutaneously implanted pulse generator. (Figure adopted from 
http://www.wired.com). 
 
 
 
 

 
 
Already in ancient times, electrical stimulation was used to treat neurological disorders such as 
migraine, by placing certain electricity-producing fish on the head. In the early 19th century, 
scientists started to use electrical stimulation to understand brain function and for therapeutic 
purposes. But it was not until the 1950s that scientists observed that stimulation of certain brain 
structures, suppressed abnormal electrical activity in the brain during surgery. Consequently, 
DBS was born and has led to positive results for the treatment of PD, resulting worldwide in 
over 30000 patients with movement disorders that are presently being treated with DBS. 
Currently DBS-therapy is FDA (Food and Drug Administration) approved for the subthalamic 
nucleus and anterior nucleus of the thalamus, for the treatment of PD and epilepsy patients, 
respectively. Despite the rapidly growing use of DBS as a treatment, to (partially) suppress 
tremor in refractory PD or epileptic seizures in refractory epilepsy, the working mechanisms 
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underlying the therapeutic effects of DBS are poorly understood, limiting clinical efficacy. 
Therefore, further research is necessary to reduce the amount of non-responders to this invasive 
and expensive treatment by exploring new possible DBS targets.  
Research in patients is restricted because of ethical reasons, difficult patient recruitment and the 
large variation among patients. Thus, in order to better understand the effects of DBS and to 
search for potential new DBS targets, animal research becomes indispensable because it offers 
highly controlled experimental conditions. 
 

Medical imaging is a tool to visualize the body’s anatomy and physiology in a non-invasive 
way (i.e. without opening the body), and enables diagnosis and prognosis of several 
pathologies, including the evaluation of the effects of therapy. Medical imaging that focuses on 
visualizing the brain and its physiology is called neuroimaging. Neuroimaging techniques are 
crucial for understanding the relationships between specific areas of the brain and their function; 
helping to locate the areas of the brain that are affected by neurological or psychiatric disorders; 
and developing new or improving existent treatments for these disorders. Similar to medical 
imaging, neuroimaging techniques fall into two broad categories: structural and functional 
neuroimaging techniques. Structural neuroimaging investigates the structure of the brain and 
can be used for the diagnosis of anatomical abnormalities, such as tumor or injury. Examples of 
structural imaging techniques are: Computed Tomography (CT) and Magnetic Resonance 
Imaging (MRI). However, in many diseases, functional changes appear well before any 
structural modifications. In such case, functional neuroimaging can be used because it can 
reveal the activity in certain brain regions by detecting changes in metabolism, blood flow, 
blood volume or biochemical composition. Functional neuroimaging is commonly used for 
research in brain function of the healthy and diseased brain, and to evaluate the effect of 
treatments such as DBS. Examples of functional imaging techniques are: functional Magnetic 
Resonance Imaging (fMRI) and Positron Emission Tomography (PET). Examples of different 
imaging modalities are shown in Fig. 0.2.  
 
 
 
 
 
 
 
Figure 0.2: Examples of different imaging modalities: (A) Real axial slice of the human brain; (B) axial slice of the 
human brain acquired with different imaging modalities from left to right: X-ray, MRI, SPECT and PET. (Figure 
modified from http://www.unige.ch/cyberdocuments/). 
 
As the brain processes information, blood flows to the responsible areas to provide the required 
oxygen and glucose. However, the oxygen consumption is much less compared to the 
bloodflow increase and glucose consumption, leading to a net increase in the amount of oxygen 
present in the blood and tissue, which forms the basis of the fMRI-signal. A more detailed 
explanation of the fMRI-signal is provided in paragraph 2.1 of this thesis. Basically, fMRI is a 
series of MR-images acquired sequentially for a period of time to investigate how the blood 
flow changes over that period of time. PET is a nuclear imaging technique that requires the 
injection of a radioactive labeled molecule or tracer that participates in the subject’s 
metabolism, and distributes accordingly. Besides the metabolism other functional processes 
such as blood flow and receptor density can be visualized using PET, depending on the tracer 
that is used. The most widely used PET tracer is fluorodeoxyglucose (FDG), a glucose analog 
where one of the hydroxyl groups is replaced by the 18F radionuclide. The body metabolizes 
FDG in the same way as endogenous glucose, except that once phosphorylated glucose 
continues along the glycolytic pathway for energy production, whereas FDG cannot enter 

  A B 



 xxxiii 

glycolysis and becomes effectively trapped intracellularly where it accumulates. And thus, FDG 
PET can be used to visualize changes in the glucose metabolism of the brain. As opposed to 
PET, fMRI makes use of endogenous contrast or non-radioactive exogenous contrast agents to 
visualize brain function. Our MR and PET scanner are depicted in Fig. 0.3A and B respectively. 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 0.3: Medical scanners in our lab: (A) 7 Tesla small animal MRI from Bruker; (B) PET/CT system from 
TriFoil Imaging. 
 
One of the advantages of using functional neuroimaging techniques, such as fMRI and PET, is 
that the effect throughout the entire brain can be captured. In contrast, cellular or 
electrophysiology studies measure at predefined regions of interest, and therefore important 
findings in unexpected brain structures might be “missed”, introducing regional bias in the 
results. This is especially important in the investigation of DBS as a treatment for PD or 
epilepsy, since it is well known that PD and epilepsy are “network-diseases”, affecting the 
entire brain. For example, in the case of epilepsy, this means that the seizure proneness, of a 
certain brain structure, is influenced by activity in other brain structures that are connected to 
that specific brain structure. The network as a whole is thus responsible for the clinical and 
electrophysiological characteristics associated with seizures. In conclusion, PD, epilepsy and 
DBS are characterized by modulating entire brain networks, and functional neuroimaging 
techniques are ideal tools to evaluate the mechanisms of DBS in network diseases such as PD 
and epilepsy. ���  
 

Additionally, we employed optogenetics with fMRI readout, also referred to as “opto-fMRI”, 
for a more detailed investigation of brain circuitry. Optogenetics is a new state-of-the-art 
technology that enables changes in cell behavior on a millisecond timescale, simply by using 
light. This technique has much higher temporal, spatial and cellular specificity compared to 
pharmacological and electrical stimulation treatments, and therefore is revolutionary in the field 
of neuroscience. In short, a gene, that encodes a light-sensitive protein, is attached to a promoter 
that allows transfecting a specific group of neurons. This viral vector is then introduced into a 
brain structure of interest. But only those promoter-specific neurons (or non-neuron cells) will 
express the light-sensitive protein in their cell membrane. Finally, an optic fiber is implanted 
just above the targeted structure, so light can be brought into the brain, onto the transfected area 
(Fig. 0.4).  
 

In 2010, optogenetics was awarded “Method of the Year” by the scientific journal Nature 
Methods. Since then, optogenetics has been used successfully to control more complex 
functions in the mammalian brain, such as cognitive function, reward behavior, to restore vision 
or to investigate DBS therapy.  
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Figure 0.4: Basic principles of optogenetics. In optogenetics, neuroscientists insert opsin genes into brain cells with 
the aid of engineerd viruses. They can then trigger neural activity on demand with flashes of light and observe the 
effects on experimental animals’ behavior. (Figure modified from http://www.nature.com/scientificamerican/ 
journal/v303/n5/box/) 
 
Recently, fMRI and optogenetics have been combined, to examine the whole-brain effect of a 
light stimulus in the brain. Before, neural circuitry has been examined using electrical 
stimulation of small groups of cells whilst simultaneously performing fMRI. However, 
electrical stimulation does not only affect the targeted cells, but also passing fibers, causing off-
target effects that potentially confound the fMRI signal. Combined optogenetics and fMRI 
would largely avoid this problem, since only the neurons, where the promotor of the introduced 
gene package is activated, are responsive to light. 
 
 
 

Research goals 
 
Our research ultimately aims at refinement of DBS therapy in order to reduce the amount of 
non-responders to this expensive and invasive treatment. In order to contribute to this objective 
we aimed to explore several experimental DBS targets. The three major research goals of this 
thesis are: 
 
 
 

1. The Substantia Nigra pars reticulate (SNr) and the Globus Pallidus externa (GPe) are 
currently being explored as potential non-canonical DBS targets for PD. However, more 
research is necessary to explore how these striatal output nuclei are interconnected to 
other brain regions. Our aim is to use fMRI to visualize other brain areas that are 
functionally interconnected to these potential DBS targets. 
 

2. Optogenetics, or stimulation using light, is a state-of-the-art neuromodulation technique 
that has been proposed as a more selective alternative to electrical stimulation (DBS). 
Our aim is to combine optogenetics and fMRI, to investigate how other brain regions 
respond to optogenetic stimulation of the GPe. 
 

3. Hippocampal DBS has been proposed as an effective treatment for refractory temporal 
lobe epilepsy. Previous animal research has shown that electrical stimulation of the 
hippocampus results in reduced perfusion of several region of the limbic system. Our 
third aim is twofold: 1) to investigate wheter hippocampal DBS also results in a reduced 
glucose metabolism using PET, and 2) to visualize the brain network modulated during 
hippocampal DBS using fMRI. 
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Outline 
 
This dissertation is divided into four parts: (1) background information on DBS, PD; epilepsy; 
the functional neuroimaging modalities used and optogenetics; detailed explanation of our 
preclinical imaging experiments related to (2) PD and (3) epilepsy; and (4) final conclusions 
and future perspectives. 
 

In part I of this dissertation, we provide some background information on DBS, PD, epilepsy, 
fMRI, PET and optogenetics. In chapter 1, we first explain the general principles of DBS and 
provide a short history of the development of DBS. Second, we elaborate on PD, including the 
basic principles of the pathology, the brain network affected by PD, and the state-of-the-art of 
DBS as a treatment for PD. Finally, we explain epilepsy more in detail, including the basic 
principles, the brain network involved in epilepsy, and the state-of-the-art of DBS as a treatment 
for epilepsy. Chapter 2 focuses on the methods used in this research. First, we describe fMRI, 
including MRI and fMRI basics, and its application in the investigation of DBS, PD and 
epilepsy. Second, we explain the basic principles of PET imaging and its applications in the 
investigation of DBS, PD and epilepsy. Finally, we elaborate on optogenetics and its current 
applications. 
 
Part II and III provide detailed information on the preclinical imaging experiments performed in 
this dissertation, including a rationale, materials and methods used, results, interpretation of the 
results and limitations of the experiments. In part II, our goal was to map the brain network 
modulated by striatal output nuclei using DBS-fMRI (chapter 3) and opto-fMRI (chapter 4), 
and to validate the presumed higher selectivity of opto-fMRI. Since the striatal output nuclei are 
involved in motion generation/suppression, these are considered potential DBS targets for the 
clinical treatment of PD. In part III, we used DBS-PET (chapter 5) and DBS-fMRI (chapter 
6) to evaluate changes in the glucose metabolism and network activation, respectively; induced 
by electrical stimulation of the hippocampus.  
 
Finally, in part IV, general conclusions are made and possible future research is discussed. 
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Chapter 1 
 

DBS in Parkinson’s Disease and 

Epilepsy 
 

 

1.1 Deep Brain Stimulation 
 

1.1.1 General principles 
 

Deep brain stimulation (DBS) is a neuromodulation therapy that has been used successfully in 

the treatment of several neurological disorders, such as advanced Parksinon’s disease 

(McIntyre, 2004; Benabid et al., 1991) and refractory epilsepsy (Fischer et al., 2010; Boon et 

al., 2009; Vonck et al., 2013), and neuropsychiatric disorders, such as obsessive-compulsive 

disorder, depression and addiction (Kringelbach et al., 2007; Wichmann and DeLong, 2006; 

Goodman and Alterman, 2012; Lozano and Lipsman, 2013). With DBS, electrical pulses are 

delivered to specific parts of the brain (via a subclavicular or paraumbilical implanted pulse 

generator, intracranial electrodes and a subcutaneous lead), in order to interfere with the neural 

activity of the target site. An example of the DBS-unit is shown in the introductory chapter (Fig. 

0.1). Especially in movement disorders, such as PD, DBS has become a fixed value in the 

treatment protocol of PD patients (Benabid et al., 1991). Also in the therapy of refractory 

epilepsy, when anti-epileptic drugs do not (longer) offer a solution, DBS may be a valid 

alternative by targeting key structures for seizure onset (e.g. hippocampus) or seizure 

propagation (e.g. thalamus) (Sprengers et al., 2014). Compared to the previously used lesion-

based neurosurgical tools, DBS is advantageous because of its reversibility (stimulation can be 

turned off) and capacity to modulate stimulation parameters (active contacts, voltage, 

frequency, pulse width) (Benabid et al., 1991; Kuncel and Grill, 2004). The latter trait is 

particularly important for optimizing the therapeutic benefits of DBS while reducing 

stimulation-related side-effects (McIntyre et al., 2004). The Food and Drug Administration 

(FDA) approved anterior nucleus of the thalamus (ANT)-DBS of Medtronic in 2002 (SANTE-

study), and approved responsive neurostimulation therapy, the NeuroPace® RNS® System, for 

epilepsy in 2013 (fda.gov). Thus, it is clear that DBS is an effective treatment for PD and 

epilepsy. However, there are still a lot of non-responders to this expensive and invasive therapy. 

Therefore, the potential of DBS in other targets, as a clinical treatment for PD, epilepsy, and 

also for other neurological or psychiatric disorders are highly fascinating, but also highly 

challenging. There are still many unresolved technical, ethical and regulatory problems 

concerning the identification of the targets and DBS-parameters for each disease, the selection 

of the patients and the evaluation of the results within and across patient groups.  
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1.1.2 Short history 
 

The use of electrical stimulation to treat neurological disorders can be tracked back to ancient 

times (Rossi, 2003) when certain electricity-producing fish were placed on the cranial surface as 

a remedy for headache and other applications such as for the treatment of seizures, depression, 

and pain (Kellaway, 1946; Schwalb and Hamani, 2008). In the early 19th century, scientists 

started to use electrical brain stimulation to understand the functioning of the brain and to treat 

neurological and psychiatric disorders (Aldini, 1804; Boling et al., 2002; Parent, 2004). At that 

time, Aldini reported that electrical stimulation on the exposed human cerebral cortex of 

recently decapitated prisoners caused horrible facial expressions. After various animal 

experiments Bartholow was the first to perform electrical stimulation of the cerebral cortex in 

awake humans (Bartholow, 1874), demonstrating the electrical excitability of the cortex. But it 

wasn’t until the 1950s that electrical brain stimulation was used during stereotactic surgery as a 

way to identify and delineate functional brain tissue (Hassler and Riechert, 1955; Penfield, 

1950). Scientists observed during surgery that stimulation of certain brain structures suppressed 

abnormal electrical activity in the brain. Consequently, DBS was born. Over the last 30 years 

DBS-therapy has led to positive results for the treatment of PD, essential tremor, and dystonia 

(Groiss et al., 2009; Benabid et al., 1991; Coubes et al., 2002; Ruge et al., 2011). Worldwide, 

more than 30000 patients with movement disorders are currently treated with DBS. DBS does 

not provide a cure, but it alleviates the symptoms and improves the quality of life of the patient, 

by decreasing the dose and the side effects of medication. The Food and Drug Administration 

(FDA) approved DBS for therapeutic treatment for essential tremor in 1997, for PD in 2002, 

and for dystonia in 2003 (fda.gov). Additionally, DBS has been evaluated as a treatment for 

epilepsy (Cooper et al., 1973), Tourette’s syndrome (Vandewalle et al., 1999), depression 

(Mayberg et al., 2005), obsessive–compulsive disorder (Nuttin et al., 1999), cluster headaches 

(Franzini et al., 2003), eating disorders (Kumar et al., 2015; Lacan et al., 2008), and memory 

enhancement (Hamani et al., 2008), in more recent years. Fig. 1.1 shows a timeline indicating 

the different applications for DBS. 
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1.2 Parkinson’s disease 
 

In the following paragraphs we provide some background information on Parkinson’s disease 

(PD), in order to fully understand why we want to examine brain circuitry modulated by DBS of 

the Substantia Nigra pars reticulate (SNr) and Globus Pallidus externa (GPe). 

 

 

1.2.1 General principles 

1.2.1.1 Symptomatic PD: dopamine loss 
 

PD is a degenerative and progressive disorder of the central nervous system (CNS). The main 

symptoms of PD are tremor at rest, slow movements, stiffness and balance problems (Weiner & 

Lang, 1989). Therefore, PD is classified as a motor system disorders. The PD-symptoms are 

caused by the loss of dopamine-producing cells in the substantia nigra pars compacta. Nerve 

cells in the substantia nigra pars compacta produce the neurotransmitter dopamine, which is 

critical for normal movement (Savitt et al., 2006). Loss of dopamine-based inhibition ultimately 

leads to pathological spontaneous low-frequency oscillation, causing PD deficits. When PD 

progresses to other nuclei of the basal ganglia and to the nerves that control the muscles, also 

other neurotransmitters get thrown out of balance. The basal ganglia are made up of many 

complex, interconnected neuronal systems. The neuropathology of PD is thus regulated by a 

number of different neurotransmitters in addition to dopamine, such as GABA, glutamate, 

serotonin… For example, high levels of glutamate also appear in PD, probably due to intrinsic 

homeostatic control mechanisms that occur in the Parkinsonian brain to compensate for the lack 

of dopamine (Bezard et al., 2011). 
 

The main PD symptoms, such as tremor at rest, arise when 80 percent of dopamine is lost 

(Weiner & Lang, 1989). In addition to these primary symptoms, PD patients can also suffer 

from depression, dementia, speech issues, constipation and REM-sleep disorder (Marsden, 

1984). About 10 million people worldwide are living with PD, from which 4% are diagnosed 

before the age of 50. Men are 1.5 times more likely to develop PD, compared to women.  The 

table below lists and provides a brief description of typical motor and non-motor symptoms of 

PD patients. 

 

Table 1.1: Common motor- and non-motor symptoms in Parkinson’s disease 

Motor symptoms Non-motor symptoms 

Tremor (involuntary trembling of the of the hands and 

sometimes the legs, neck, face, or jaw at rest; it typically 

stops upon voluntary movement of the part and is 

intensified by stimuli such as cold, fatigue, and strong 

emotions) 

Sleep disorders (REM behavior disorder, vivid dreams, 

daytime drowsiness, sleep fragmentation, rest- less legs 

syndrome) 

Bradykinesia (slow movement) Gastrointestinal disorders (gastroparesis, constipation) 

Dystonia (abnormal muscle contraction) Depression 

Dyskinesia (impaired voluntary movement that produces 

repetitive involuntary twisting movements and abnormal 

posturing of the neck, trunk, face, and extremities) 

Cognitive impairment (dementia, tip-of-the tongue (word 

finding) phenomenon) 

Rigidity (muscle stiffness, decreased arm swing) Sensory symptoms (impaired sense of smell and/or taste, 

pain in shoulder and/or back) 

Postural instability (falls, freezing of gait) Psychosis/hallucinations 

Hypomimia (reduction in the expressiveness of the face, 

marked by diminished movement of the facial muscles 

and speech problems) 
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Currently, there is no cure for PD. Therefore, treatments aim at reducing symptoms, and 

creating a more active lifestyle, to improve the patient’s quality of life. The earliest treatment 

for PD involved lesioning of the subthalamic nucleus (STN) or Globus Pallidus interna (GPi) 

(Groiss et al., 2009). The post-operative difficulties and morbidity, together with the prospects 

of a potentially beneficial pharmacological treatment in the 1970’s, led to an almost complete 

abandonment of the surgical treatment for this disorder. Pharmacological treatment involves 

replacing or mimicking the lost dopamine (or other neurotransmitters). Initially, levodopa 

therapy demonstrated to successfully compensate for dopamine depletion in PD. However, as 

PD progresses, patients eventually develop resistance to dopaminergic drugs, and in many cases 

develop levodopa-induced dyskinesias and motor fluctuations, and even psychosis (Rascol et 

al., 2003). Inefficient pharmacological treatment and surgical approaches to treat all PD patients 

paved the way for novel approaches such as DBS to complement the existing therapies, more 

specifically using high frequency stimulation (HFS) (Benabid et al., 2005; Lozano and Hamani, 

2004). 
 

DBS does not reverse or stop the progressive loss of dopamine-producing cells, but it is 

hypothesized that DBS overrides the “pathological” low-frequency oscillatory activity with 

“normal” periodic high-frequency oscillations, as observed in healthy subjects (Grill and 

Snyder, 2004; Hashimoto et al., 2003; McIntyre et al., 2004; Montgomery and Baker, 2000). 

The basal ganglia are made up of a complex group of coupled neuronal systems that each 

spontaneously oscillate. It is well known that coupled oscillators tend to synchronize. In PD, it 

is hypothesized that dopamine depletion causes a pathological low-frequency synchronization 

of the basal ganglia (i.e. a group coupled neuronal systems). Furthermore, disruption of the 

pathological low-frequency oscillation by DBS in the basal ganglia is associated with 

improvement of motor symptoms and normal firing of motor neurons. However, how the 

electrical stimulation and the pathological and normal oscillatory activity interact remains to be 

elucidated. Unfortunately, as the loss of dopamine-producing cells progresses, the increased 

abnormal oscillatory activity will eventually overwhelm the capacity of DBS to override them. 

The clinical care of a PD patient costs about 2500 euros per year, and therapeutic surgery can 

cost up to 100000 euros per patient (Parkinson’s Disease Foundation.org, 2016). 
 

1.2.1.2 Presymptomatic PD: the prion hypothesis  
 

Recently, it has been hypothesized that PD initiates in the periphery years before the first 

symptoms occur, after which it extends to the CNS via the vagus nerve (Greggio et al., 2012). 

As the disease progresses, the severity of lesions in the areas affected and the amount of areas 

affected increases, causing presymptomatic problems related to those areas. This hypothesis 

might explain why PD patients frequently have a wide range of non-motor symptoms (such as 

constipation or REM-sleep disorder), related to dysfunction of the peripheral nervous system 

(PNS), which often precede the primary motor symptoms of PD. Finally, the pathogenic cells 

work their way up in a prion-like fashion, causing degeneration of dopamine-producing nerve 

cells in the substantia nigra.  
 

Besides the loss of dopamine, PD is characterized by the presence of pathogenic cells or 

intraneuronal inclusions containing misfolded proteins, namely aggregated alpha synuclein 

(αsyn). The formation and self-propagation of misfolded proteins, such as αsyn aggregates, is 

called a prion-like process. The build-up of aggregations induces oxidative stress and 

inflammation and causes a prion-like cell-to-cell spreading of disease throughout the enteric 

wall, resulting in the construction of Lewy-bodies (Natale et al., 2011a; Natale et al., 2011b). 
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Lewy pathology is found throughout the PNS in both clinically diagnosed PD patients (Beach et 

al., 2010) as well as cases of clinically asymptomatic incidental Lewy body disease (ILBD) 

(Bloch et al., 2006; Dickson et al., 2008; Parkkinen et al., 2005). These findings are highly 

interesting as these ILBD-subjects are thought to represent presymptomatic PD at the earliest 

stage, eventually developing PD (Dickson et al., 2008; Minguez-Castellanos, 2007).

Furthermore, a few studies have shown that PD patients had pathological alpha-synuclein 

inclusions in the gut 0.4 - 20 years prior to PD diagnosis (average 7 years) (Borghammer et al., 

2016; Hilton et al, 2014; Ito et al, 2014; Shannon et al, 2012). In addition, more than half of 

these patients had Lewy pathology, and it was seen up to 20 years prior to diagnosis 

(Borghammer et al., under review). 
 

Braak and colleagues assessed the distribution of αsyn aggregates in the brains of 110 αsyn-

positive subjects, from which 41 were clinically diagnosed with PD, leading to the development 

of their widely accepted model of PD progression. According to Braak’s model, PD starts in the 

lower brainstem in the dorsal motor nucleus of the vagus nerve (DMV), and in the anterior 

olfactory structures. The disease then ascends rostrally from the DMV through susceptible 

regions of the medulla, pontine tegmentum, midbrain, and basal forebrain, eventually reaching 

the cerebral cortex (Fig. 1.2). This is a non-random, progressive process, with specific nuclei 

and neuronal types resulting in the development of Lewy pathology (i.e. abnormal aggregates of 

protein that develop inside nerve cells) in a stereotypic pattern. This development of Lewy-

bodies contributes to the PD pathogenesis. As the pathology advances upwards from the 

brainstem, both the severity of the lesions and the PD symptoms increase (Braak and Braak, 

2000; Braak et al., 2006; Sulzer and Surmeier, 2013). 

 

 

 

Figure 1.2: Staging of Lewy pathology according to the Braak 

model. Schematic summarizing the progression of Parkinson’s 

disease as proposed by Braak and colleagues (Figure adopted 

from Braak et al., 2003). 

 

 

 

 

 

 

Moreover, the formation and accumulation of misfolded protein aggregates have become 

increasingly important in the investigation of the pathogenesis of several neurodegenerative 

diseases, including Alzheimer’s and PD (Recasens and Dehay, 2014). These recent findings that 

PD might initiate in the gut and progresses in a prion-like fashion has important implication for 

early therapeutic intervention (Frost et al., 2010; Guest et al., 2011). Since there is currently no 

therapy available to slow down or stop the progression of PD, the potential therapeutic 

perspectives on therapies targeting the mechanism responsible for cell-to-cell spreading of the 

pathology are highly exciting and fascinating. Although this hypothesis seems promising, we 

should be careful in the acceptation of a prion-based PD progression, particularly in all cases of 

PD. The mechanisms contributing to PD progression may be as variable as the pathology itself 

(Visanji et al., 2013). Preclinical and clinical research is necessary to validate this hypothesis. 

Additionally, functional imaging of the gut of PD patients could provide a biomarker for 

presymptomatic PD (Gjerloff et al., 2015).  
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1.2.2 The brain network involved in PD 

1.2.2.1 The basal ganglia 
 

The basal ganglia are a set of subcortical nuclei that are primarily responsible for motor control. 

All these nuclei have similar functions and work together to control body movement based on 

the "brake hypothesis". For instance, in order to sit still, all movements need to be stopped, 

except for those maintaining an upright posture. In order to move, postural reflexes are stopped, 

and brakes on voluntary movement are released. This involves a highly complex chain of 

decisions. Consequently, small disruptions in the basal ganglia network can throw the whole 

system out of balance, causing motion deficits (Chakravarthy et al., 2010; Albin et al., 1989; 

Rothwell, 2011).  
 

The cortex, thalamus, and the basal ganglia are the key components in the basal ganglia 

circuitry. The schematic of the basal ganglia circuitry is presented in Fig. 1.3. The major nuclei 

of the basal ganglia are the caudate nucleus, putamen, globus pallidus, nucleus accumbens, 

subthalamic nucleus and substantia nigra. Yet, the relationships between them are incompletely 

understood. Firstly, there is the caudate nucleus and the putamen (also called the dorsal 

striatum), receiving most of their input from the cerebral cortex and providing the main input to 

the basal ganglia. Secondly, there is the globus pallidus (GP) which has an outer and an inner 

part, namely the globus pallidus externa (GPe) and the globus pallidus interna (GPi), both 

receiving input from the dorsal striatum, and both projecting to the subthalamic nucleus (STN), 

a third nuclei from the basal ganglia. Fourthly, there is the nucleus accumbens (NAc) (also 

called ventral striatum) that receives its input from frontal cortex and limbic areas, and is 

therefore more involved in depression and addiction than in movement disorders. Finally, there 

are the substantia nigra (SN), which can be divided in two parts, namely the SN pars compacta 

(SNc) and the SN pars reticulata (SNr): 
 

- The SNc mostly contains dopaminergic neurons and is reciprocally interconnected with 

the dorsal striatum.  
 

- The SNr mostly contains GABAergic neurons and also receives input from the dorsal 

striatum, but conveys the signals from the basal ganglia to other brain structures for the 

control of head and eye movements.  

 

 

 

Figure 1.3: Schematic of the basal ganglia circuitry showing excitatory 

glutamatergic pathways as red, inhibitory GABAergic pathways as blue, and 

modulatory dopaminergic pathways as green. (Abbreviations: GPe: globus pallidus 

externa; GPi: globus pallidus interna; STN: subthalamic nucleus; SNc: substantia 

nigra pars compacta; SNr: substantia nigra pars reticulata).  
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1.2.2.2 The striatum 
 

In PD, the loss of dopamine-producing cells in the SNc results in reduced levels of dopamine in 

the striatum due to reciprocal connections between both structures. The striatum is the major 

input structure of the basal ganglia and therefore represents a critical node within the brain’s 

action-selection circuitry. Dysregulation of these striatal circuits can manifest in several 

neurological and neuropsychiatric diseases, including PD. PD deficits can be largely explained 

by the effects of dopamine loss on the two striatal output pathways, namely the direct (striatum 

- SNr) and indirect pathway (striatum - GPe).  
 

- In the direct pathway, excitatory projections from the cortex provide striatal input, after 

which GABA-ergic neurons project to the “SNr/GPi-complex”, causing a reduced 

inhibition of the thalamus, resulting in the excitation of the motor cortex by the 

thalamus. Finally, the cortex projects its own excitatory outputs via the corticospinal 

tract to the muscle fibers.  
 

- In the indirect pathway, cortical cells project excitatory inputs to the striatum, which in 

turn projects its GABA-ergic axons to the GPe, causing a reduced inhibition of the 

STN. The STN then projects glutamatergic inputs to the “SNr/GPe-complex”, causing 

inhibition of the thalamus, eventually resulting in reduced muscle activity.  
 

Both pathways are indicated in Fig. 1.3. The body is able to maintain balance between 

excitation and inhibition of motion through opposing mechanisms of the direct and indirect 

pathway, but how exactly remains to be elucidated. In healthy subjects, dopamine increases the 

excitatory effect of the direct pathway on muscle activity (causing movement) and decreases the 

inhibitory effect of the indirect pathway on muscle activity (preventing full inhibition of 

movement). When there is not enough dopamine in the striatum to transmit messages to the 

basal ganglia, this causes dysfunction of the delicate and complex basal ganglia circuitry, 

consequently causing motion disruption or tremor. For example, dopamine depletion could 

cause overstimulation of the STN, which causes excitation of the GPi, resulting in interruption 

or disruption of normal motion. On the other hand, when the GPi is overstimulated, it has an 

over-inhibitory effect on the thalamus (VA/VL), resulting in tremor (Albin et al., 1989; 

DeLong, 1990). Fig. 1.4 displays this rewiring (i.e. alterations in communication) of the basal 

ganglia as a consequence of the reduced levels of dopamine in the striatum, caused by the 

degeneration of dopamine-producing cells in the SNc of PD subjects.   

 

 

 

 

 

 
 

 

 

 

Figure 1.4: Rewiring of the basal ganglia in Parkinson’s disease. Thick lines indicate increased output, and thin 

arrows indicate decreased output patterns present in PD. Black lines indicate inhibitory actions, and lines in red 

indicate excitatory actions. Note that, with loss of SNc function, the cascade of effects causes decreased thalamic (i.e. 

ventral anterior/ventral lateral nuclei) function, which leads to loss of motor control. (Figure adopted from Galvan et 

al., 2015). 
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1.2.3 DBS as a treatment for PD 

1.2.3.1 Clinical efficacy 
 

The discovery of electrical stimulation as a potential treatment for PD happened during the 

surgical procedures that were performed before the use of DBS. During those operations, 

electrical probes were used as a tool to guide the surgeon to the correct place, by receiving 

electrical signals from the passing areas.  Surgeons were surprised to observe that PD symptoms 

were sometimes alleviated by the weak signals administered by the sensing probes. The areas 

that had the greatest effect, namely STN and GPi, became the most common DBS targets for 

PD (Follet et al., 2010). Now PD patients can be treated by the less invasive and reversible 

electrical stimulation, as opposed to the irreversible lesioning approaches. Especially patients in 

the late stages of PD, who often experience unstable “on-off” responses to the medication, can 

be treated with DBS. Already more than 30000 PD patients have been treated with HFS and this 

number is increasing every day (Lozano and Hamini, 2004). About 80% of those patients has 

experienced a complete or significant reduction in their tremor and/or other motor disabilities, 

lasting at least several years (Cigna Health Care, 2005). And most PD patients are able to 

reduce the dosage and thus the side effects of their medication (Oluigbo et al., 2012). DBS is 

proven to be an effective treatment in particular in patients with a history of good responses to 

levodopa therapy, but where the response becomes less and less as the disease progresses. In 

those patients, DBS therapy usually results in less “on-off” fluctuations with longer “on” 

periods and less dyskinesias. It also has proven to be effective for tremor when drugs did not 

help. Unfortunately, as PD progresses, the pathology will eventually overwhelm the capacity of 

DBS, and patients who previously did not respond to levodopa therapy will likely not benefit 

from DBS (Benabid et al., 2005; Lozano & Mahant, 2004). 
 

1.2.3.2 DBS targets 
 

High frequency STN-DBS and GPi-DBS have been shown to be the most effective locations for 

application of DBS. High frequency STN-DBS improves motor function by at least 60% and 

greatly improves the patient’s quality of life (Benabid et al., 2005; Lozano and Mahant, 2004). 

Although, the STN seems to be the preferred target for DBS, only one small randomized trial 

has compared STN- to GPi-DBS, finding no difference between both therapies in the reduction 

of PD motor symptoms. In addition, the reported maximal clinical improvement of GPi-DBS 

(67%) is not significantly different than that reported for STN-DBS (71%). While reductions in 

levodopa dosages are required with STN-DBS (to avoid inducing dyskinesia), GPi-DBS may 

directly suppress dyskinesia precluding the need to reduce medication. There are also 

significantly more reports of behavioral changes reported for STN stimulation (Vitek, 2002). 

Yet in order to draw conclusions about the optimal DBS-target, there is a need for well-

designed clinical trials with randomized and standardized assessments that evaluate motor, 

nonmotor and adverse effects, and lead locations. 
 

However, neither STN-DBS nor GPi-DBS provides a satisfactory control of non-dopaminergic 

deficits, such as walk, balance and cognitive deficits, which are frequent and debilitating 

symptoms in advanced PD patients. Therefore, new potential DBS-targets are currently being 

explored to overcome the current DBS limitations (Castrioto and Moro, 2013; Vitek et al., 

2012). Note that the SNc, where the dopamine depletion is initiated, has usually deteriorated far 

too much to be considered as a DBS-target by the time DBS treatment is considered for a 

patient, because about 80% of the dopaminergic cells in the SNc already died before any PD 
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symptoms appear. Instead, DBS targets brain structures involved in the basal ganglia-

thalamocortical circuit that still have all their neurons intact (such as the STN and GPi) that 

make connections with other parts of the motor loop. In this dissertation, we will explore the 

GPe and SNr as non-canonical DBS-targets for PD. 

 

 

1.2.4 Rodent models of PD 
 

Experiments in humans, with the purpose of unraveling DBS mechanisms and optimizing DBS 

therapy, are difficult and restricted due to ethical problems, and the necessity of large and 

homogeneous patient groups. Therefore, studies in animal models of PD are indispensable. 

These models are designed according to our considerations about the etiology of PD.  
 

In this dissertation, we employed the most commonly used 6-hydroxydopamine (6-OHDA) 

model to evaluate the brain circuitry in PD rats. When injecting the neurotoxin 6-OHDA in the 

brain it induces the degeneration of dopaminergic and noradrenergic neurons (Ungerstedt 1968; 

Luthman et al. 1989). Typically 6-OHDA is injected unilaterally (hemiparkinsonian model), 

leaving the unlesioned contralateral side as an internal control. This way, it is easier to evaluate 

the lesion within a single subject and intrasubject variability, i.e. using behavioral testing 

(Grealish et al. 2010). The degree of dopamine depletion induced by 6-OHDA is dependent on 

the site of injection (Agid et al. 1973; Przedborski et al. 1995; Przedborski and Tieu 2006). 

When injected into the medial forebrain bundle, like we did in our experiments, 6-OHDA 

produces a complete and rapid lesion in the nigrostriatal pathway (Sauer and Oertel 1994; 

Przedborski et al. 1995). Like many other neurotoxin models of PD, the main disadvantage of 

the 6-OHDA model is the acute neurodegeneration, following the intracerebral injection, 

therefore excluding progressive age-dependent effects of PD. Additionally, Lewy bodies, 

another neuropathological hallmark in PD, are not present in this model. 
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1.3 Epilepsy 
 

In this paragraph we provide some background information on epilepsy, in order to fully 

understand why hippocampal DBS is currently under investigation as and experimental therapy 

for epilepsy.  

 

 

1.3.1 General principles 

1.3.1.1 Epilepsy 
 

Epilepsy is a chronic neurological disorder, characterized by an enduring predisposition to 

generate epileptic seizures. An epileptic seizure is caused by abnormal, hypersynchronous 

and/or excessive electrical activity in the brain (Seino, 2006). Clinically, an epileptic seizure 

manifests as a sudden and transient abnormal event, affecting autonomic, motor and sensory 

functions, memory, cognition, consciousness, emotions and behavior (Engel, 2006). Seizures 

affect at least one of those functions depending on the location of the seizure onset zone in the 

brain, patterns of propagation, age, confounding pathologic processes, medications, sleep, 

alcohol, stress and other factors, (Fischer et al., 2005).  
 

The occurrence of a single seizure does not make a person have epilepsy. According to the 

International League Against Epilepsy (ILAE) a person can be diagnosed with epilepsy under 

any of the following conditions: (1) at least two unprovoked (or reflex) seizures occurring >24 h 

apart; (2) one unprovoked (or reflex) seizure and a probability of further seizures similar to the 

general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 

10 years; (3) diagnosis of an epilepsy syndrome (Fischer et al., 2014).  
 

About 0.5-1% of the population worldwide is diagnosed with epilepsy, making it the second 

most common chronic neurological disorder after cerebrovascular disorders (Banerjee, 2009; 

Forsgren et al., 2005; Hauser et al., 1996). Age-related incidence of epilepsy shows two peaks. 

The first peak occurs early in life and represents epilepsy due to genetic defect, a pre- or 

perinatal brain injury o a (congenital) brain malformation. The second peak occurs during late 

adulthood and represents symptomatic epilepsies secondary to a traumatic event such as febrile 

status epilepticus (SE), stroke, head injury, brain infection, brain tumor etc. In some cases the 

cause of epilepsy is unclear (Hauser et al., 1996). Unlike in PD, the incidence rate of epilepsy is 

not gender related.  
 

Epilepsy should not be understood as a single disorder, but rather as a group of syndromes with 

divergent symptoms but all involving recurrent, abnormal, hypersynchronous and/or excessive 

electrical activity in the brain. Next we give a short overview of the different epileptic seizure 

types and epilepsy syndromes. 

 

1.3.1.2 Seizures 
 

Epileptic seizures can be divided into two main categories depending on their onset, namely 

focal epileptic seizures that are partial in onset, limited to one hemisphere, and generalized 

epileptic seizures with a generalized onset over both hemispheres (Berg et al., 2010). Focal or 

partial seizures originate from one hemisphere and can be subclassified as simple or complex, 

based on the effect of the seizure on the consciousness. Simple partial seizures affect normal 

sensory, motor, autonomic, cognitive or emotional functioning, without losing consciousness. 
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In contrast, complex partial seizures are always associated with loss of consciousness. Both 

simple and complex partial seizures may gradually develop into secondary generalized seizures 

when the epileptic activity spreads to the contralateral hemisphere.  
 

Generalized seizures seem to initiate in all parts of the brain simultaneously, due to rapid 

spreading after onset, making it impossible to identify the onset zone in many cases. 

Generalized seizures are categorized, based on their clinical symptom, into tonic-clonic seizures 

(also known as the “grand mal seizure”), clonic seizures, tonic seizures, absence seizures (also 

known as the “petit mal seizure”), myoclonic and atonic seizures (drop attacks). Generalized 

seizures are usually accompanied by loss of consciousness from onset to the late phase of 

recovery. Typically, a tonic-clonic seizure is preceded by an aura, followed by muscles 

contractions (tonic phase) and clonic jerking of the lower and/or upper limbs (clonic phase) 

(Zifkin and Dravet, 2008). In the case a patient experiences a partial or generalized seizure that 

lasts several minutes or longer, a state of continuous seizure activity, called a status epilepticus, 

occurs (Seino et al., 2006).  

 

1.3.1.3 Syndromes 
 

Epilepsy syndromes are categorized based on their ethiology, namely genetic cause, known 

structural or metabolic cause associated with the risk for developing epilepsy, and unknown 

cause (Berg et al., 2010).  

 

1.3.1.4 Temporal lobe epilepsy 
 

Temporal Lobe Epilepsy (TLE) is one of the most common types of epilepsy and one of the 

most difficult to treat effectively with anti-epileptic drugs (Engel, 2001; Panayiotopoulos, 

2007). About one third of all epilepsy patients suffer from TLE and more than 30% of those 

TLE patients are medically intractable (de Lanerolle and Lee, 2005; Duncan and Sagar, 1987). 

Additionally, in about 75% of the TLE patients, seizures are poorly controlled, making TLE the 

most drug resistant type of epilepsy (Spencer, 2002). This provides motivation for further 

research to develop alternative treatments, such as DBS, to treat drug resistant epilepsy.  
 

TLE is characterized by complex-partial seizures, with or without secondary generalization. 

Prior to the onset of these complex-partial seizures, a previous acute brain insult occurred in the 

patient’s life, such as febrile seizures, trauma, or a status epilepticus, causing initial neural 

damage. Months or years later, TLE develops, during which cellular and molecular changes 

occur, eventually leading to the manifestation of spontaneous recurrent seizures (Arzimanoglou 

et al., 2002).  
 

TLE is subdivided into mesial TLE (mTLE), characterized by seizure generation from the 

mesial temporal lobe, and lateral TLE (lTLE), characterized by seizure generation from the 

lateral temporal lobe. mTLE is the most common epilepsy in adults, and is therefore well 

documented due to the large series of patient data available, as opposed to the far less 

documented lTLE. Therefore, in this dissertation, we refer to mTLE when we name TLE.  
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1.3.2 The brain network involved in TLE 

1.3.2.1 The limbic system 
 

The underlying cause of TLE remains to be elucidated but electro-encephalography and 

neuroimaging studies suggest that the limbic system, and more specifically the hippocampus, 

plays an important role in the process of developing TLE (King et al., 1995; Mathern et al., 

1995; Spencer and Spencer, 1994). The limbic system, also called “the emotional brain”, is a 

complex set of brain structures that lies on both sides of the thalamus, right under the cerebrum.  

 

 
 

 

 

Figure 1.5: Schematic representation of the limbic system. (Figure 

adopted from http://mikeclaffey.com/psyc170/). 

 

 

 

 

 

 

 

Besides emotion, it is also involved in cognitive processes, such as the formation of memories. 

Structures of the limbic system include the hippocampus, hypothalamus, thalamic nuclei, 

amygdala, mammillary bodies, septum, fornix, cingulate gyrus, olfactory bulb, limbic cortex, 

and other brain structures nearby. The main structures are depicted in Fig. 1.5. 
 

In particular, the hippocampus seems to be important in the development of TLE. The 

information flow and pathophysiology in TLE of this important structure are explained in the 

next two paragraphs. 

 

1.3.2.2 The hippocampus: information flow 
 

The hippocampus can easily be identified by its characteristic shape and unique macroscopic 

and microscopic structure. In essence, the hippocampus is a cortical wrapping of the 

archaeocortex. It evolved from a simple cortical plate in amphibians to a complex structure in 

mammals, tightly connected to the neocortical regions (El-Falougy and Benuska, 2006). The 

hippocampus itself consists of two “banana-shaped” structures, defining the hippocampal 

formation. The hippocampal formation consists of the dentate gyrus (containing granule cells), 

the subiculum, the Cornu Ammonis (CA) fields CA1, CA2, CA3 and CA4. Each hippocampal 

substructure has its own structural and functional properties. 
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Figure 1.6: Schematic representation the main information 

flow through the rodent hippocampal formation. (Figure 

modified from Hyde and Strowbridge, 2012). 

 

 

 

 

 

 

 
 

Information flow through the hippocampus occurs in a well-established unidirectional manner 

(see Fig. 1.6), following a closed loop that originates in the entorhinal cortex. The main input to 

the hippocampus originates from the pyramidal cells of the entorhinal cortex and enters the 

hippocampus via the perforant path targeting the dentate gyrus. Next, the information flow 

proceeds from the dentate gyrus to CA3 along the mossy fiber pathway. These CA3 cells are 

connected to the ipsi- and contralateral CA1, called the Schaffer collateral fiber pathway, and 

eventually target the subiculum. 

 

1.3.2.3 The hippocampus: pathophysiology 
 

In the last decades, the (patho)physiology of the limbic system and the hippocampus in 

particular has been extensively studied. Histological evaluation of human epileptic hippocampal 

tissue suggests that the hippocampus plays an important role in the process of epileptogenesis 

(King et al., 1995; Spencer and Spencer, 1994), featured by neuronal cell loss (Lewis, 2005) and 

granule cell dispersion (Fahrner et al., 2007), gliosis (Blumcke et al., 2002), synaptic plasticity 

under the form of mossy fiber sprouting (Parent et al., 1999), neurogenesis (Parent, 2002), 

inflammation (Vezzani et al., 2002), and molecular reorganization in cellular membranes and 

extracellular matrix (Avanzini and Franceschetti, 2003) in the limbic system.  

Moreover, neuroimaging of TLE patients indicates that 70% of those TLE patients displays 

hippocampal sclerosis (deLanerolle and Lee, 2005) and surgical removal of the sclerotic 

hippocampus leads to seizure-freedom in 70% of the TLE-cases (Spencer, 2002). In rodents, 

hippocampal sclerosis is characterized by the selective loss of neurons in the CA3 mainly (Ben-

Ari and Cossart, 2000). As a response to this selective cell loss, the axons of the granule cells 

need to target structures that they normally do not innervate. This process is called mossy fiber 

sprouting (Mathern et al., 1996) and is a presumed mechanism of increased excitability of the 

hippocampal circuit (Brandt et al., 2003; Spencer and Spencer, 1994; Zhang et al., 2002). 

Despite the large amount of available data and formed hypotheses, it remains to be elucidated 

how these pathophysiological changes in the hippocampus contribute to, or are the consequence 

of, the epileptogenesis. 
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1.3.3 DBS as a treatment for TLE 
 

Epilepsy patients are always treated with anti-epileptic drugs first. For the one third of epilepsy 

patients that is medically refractory, alternative treatment options such as epilepsy surgery 

(Spencer, 2002), gamma knife surgery (Romanelli and Anschel, 2006), ketogenic diet (Huffman 

and Kossoff, 2006) and neurostimulation such as DBS can be used.  
 

Since its success in PD and other movement disorders, the number of neurological diseases 

being investigated for DBS as a therapeutic strategy is growing steadily. Also for refractory 

epilepsy, treating unsuitable resective surgery candidates with neurostimulation may be more 

successful.  

Since 1988, Vagus Nerve Stimulation (VNS) has provided an alternative treatment option for 

unsuitable resective surgery candidates (Van Roost et al., 2007). VNS consists of the 

implantation of a helical stimulation electrode, attached around the left vagus nerve in the neck 

area. By means of a subclavicular pulse generator, the vagus nerve is intermittently stimulated 

(Ben-Menachem, 2002). VNS-treatment was approved as a therapy for epilepsy in 1997, and 

since then over 70000 patients worldwide have undergone VNS treatment (Magdaleno-

Madrigal et al., 2014). However, about 30% of the patients treated with VNS do not experience 

any improvement (Handforth et al., 1998). DBS might provide a better alternative treatment 

option, since direct electrical stimulation of brain structures may exert stronger seizure 

suppressing effects, as opposed to VNS, which influences brain structures in an indirect manner. 

An additional benefit, of direct stimulation of brain targets involved in the seizure, is that 

possible systemic side-effects are avoided, as opposed to the typically systemic administration 

of anti-epilepstic drugs. Additionally, DBS not only allows for a reversible alternative but also 

features the adjustment of stimulation parameters, enabling a more patient-specific therapy 

compared to resective surgery. 
 

1.3.3.1 Clinical efficacy 
 

Two key long-term multi-center clinical trials have lead to the establishment of DBS as a 

treatment for refractory epilepsy, namely stimulation of the anterior nucleus of the thalamus 

(SANTE) and responsive focal stimulation (NeuroPace), respectively (Heck et al., 2014; Fisher 

et al., 2010).  

 

The SANTE study - The SANTE trial showed that high frequency (145Hz) stimulation in a 

structure responsible for seizure propagation (i.e. the anterior nuclei of the thalamus (ANT)) in 

patients with focal epilepsy resulted in a >50% reduction in seizure rate by two years (Fisher et 

al., 2010). This SANTE trial demonstrated safety and efficacy of ANT-DBS, resulting in FDA 

approval for ANT-DBS in 2009, and CE marking in 2010.  

 

The Neuropace study - In the second trial, responsive neurostimulation (RNS) was used to 

stimulate the seizure onset zone whenever a seizure is detected by the system 

(NeuroPace®RNS®). In this study, the median seizure reduction was 53% after two years 

(Heck et al., 2014). Showing clinical efficacy, the NeuroPace®RNS® system was approved for 

the treatment of adults with partial onset seizures whom have not been controlled with two or 

more antiepileptic drugs in 2013. Despite these positive results with responsive focal 

neurostimulation, it remains to be elucidated whether RNS stimulation is more effective than 

ANT-DBS.
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1.3.3.2 Hippocampal DBS 
 

As mentioned before, a seizure often initiates in the hippocampus in TLE patients (Sprengers et 

al., 2014; Spencer, 2002). Currently, hippocampal DBS is being explored as an experimental 

DBS-therapy for the treatment of refractory TLE. Over the past fifteen years, several centers 

have explored the efficacy of scheduled hippocampal DBS as a treatment for refractory 

epilepsy, demonstrating promising results. Table 1.2 lists the outcome of small open label and 

small randomized controlled trials of hippocampal DBS as a treatment for refractory epilepsy. 

So far, hippocampal high frequency DBS has been applied in approximately 43 patients 

worldwide (Vonck et al., 2013; Boon et al., 2007; Osorio et al., 2005; Tellez-Zenteno et al., 

2006; Velasco et al., 2007; Velasco et al., 2000b), and 70% of those patients experience a clear 

reduction in seizure frequency. Results vary from a moderate 15% seizure reduction (Tellez-

Zenteno et al., 2006) up to promising >50% seizure reduction, and even seizure freedom in 50% 

of some patient series (Velasco et al., 2007). These studies typically show reductions of seizure 

frequency of 40% acutely, and 50–69% after several years, with the maximal effect seen 

typically 1–2 years after implantation. Seizure intensity might also be reduced.  

Boon et al. treated thirteen refractory TLE patients with long-term DBS (i.e. > 3 years), with 

90% of patients experiencing reduction in seizures (Vonck et al., 2013; Boon et al., 2007). Two 

of those 13 patients eventually underwent an amygdalo-hippocampectomy (i.e. removal of the 

hippocampus or amygdala).  

 

 

Table 1.2: Outcome of open label and small randomized controlled trials of hippocampal DBS as a treatment for 

refractory epilepsy. 

Clinical trial DBS parameters 

(frequency (Hz), pulse width 

(μs), amplitude (A,V)) 

Seizure rate reduction 

>90% 50-

90% 

30-

50% 

<30% 

Velasco et al., 

2007 

130Hz, 450μs, 0.3A 4/9 5/9 - - 

Vonck et al., 

2013; Boon et al., 

2007 

130Hz, 0.1-0.2V 6/11 2/11 1/11 2/11 

Cuckiert et al., 

2014 

130Hz, 300μs, 0.5-1-3.5V 2/9 5/9 - 2/9 

Boex et al., 2011 130Hz, 450μs, 0.5-2V 2/8 4/8 - 2/8 

McLachlan et al., 

2010 

185Hz, 90μs, 1.8-4.5V - - 2/2 - 

Tellez-Zenteno et 

al., 2006 

190Hz, 90μs, 1.8-4.5V - - 2/4 2/4 

 

 

Although these results seem promising, the high responder rate should be interpreted with 

caution. The value of hippocampal DBS is difficult to assess in these open label studies with a 

limited amount of patients, where stimulation parameters were tailored to achieve optimal 

seizure control in the individual patient during daily clinical practice. A recent Cochrane 

analysis on all small, randomized, controlled trials that conducted DBS, demonstrated that 

hippocampal DBS, next to ANT-DBS and responsive focal DBS, seems to be a valid option to 

reduce seizure frequency in refractory epilepsy (Sprengers et al. 2014). Additionally, improved 

efficacy with longer treatment duration has been observed after long-term treatment with 

hippocampal DBS, similar to the open label phase of the SANTE and NeuroPace trial (Heck et 

al., 2014; Vonck et al., 2013; Fisher et al., 2010). In this work, we will further explore the 

hippocampus as alternative DBS target for epilepsy. 
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The hippocampus is a key-component in normal cognitive functioning and is mainly responsible 

for the formation of new memories, spatial navigation and conversion of short-term to long-

term memory (El-Falougy and Benuska, 2006). Thus, damage to the hippcocampus (i.e. due to 

apoxia or encephalitis) leads to disorientation and difficulties in memory formation and retrieval 

(Alvarez et al., 1995; Scoville and Milner, 1957). Because of the inhibition-like effect of DBS 

on the stimulated target structures, it is likely that hDBS may lead to memory impairment. 

Therefore, every implanted patient should undergo thorough post-surgical testing. Conversely, 

the previously discussed open label randomized trials on hippocampal DBS did not report 

effects on memory and learning (Tellez-Zenteno et al., 2006; Velasco et al., 2007; Boon et al., 

2007; Boex et al., 2011; Cukiert et al., 2014). Moreover, studies have demonstrated an overall 

improvement in the emotional state (Miatton et al., 2011), and enhanced short-term memory 

(Luna-Munguia et al., 2012). In conclusion, the implantation of DBS hardware and the 

stimulation itself is considered safe, with limited risks and insignificant cognitive impairment. 

However, extra research is necessary, involving larger patient groups with long-term follow-up, 

in order to identify complications that might be overlooked in pilot-trials with limited sample 

sizes.  

 

 

1.3.4 Rodent models of epilepsy 
 

Although DBS as a treatment for epilepsy is promising, the working mechanism of action and 

optimal settings of DBS remain to be elucidated. Experiments in humans are difficult and 

restricted due to ethical problems and the necessity of large and homogeneous patient groups. 

Studies in animal models for epilepsy are therefore indispensable, not only to understand the 

therapeutic mechanisms underlying DBS and optimize DBS therapy, but also to unravel the 

pathogenesis of TLE.  
 

When modeling human epileptic seizures and epilepsy, three categories of in vivo animal 

models can be distinguished, namely genetic models, acute seizure models (that do not 

necessarily indicate the presence of an epileptic condition) and chronic models (associated with 

spontaneous recurrent seizures) (Engel et al., 2006). No animal model can faithfully mimic all 

complex features of a seizure or syndrome. Thus, each animal model focuses on certain key 

components of seizures and syndromes. For example, post-status epilepticus models are mostly 

used to investigate the pathogenesis of TLE. These models are characterized by a latent period 

during which the epilepsy develops (similar to TLE), resulting in spontaneous seizures and 

lesions such as mossy fiber sprouting. Post-status epilepticus models can be achieved by 

chemically (i.e. kainic acid or pilocarpine) or electrically (i.e. kindling) inducing epilepsy. The 

chemical kainic acid and pilocarpine model better mimic the pathophysiology of epilepsy. 

Unfortunately, spontaneous motor seizures do not or are less likely to develop in kindling 

models.
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Chapter 2 

 

Functional Neuroimaging and 

Optogenetics 
 

 

2.1 Functional Magnetic Resonance Imaging 
 

Functional Magnetic Resonance Imaging (fMRI) is a functional neuroimaging technique that 

measures the activity of the brain by detecting related changes in blood flow. fMRI makes use 

of endogenous contrast (the blood oxygenation level dependent contrast) or non-radioactive 

exogenous contrast agents (the cerebral blood volume contrast) to visualize brain function. 

Basically, fMRI is a series of MR-images acquired sequentially for a period of time to 

investigate how the blood oxygen level changes over that period of time. In this paragraph, we 

explain the general principles of MRI and fMRI, after which we elaborate on fMRI contrasts 

and its applications in DBS. Additionally, we describe a pilot experiment where we evaluated 

different MRI compatible electrode materials.  

 

 

2.1.1 Magnetic Resonance Imaging 

2.1.1.1 Basic principles 
 

MRI is based on the principle of proton nuclear magnetic resonance (NMR). The MR scanner 

(Fig. 2.1) consists of a set of embedded coils: one coil that generates the main magnetic field, 

three “gradient coils” that produce variations in the magnetic field in the X, Y, and Z directions 

for localization of the source of the MR-signal, and one or two “RF coils” for transmitting and 

receiving radio-frequency (RF) pulses. 
 

 

 

 

Figure 2.1: Schematic representation of a small animal magnetic resonance 

imaging (MRI) showing the basic principles of this technique. In case of a 

functional MRI, an exogenous contrast agent is injected to visualize 

cerebral blood volume changes over time. (Figure modified from 

http://physrev.physiology.org/).  
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About 70 percent of the human body consists of water. The hydrogen atoms, or protons, of this 

water molecules act as very small magnets, which are randomly orientated under normal 

circumstances. However, when the body is placed into the strong magnetic field of the MR 

scanner, these protons are aligned with the magnetic field of the MR scanner, i.e. the polarized 

state. This magnetization alignment can be briefly disturbed by applying a RF pulse produced 

by the RF transmitter coil, i.e. the depolarized state. When the RF pulses are then turned off, the 

protons realign themselves or decay back to their polarized state. This decay or relaxation 

process creates a changing magnetic flux density, causing the protons to re-emit an RF signal. 

Finally, the receiver coil picks up this emitted RF-signal and this information can be used to 

create an MR image. Note that MRI detects not only water protons. And different relaxation or 

ontrast is formed based on specific proton bindings in different molecules. Since proton binding 

is different for different tissues, tissues align and decay at different rates, resulting in images 

with excellent endogenous contrasts between different tissues (Fig. 2.3). In order to distinguish 

the signals from different locations in the brain (or body), spatial encoding is obtained by 

applying 3 different magnetic field gradients (smaller magnetic fields) across the patient in the 

X-, Y- and Z-direction. These gradient coils enable the correlation of the RF-signals to a given 

location in the brain (or body). The fourier transform of the recorded signals results in a data 

matrix that is called k-space. In order to reconstruct the MR-image out of the k-space data an 

inverse fourier transform is applied (Scherzinger and Hendee, 1985). 

 

2.1.1.2 Relaxation processes: T1, T2 and T2* 
 

This RF-signal is a combination of two different relaxation processes that occur immediately 

after the application of the RF pulse by the transmitter coil: the T1 or spin-lattice relaxation and 

the T2 or spin-spin relaxation. The T1 relaxation occurs because the protons decay back to a 

stable state due to energy loss caused by interactions with the surroundings. The T1 relaxation is 

characterized by the T1 time constant, which is the value of T1 when 63% of the longitudinal 

magnetization is recovered (Fig. 2.2C). The T2 or transverse relaxation occurs due to the 

dephasing of the proton spins caused by spin-spin interactions. The T2 relaxation is 

characterized by the T2 time constant, which is the value of T2 when 63% of the transverse 

magnetization has decayed (Fig. 2.2D). T2 relaxation happens long before the complete 

recovery of the longitudinal magnetization. Typically, T1 relaxation has a time constant of 

832ms and 1331ms for white and gray matter, respectively, in a 3T scanner. Whereas, T2 

relaxation typically has a time constant of 79.6ms and 110ms for white and gray matter, 

respectively.  
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Figure 2.2: Schematic of relaxation processes: (A) Schematic of the longitudinal decay. (B) Schematic of the 

longitudinal recovery induced by the transverse magnetization. The time constant for this recovery is T1 and is 

dependent on the strength of the external magnetic field, and the internal motion of the molecules. (C) Schematic of 

the T2 or transverse relaxation. (C) Schematic of the loss of transverse magnetization due to the dephasing of spins 

(D) Schematic of the T2 time constant, which is more or less independent from the external magnetic field. (Figure 

modified from Rorden and Morgan, 2016) 

 

In reality, local variations in the magnetic field cause the transverse magnetization to decay 

much faster than predicted by spin-spin interactions alone. This faster “effective” transverse 

relaxation is called T2* and results mainly from inhomogeneities in the main magnetic field due 

to field distortions induced by the tissue or other materials placed inside the magnet, or by 

magnet defects (Chavhan et al., 2009). 
 

Depending on the MR sequence parameters, we can choose for the image to be T1, T2, T2* or 

proton density (PD) weighted (Fig. 2.3). For example T1-weighting (water appears black) is 

usually used to investigate structural abnormalities, and T2-weighting (water appears white) is 

usually used to investigate lesions, since most lesions associate with a higher water content. The 

realization of these weighted images depends on the acquisition sequence (e.g. spin echo SE, 

gradient echo GE, etc.) and their corresponding sequence parameters chosen, such as repetition 

time TR, echo time TE, flip angle FA. Here, we provide a brief description of these parameters 

and how to achieve T1, T2, and T2* weighted images.  
 

Generally, the T1- or T2-effect on image contrast is determined by the combination of the echo 

time TE and the repetition time TR; with TE being the time between the 90° RF pulse and MR 

signal detection, and TR being the time between 2 excitations pulses (i.e. time between two 90° 

RF pulses). With short TR values (500ms) and short TE values (<30ms), the resulting image 

contrast will be T1-weighted; and the longer the TR values, the smaller the T1 effect on the 

tissue contrast. With a long TE (>80ms) and long TR (1500ms), the image contrast will be T2-

weighted. And, a long TR (1500ms) with a short TE (<30ms) will result in a PD-weighted MR 

image. 
 

A spin echo (SE) is generated by two RF-pulses, whereas a gradient echo (GE) is generated by 

one RF pulse in conjunction with a gradient reversal. The most important difference between 

both sequences is that SE (but not GE) reverses static field inhomogeneities due to the 

rephasing of spins induced by the second (180°) RF pulse. In contrast, the gradient reversal of 

GE refocuses only those spins that have been dephased by action of the gradient itself. More 

specifically, phase shifts resulting from magnetic field inhomogeneities, static tissue 

susceptibility gradients, or chemical shifts are not cancelled at the center of the GE as they are 

in SE sequences. This means that image contrast using GE sequence is obtained by T2*effects 

A                                                                           B

C                                                                           D
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and not pure T2 relaxation, as opposed to SE. Additionally, since with GE only one RF-pulse is 

applied, the echo can be recorded much more quickly in a GE sequence.

Therefore, the TE is generally shorter for GE sequences than for SE sequences.  When GE 

sequences are used with a narrow flip angle (i.e. the amount of rotation of the net magnetization 

during application of the RF pulse), shorter values of repetition time TR may also be used.  The 

combination of short TR and short TE values allows for very rapid signal acquisition. For these 

reasons GE-based MR sequences with a relatively short TE are used to accentuate local 

variations in the magnetic field and therefore provide T2*-weighted images. Such sequences aid 

the detection of hemorrhage and form the basis of functional MRI (Chavhan et al., 2009).  

 

 

  

 

Figure 2.3: Representative example of an axial slice 

through the human brain from a T1-weighted, T2-

weighted and proton density (PD)-weighted MR image. 

 

 

 

 

2.1.2 Functional Magnetic Resonance Imaging 
 

In contrast to structural MRI that is used to acquire anatomical images of the brain, fMRI can be 

used to reveal information about brain function. fMRI has been used extensively to locate brain 

structures that are activated by a physical sensation or stimulus. fMRI provides indirect 

information about neuronal activity by measuring the changes in metabolic requirements, which 

are related to the neuronal activity. For example, with an increased neuronal activity, the 

neurons use more energy, and it is the subsequent hemodynamic changes in response to the 

energy need that are measured with fMRI. However, the exact relation between the neuronal 

activity increases and corresponding metabolic and hemodynamic changes are incompletely 

understood. The most commonly used fMRI contrast is the blood oxygenation level dependent 

(BOLD) contrast, which is based on the level of deoxyhemoglobin in the vascular system of the 

brain (Huettel et al., 2009a).  This basis of BOLD fMRI was discovered in the early 1990s by 

Seiji Ogawa (Bell Laboratories, New Jersey, USA). Ogawa discovered that oxygen-poor 

hemoglobin was affected differently by a magnetic field than oxygen-rich hemoglobin. Ogawa 

realized that changes in neural activity in a brain structure cause changes in the oxygen content 

in that structure, and that this change in oxygen content induces local changes in the magnetic 

field and therefore can be used as a endogenous contrast agent to map images of brain activity 

on a normal MRI scan (Bandettini, 2012). Figure 2.4 illustrates how the use of fMRI to 

investigate brain function in the healthy and pathological brain has been rocketed since then. 

The widespread and successful application of fMRI to human brain imaging has been the result 

of the fact that it is a non-invasive technique, without the need for (radioactive) exogenous 

contrast agents.  The next section will explain the physiological basis and measurement of 

BOLD fMRI more in detail. 

 

 

T1-weighted T2-weighted PD-weighted 
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Figure 2.4: The rise of fMRI. Use of fMRI has rocketed and now more and 

more studies are looking at connectivity between areas. fMRI, functional 

magnetic resonance imaging; PET, positron emission tomography; SPECT, 

single-photon emission computed tomography; EEG, electroencephalo-

graphy; MEG, magnetoencephalography. (Figure adopted from ISI Web of 

Knowledge.) 

 

 

 

 

 

2.1.3 The BOLD contrast 
 

2.1.3.1  Principles 
 

All neurons in the brain consume oxygen. The hemoglobin molecules (i.e. the molecules that 

carry oxygen) in the blood provide the neurons continuously with new oxygen. Logically, an 

increase of neuronal activity increases also the demand of oxygen. This leads to an increased 

concentration of oxygenated (i.e. oxygen-rich) blood in the capillaries surrounding the active 

brain area. These local increases in blood flow can be mapped using fMRI as a change in raw 

image intensity (Huettel et al., 2009a; Kim et al., 2006), because oxygen-rich and oxygen-poor 

blood are characterized by different magnetic susceptibility. These differences in magnetic 

susceptibility induce small magnetic field distortions, and reflect in the relaxation process of the 

protons in the area with changing brain activity.  
 

FMRI measurements are based on the concentration of oxygen-poor blood deoxyhemoglobin 

(deoxy-Hb) in the vascular bed of the brain (Huettel et al., 2009a; Kim et al., 2006). Deoxy-Hb 

has paramagnetic properties, and therefore can act as an endogenous contrast, because it affects 

the transverse relaxation, namely an increase in deoxy-Hb decreases the MR-signal using T2∗-

weighted imaging. More specifically, the T2∗ time constant becomes shorter in areas with high 

deoxy-Hb concentration and longer in areas with low deoxy-Hb concentration. In the active 

brain area the intensity of a voxel in the fMRI image is brighter (longer T2∗) (Huettel et al., 

2009a; Shmuel, 2010). These changes in fMRI signal are not directly related to neuronal 

activity, but reflect the energy requirements involved with processing of neuronal activity 

(Huettel et al., 2009b). In fact, more oxygen will be supplied than is actually consumed during 

neuronal activation (Huettel et al., 2009a). Therefore, the local concentration of oxy-Hb will be 

increased in the capillaries supporting the activated brain tissue and in the downstream veins, 

thus resulting in a decreased concentration of deoxy-Hb. This process is illustrated in Fig. 2.5. 

As a result, the local signal intensity of the T2*-weighted images will be increased. Thus, an 

fMRI scan indirectly measures brain activity by measuring the change in blood levels 

(specifically hemoglobin as it deoxygenates), resulting in an image of the brain with brighter or 

darker areas where blood is oxygenated or deoxygenated, respectively. This very small change 

of intensity can however not be readily detected and special signal processing techniques are 

needed to reveal the active brain areas. Also, this effect can only be measured at higher field 

strengths (i.e. 1.5T or higher).  
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Figure 2.5: Summary of the generation of the BOLD signal. (A) shows the ratio oxy- and deoxyhemoglobin during 

rest. (B) When neurons in the surrounding tissue are activated, more oxyhemoglobin is provided by the vascular 

system resulting in a decreased concentration of deoxyhemoglobin. (Figure adapted from Oxford fMRIB). 

 

2.1.3.2  The hemodynamic response function 
 

In a typical fMRI experiment the goal is to map patterns of neuronal activation in the subject’s 

brain while he or she performs specific tasks. However, fMRI does not measure the neuronal 

activity itself. Instead, the BOLD response to activation is dependent on the concentration 

change of deoxyhemoglobin, which in turn is dependent on the cerebral blood flow (CBF), the 

cerebral blood volume (CBV), and the cerebral metabolic rate of oxygen (CMRO2) (Kim et al., 

2006; Shmuel, 2010; Huettel et al., 2009a). The relation between these effects are captured by a 

theoretical model, called the hemodynamic response function (HRF) (Fig. 2.6) (Kornak et al., 

2011; Lindauer et al., 2010; Deichmann et al., 2010, Huettel et al., 2009a; Buxton et al., 2004).  
 

This model shows that the signal decreases directly after neuronal activation, i.e. the initial dip. 

This is caused by an increased CMRO2, and thus an increase of deoxy-Hb concentration. To 

correct for the oxygen consumption, CBF is increased after 1 or 2 seconds. An increase in 

oxygen due to an increased CBF causes a decreased deoxy-Hb concentration. This results in a 

total increase of the fMRI signal with a maximal response about 5s after neuronal activation. 

After, the fMRI signal drops below baseline, also called the post-stimulus undershoot (PSU). 

Initially it was assumed that the PSU was caused by a delayed vascular compliance: i.e. CBV is 

increased in response to neural activation and because the inflow of blood is initially larger than 

the outflow. CBF appears to decrease more rapidly than CBV, causing a greater concentration 

of deoxy-Hb in previously active brain structures, consequently leading to the PSU (Buxton et 

al., 1998). However, more recent fMRI studies conclude that the PSU rather reflects a sustained 

increase in CMRO2 (Van Zijl et al., 2013). 
 

This model is a theoretical description of the expected mechanism of the BOLD response. In 

practice the shape of the HRF depends on stimulus conditions and varies between subjects, and 

even between brain regions (Handwerker et al., 2004; Aguirre et al., 1998; Siero et al., 2011; 

Rosa et al., 2010). 
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Figure 2.6: (A) Graphical representation of the BOLD contrast, as a response to a stimulus to the brain. The 

increased neuronal activity requires a higher cerebral blood flow to the active regions, leading to an induced change 

in the ratio of oxygenated hemoglobin to deoxygenated hemoglobin, which in turn leads to an increased MR signal, 

the so-called HRF (B) (Figure adopted from Deichmann et al., 2010). 

 

2.1.3.3 The negative BOLD signal 

 

Also negative responses have frequently been observed (Shih et al., 2009; Schridde et al., 2008; 

Smith et al., 2004; Shmuel et al., 2006), but the nature of these negative BOLD responses 

remain to be elucidated. However, three theoretical mechanisms have been proposed to account 

for the fMRI signal decreases: (1) active neuronal inhibition; (2) vascular steal; and (3) depleted 

local oxygen levels (Wade et al., 2002).  

 

- In case of active neuronal inhibition functional activity could be reduced below the 

baseline level in certain brain structures in response to particular stimuli, and therefore, 

are supplied with less oxygenated blood, showing a reduced BOLD signal during the 

stimulus period (Shmuel et al., 2002).  
 

- Vascular steal occurs because only a limited amount of oxygenated blood is available at 

once to increase blood flow. Some of it could be diverted to active areas, thus draining 

from neighboring areas, thereby reducing the BOLD signal in those areas.  
 

- It is possible that areas showing a negative fMRI signal actually have an increased level 

of neuronal activity, together with local oxygen depletion, during the stimulus period. In 

this interpretation, the fMRI signal is an extended version of the so-called “initial dip” 

(see previous paragraph) (Schridde et al., 2008).  
 

The active suppression hypothesis is supported by many showing that some cortical regions can 

exhibit a negative BOLD response linked to activation in the opposite hemisphere (Tootell et 

al., 1998, Shmuel et al., 2002) where the effect of passive hemodynamic blood flow changes 

must be negligible (Shmuel et al., 2002).  Future EEG-fMRI measurements are necessary to 

validate that reduced neuronal activity actually corresponds to a decrease in the fMRI signal, 

and consequently, caution needs to be taken when interpreting a negative fMRI signal (Shih et 

al., 20011). 

 

 

 

A               B 
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2.1.3.4 Spatial and temporal resolution 
 

The sequence parameters used in BOLD fMRI acquisitions affect the intensity of the fMRI 

signal, and the spatial and temporal resolution of the fMRI data (Huettel et al., 2009a). The most 

influential parameters are the magnetic field strength, TR, TE, and the type of imaging 

technique involved. Most commonly, fMRI data are acquired with an echo planar imaging (EPI) 

sequence (Deichmann et al., 2010; Huettel et al., 2009c), which is an efficient way of T2*-

weighted scanning in which images are typically acquired with a TR of 0.5 to 3s.  
 

In an ideal situation, signal changes are only related to the changes in deoxy-Hb in the 

capillaries closest to the site of neuronal activation. However, also larger and more distant 

vessels can contribute to the MR signal. Therefore, the maximal possible spatial resolution is 

affected by the anatomy of the vasculature in relation to the neuronal activity (Huettel et al., 

2009a). But in general, the spatial resolution is determined by the voxel size. The chosen voxel 

size is a trade-off between a good spatial resolution (which requires a small voxel size) and a 

good signal-to-noise ratio (which requires a large voxel size). A good spatial resolution is 

necessary to eliminate partial volume effects, which means that multiple tissue types may 

contribute to the fMRI signal of a given voxel. Although the voxel size cannot be infinitely 

small, the spatial resolution of fMRI is much better than that of PET. Therefore, fMRI is a good 

technique to visualize activity from multiple sources and deep brain structures, such as mesial 

temporal structures or basal ganglia nuclei.  
 

The temporal resolution is determined by the chosen TR and the number of phase encoding 

steps (i.e. phase matrix size) (Huettel et al., 2009a; Kim et al., 2006): a shorter TR and a smaller 

phase matrix will in principle increase the temporal resolution. But choosing a shorter TR will 

decrease the number of slices that can be acquired, thus affecting the axial field-of-view and/or 

axial spatial resolution. FMRI data can be acquired in a very short time; therefore a very high 

temporal resolution is possible in principle. However, the temporal resolution is limited by a 

lagged hemodynamic response (5.5s, Fig 2.6) to neuronal activity (1-100ms) and a finite signal-

to-noise ratio. Therefore EPI datasets are usually acquired with a TR of 5s in a clinical setting 

and 1-2s in a preclinical setting.  

 

 

 

2.1.4 The CBV contrast 

2.1.4.1  Principles 
 

Recently, an exogenous contrast agent, monocrystalline iron oxide particle (MION), has been 

introduced for fMRI, which has been shown to increase the functional sensitivity and signal-to-

noise (SNR) ratio compared with the traditional BOLD technique. This is demonstrated in Fig. 

2.7, where a comparison is made between BOLD fMRI and CBV fMRI during electrical 

stimulation of the rat forepaw (Shih et al., 2011).  
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Figure 2.7: Comparison of BOLD and CBV fMRI (A) Schematic illustration of the relation between a stimulus and 

the BOLD or CBV signal. (B) Comparison of the spatial and temporal response to noxious rat forepaw stimulation 

using BOLD and CBV fMRI (Shih et al., 2011), demonstrates the enhanced specificity and SNR of CBV fMRI. Note, 

the CBV signal changes are inverted for the ease of comparison. In reality, the CBV signal is opposite in sign to the 

BOLD signal.  

 

The CBV contrast mechanism is illustrated in Fig. 2.8. The MION is injected intravenously, and 

the presence of the blood-brain barrier prevents the contrast agent molecules from entering brain 

tissue. A few minutes after the injection of MION a constant concentration of the contrast agent, 

or a steady state, is obtained in a resting state (i.e. no stimulus is applied). This steady state is 

proportional to the local CBV. Stimulus-induced CBV changes can then be translated to MR 

signal changes in a T2*-weighted sequence, because the injection of a paramagnetic substance 

(such as MION) decreases the transverse relaxation rate of the MR signal, similar to the BOLD 

mechanism where paramagnetic deoxy-Hb causes a shorter T2*. An increase in the local CBV, 

associated with a local increase in neural activity, will therefore cause a drop in the fMRI signal. 

Note, the CBV-weighted signal, which reduces with activation, is opposite to the BOLD signal, 

which increases with functional activation.  

In summary, there are two effects that contribute to the observed fMRI signal in experiments 

employing iron oxide contrast agent: the superparamagnetic effect of the contrast agent; and the 

BOLD effect resulting from the susceptibility difference between oxygenated and deoxygenated 

hemoglobin. Because both effects are opposite in sign, sufficiently high doses of contrast agent 

are needed in order for the susceptibility effect of the contrast agent to override the BOLD 

effect. In this way, the fMRI signal becomes insensitive to BOLD changes and primarily 

reflects CBV changes. Importantly, paramagnetic deoxy-Hb shortens blood relaxation times at 

higher field strengths, meaning the BOLD effect increases with higher field strengths. 

Consequently, higher MION doses are required at higher field strengths in order for the 

susceptibility effect of the contrast agent to overwhelm the increased BOLD effect (Lu et al., 

2007).  

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Schematic illustration of the CBV contrast principles. (Figure adopted from Shihlab). 
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2.1.4.2  Advantages 
 

The main advantages of CBV fMRI over BOLD fMRI are an enhanced signal-to-noise ratio, 

specificity, and sensitivity. We shortly review them below. 

 

Usually, BOLD fMRI needs to be performed at higher field strengths in order to detect changes, 

without averaging results from a very large number of animals. However, higher field strengths 

tend to cause more image distortion or signal dropout. Therefore, when using BOLD fMRI a 

trade-off has to be made between a reduced image quality (reduced SNR) or a reduced 

sensitivity, as a consequence of using short gradient echo times or spin echo methods to 

improve SNR. In contrast, when performing MION-based fMRI, the dose of exogenous contrast 

agent can be adjusted to optimize blood magnetization for any given echo time or imaging 

strategy. This means that CBV fMRI enables the reduction of image artifacts without 

compromising functional sensitivity. In theory, the highest sensitivity should occur at short echo 

times and high doses of agent. Additionally, a high dose of contrast agent also acts to 

overwhelm the opposing high-field BOLD effects, to an extent that the contribution of BOLD 

effect in the fMRI signal becomes negligible. Combining high-dosage of the contrast agent and 

short echo times, fivefold increases in SNR of the CBV signal have been observed at 1.5T, 

compared to the BOLD signal. Moreover, Mandeville et al. showed that the contrast-to-noise 

ratio (CNR) of MION-based fMRI in rats is 5.7 and 1.5 times that of BOLD at 2T and 4.7T, 

respectively (Mandeville et al., 1998). 

Because the BOLD effect increases with higher field strengths, CBV fMRI has a better signal 

advantage over BOLD fMRI when it is performed at lower field strengths, as the CBV signal is 

less influenced by the BOLD signal (which is opposite to the CBV signal) at lower field 

strengths. Yet, even at very high field strength of 9.4 T, MION-based CBV method was still 

shown to provide a better sensitivity compared to BOLD fMRl (Zhao et al., 2006). 
 

Besides improved SNR and sensitivity, another important advantages of MION-based fMRI is 

that its specificity is greater than conventional BOLD fMRI. The injection of a paramagnetic 

agent allows to measure solely CBV changes associated with functional activation, as opposed 

to the BOLD contrast, which is a resultant from complex interactions between CBV, CBF and 

CMRO2 as a response to increased neural activity (Fig. 2.7A). CBF changes have no effect, 

since the concentration of paramagnetic agent is essentially the same in the arterial and venous 

circulation, so increased flow does not affect susceptibility. The imaging contrast is thus only 

sensitive to the concentration of paramagnetic agent in the imaging voxel. Additionally, the 

CBV contrast is not dependent on the anatomy of the brain vessels (size and orientation), since 

a steady state concentration of the contrast, proportional to the local CBV, provides a baseline 

independent from the vasculature anatomy. Consequently, CBV-weighted imaging offers 

enhanced sensitivity and specificity in fMRI studies, partially due to the reduced contributions 

from large vessels. Spatial specificity of MlON-based CBV fMRI in cats, undergoing selective 

stimulation of the columnar structures of the visual cortex, has demonstrated that CBV fMRl 

can distinguish two brain regions as close as 1.4 mm apart (Zhao et al. 2005).  
 

In conclusion, there is existing evidence that CBV fMRI enhances functional sensitivity and 

uniformity of functional sensitivity, and diminishes large vessel artifacts. Therefore, MION-

based CBV fMRI is suggested as the preferred method for functional brain mapping in animal 

models. If suitable contrast agents obtain human approval, CBV fMRI could be promising for 

clinical functional activation studies in human subjects. 
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2.1.5 DBS-fMRI applications 

2.1.5.1  Evoked fMRI 
 

To investigate a specific brain function, usually a task or a stimulus is presented to the subject 

that triggers the phenomena one wants to investigate (Aguirre, 2006; Huettel et al., 2009b). 

These studies are called paradigm-driven or evoked fMRI experiments. The most popular 

design is a block-design, in which stimuli are presented in repeated blocks, typically in the order 

of tens of seconds.  The analysis of evoked fMRI experiments is based on the difference in 

fMRI signal between activation and baseline conditions. This contrast is typically formulated 

within the general linear model (GLM) framework, which is a model-driven approach to detect 

the brain regions that are significantly correlated with the stimulus paradigm (Fig. 2.9).  Note 

that fMRI analysis provides qualitative information, as opposed to PET, which allows more 

quantitative estimates (e.g., receptor density, arterial blood sampling). 

 

 

 

 

 

 

 

 
 

 

Figure 2.9: Example of a paradigm-driven fMRI experiment using a visual stimulus. A flickering checker board was 

presented to a subject in blocks of 20s. The stimulus caused an increase in the fMRI signal of a voxel in the visual 

cortex. The result of the GLM analysis is a correlation pattern projected onto an anatomical MRI indicating which 

voxels were significantly correlated to the stimulus (Figure modified from van Houdt, 2013).  
 

 

Within the preclinical investigation of DBS, evoked fMRI plays an important role, since it 

allows the evaluation of brain regions modulated by DBS via direct comparison of activity-

induced regional hemodynamic responses to applied stimulation. Notably, fMRI paradigms can 

be rapidly repeated several times in a single scanning session to evaluate for example 

frequency-dependent effects of DBS. Considering that a hallmark of therapeutic DBS is strong 

sensitivity to stimulation frequency, this represents a major strength of fMRI. 
 

2.1.5.2  Functional connectivity MRI 
 

In contrast to evoked fMRI, functional connectivity fMRI (fcMRI) is a technique where the 

subject does not have to perform a specific task, such that spontaneous brain activity can be 

investigated (Biswal et al., 1997). The subject is asked to relax and lie still with eyes closed, 

without thinking of something in particular (Cole et al., 2010). fcMRI measures low frequency 

spontaneous fluctuations in activity-related hemodynamic signals and employs data-driven 

analysis strategies (Cole et al., 2010), such as cross-correlational analysis, spatial independent 

component analysis (ICA) (Beckmann et al., 2004; Damoiseaux et al., 2006; Valente et al., 

2010), and other network methods to measure signal coherence (connectivity) between regions 

of interest (Fox et al, 2007). fcMRI has been used effectively to identify candidate circuit 

function changes during brain stimulation (Figee et al., 2013).  
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In this dissertation, both evoked fMRI and fcMRI were used. Evoked fMRI was used to identify 

brain regions that correlate directly to the applied DBS-paradigm. Additionally, we used fcMRI 

to determine direct and indirect DBS-dependent changes in circuit connectivity by comparing 

fcMRI data before and during DBS. Overall, preclinical DBS-fMRI seems to be a promising 

tool for functional circuit mapping in the healthy and diseased brain. Yet, the complexities that 

come with this technique prevent extensive in vivo use. The main limitations include the 

presence of the metal artifact in the images and the use of anesthetics that might suppress neural 

activity. A careful experimental set-up is crucial for successful implementation of DBS-fMRI 

(Younce et al., 2014). 
 

2.1.5.3  Patient studies 
 

DBS-fMRI studies in patients are limited due to safety constraints. The presence of intracerebral 

metal makes MRI a potentially dangerous technique in patients with implanted DBS units, i.e. 

risk of electrode-heating (Tagliati et al., 2009; Baker et al., 2005; Jech et al., 2003; Finelli et al., 

2002). Feasibility studies in phantoms reported severe potential hazards for patients but that 

under certain conditions, safe MR imaging examinations during active DBS was feasible 

(Georgi et al., 2004). Another phantom study observed false-positive activation on fMRI during 

DBS (Liu et al., 2008). 

 

An fMRI study in PD patients, implanted with bilateral STN-DBS, demonstrated widespread 

modulatory effects on all the major components of the motor cortico-striato-thalamo-cortical 

loop. Interestingly, the authors showed that stronger direct pathway connectivity correlated to 

reduced PD deficits (Kahan et al., 2014). This finding is highly concordant with models of basal 

ganglia (dys)function in PD, that propose that dopamine depletion results in an underactive 

direct pathway, and an overactive indirect pathway, resulting in thalamic inhibition (Albin et al., 

1989; DeLong, 1990). 
 

Another fMRI study of PD patients that are being treated with DBS, also demonstrated 

widespread activation of the sensorimotor cortex and basal ganglia (Arantes et al., 2006). Note 

that DBS was turned off in both studies during scanning and that fMRI was performed during 

rest or a motor task. An illustration of DBS artifacts on fMRI images from human subjects is 

shown in Fig. 2.10.  

 

 

 

Figure 2.10: DBS artifacts: (A) Patient 1 EPI. Artifact in vertex due to 

DBS component; (B) Patient 1 fMRI. Artifact disturbs detection of SMA 

and SM1; (C) Patient 1 EPI. Electrode location with punctate loss of 

signal; (D) Patient 2 EPI. Artifact in occipital pole; (E) Patient 2 fMRI. 

Artifact precludes detection of temporoccipital activation; (F) Patient 2 

fMRI after connector repositioning. Reduction in the occipital artifact; (G) 

Patient 3 EPI. Frontal artifact due to air; (H) Patient 3 fMRI. A region of 

artifact is seen close to the frontal activation; (I) Patient 3 fMRI. Days 

later without artifact. (Figure adopted from Arantes et al., 2006). 
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There is one study of Philips et al. that performed fMRI in 5 patients during active STN-DBS, 

after extensive phantom safety testing of DBS lead systems. The authors showed activation in 

the ipsilateral basal ganglia in all subjects and additional activation in the ipsilateral thalamus, 

STN and/or substantia nigra depending on the DBS-electrode location (Philips et al., 2006). 

 
2.1.6 Evaluation of MR-compatible electrode materials 
 

The presence of a metallic DBS-electrode in the MR scanner, can introduce large artifacts in the 

MR images, ranging from signal loss or pile-up, failure of fat suppression, to geometric 

distortion (Hargreaves et al., 2011). The use of MR-compatible materials, careful parameter and 

pulse sequence selection can avoid or reduce artifacts. Therefore, before the start of our 

preclinical fMRI experiments we performed a pilot experiment (phantom study and in vivo) to 

evaluate different materials and acquisition parameters. Note, this trial is a comparative study of 

a selection of materials, meaning other alternative electrode materials and designs were not 

included in this study. 
 

2.1.6.1  Phantom study 
 

We investigated 6 potential electrode materials on their MR-compatibility, bio-compatibility, 

workability and conductivity: stainless steel (SS), tungsten (W), platinum iridium (PtIr), gold 

(Au), silver (Ag) and carbon (C). The properties of these materials are listed in Table 2.1. The 

selection of these materials was based on literature: tungsten (Chao et al., 2014; Martinez-

Santiesteban et al., 2007); platinum iridium (Hung et al., 2010; Jupp et al., 2006); gold (Dunn et 

al., 2009; Jupp et al., 2006); silver (Nyenhuis and Duan, 2009; Bosetti et al. 2002); carbon 

(Dunn et al., 2009; Jupp et al., 2006). This shows that the need for MR-compatible electrodes is 

not new, however, results are contradictory. For example Jupp et al. found that "Gold electrodes 

did not induce any change in signal intensity in T2-weighted images" (Jupp et al., 2006), while 

Dunn et al. stated that "Gold wires were rejected as they showed significant susceptibility 

artifacts in the 9.4T MRI" (Dunn et al., 2009). Differences in the electrode design and imaging 

parameters used might explain discrepancies between studies. Therefore, we performed our own 

pilot experiment to validate MR-compatible electrode materials in our own experimental set-up. 

In addition to MR-compatibility we also examined the conductivity, workability and bio-

compatibility of each material.  

Table 2.1: Material properties 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MR-compatibility - For each material we constructed twisted bipolar electrodes with a total lead 

length around 3cm and placed them a plastic tube filled with agarose gel, which resembles brain 

tissue. Note, leads were left open-ended and were not connected to a stimulator in the phatom-

study. T1- and T2-weighted MR-images were acquired of the phantoms using a 7T MR scanner 
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(Pharmascan Bruker, Ettlingen, Germany). The MR-compatibility of a material depends on 

different properties. Most importantly, the material has to be MR-safe, and thus not 

ferromagnetic, and the diagnostic information of a taken scan should not be affected. Each 

material introduced inside the scanner influences the magnetic field of the scanner. A 

paramagnetic material will appear larger on the image compared to its real size, which could 

lead to misinterpretation of the result. For each material tested in vitro the artifact size was 

determined both on the CT and MR images. CT was used as a reference because it makes no 

use of magnetic fields and thus results in less metal artifact compared to MRI.  
 

 

 

 

 

 

 

 

 

 

Figure 2.11: Comparison of the size of the electrode artifact on CT and MR-images (T1 and T2) and the actual 

electrode size. 

 

Fig. 2.11 compares the size of the different electrode artifacts with CT and MR, and the actual 

electrode size, for the 6 different materials. Carbon (C) scored highest on MR-compatibility. 

However, we were unable to twist two wires without breaking the material. We can conclude 

that Ag and Au appear to be the most MR-compatible materials using a twisted bipolar 

electrode design.  

 

Conductivity - As the electrode is used for stimulation, the conductivity of the material is also 

important. Therefore, the wires of each electrode need to be twisted and the electrode is 

electrolytically cleaned to assure optimal signal conductivity. The impedance was measured 

using an impedance meter (IMP-2, Bak electronics, Sanford Florida, USA).  

 

Table 2.2: Impedance measurements of silver (Ag), stainless steel (SS), Platinum Iridium (PtIr), tungsten (W) and 

gold (Au). 

 

 

 

 

 
 

The results of the impedance measurements are listed in Table 2.2. The impedance needs to be 

adequately low so the required current can be delivered. On the other hand, if the impedance is 

too low an incorrect current will be delivered. The first impedance measurements of PtIr and W 

resulted in relative high values, but after electrolytic cleaning of the electrodes, all tested 

materials resulted in comparable impedance around 50kΩ. Gold has the highest impedance, i.e. 

110kΩ, and Ag the lowest, i.e. 34kΩ. � The maximum impedance allowed for successful 

stimulation depends on the compliance voltage of the stimulator, in this case 48V. Thus, when a 

stimulation current of 500μA needs to be applied, a maximal impedance of 240kΩ is allowed. 
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Workability - It is crucial for a good DBS-electrode design that the material is nor too flexible, 

nor too brittle. The electrode cannot be too flexible, so it doesn’t bend when “hitting” the 

cortex, and cannot be too brittle so it doesn’t break during fabrication, more specifically during 

the twisting of the wires. This is especially important when twisting four wires to make 

quadripolar electrodes with a bipolar stimulation and a bipolar registration. 

During fabrication of the bipolar electrodes for the phantom study, it appeared that some of the 

materials were less appropriate to make electrodes. We found that Au was too flexible (i.e. a 

bipolar electrode would bend upon “hitting” the dura), W on the brittle side (i.e. more difficult 

to make a quadri-polar electrode), and it was impossible to make electrodes of C, since the 

wires break immediately during twisting. We concluded that Ag, PtIr and SS are the most 

workable materials for our purposes. Note, multi-stranded wires (Guo et al. 2015) might render 

carbon electrode fabrication feasible but were not included due to the rather complex fabrication 

procedure. 

 

Biocompatibility - As the electrodes would be chronically implanted, bio-compatibility is an 

important factor to take into account. It is well known silver is too toxic for use in longitudinal 

studies. Chronic exposure to silver causes a permanent blue-gray discoloration and/or irritation 

of the skin and/or eyes. Additionally, silver intoxication may cause damage to the liver, kidneys, 

intestinal tract, respiratory system and blood cells (Drake and Hazelwood, 2005). However, 

considering the good MR-compatibility, conductivity and workability of silver, we performed 

an in vivo test in order to check whether we could use silver in acute studies. Unfortunately this 

was not the case, since the animal died already 3 days after implantation, so we had to exclude 

silver as a suitable DBS-electrode material, even for acute studies. We found no evidence of the 

other materials to be bio-incompatible. Fig. 2.12 shows the head cap after post-mortem removal. 

The white residue at the site of the electrode, which was not seen in the previously used head 

caps, might be a sign of silver intoxication.  

 

  

 

 

 

 

 

 

 

Fig. 2.12: Cap with silver electrode after post-mortem removal of the head cap. The white residue might indicate 

silver intoxication.  

 

2.1.6.2  In vivo  study 
 

Both PtIr and W had acceptable phantom results, based on their MR-compatibility, 

biocompatibility, workability and conductivity, and therefore were tested in vivo in two rats 

(male, Sprague-Dawley, 200-250g). In the in vivo set-up the electrode leads were connected to a 

ground and a stimulator. Note, this evaluation focuses on image quality, meaning we did not 

check for potential heating effects and electrical induction at the level of the electrodes, caused 

by MR gradrient switching.  

We evaluated the electrode artifacts on both the structural and functional MR images. For the 

structural MR images, T2 weighted anatomical images were obtained using a Turbo RARE 

sequence with TR = 6345ms, TE = 37ms, slice thickness = 0.6mm, matrix size = 276x320, FOV 
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= 3x3.5cm2. Functional MR acquisitions were performed using a multi-slice single-shot gradient 

echo echo-planar imaging sequence (GE-EPI). Twelve interleaved slices were acquired with TE 

= 20ms, slice thickness = 1mm, matrix size = 80x80, FOV = 2.5x2.5cm2 and voxel size = 

0.312x0.312x1mm3. 
 

An axial slice of the acquired T2 images, at the height of the electrode, is shown in Fig. 2.13. 

PtIr (0.28mm) appears slightly larger on MR images compared to W (0.23mm). We can 

conclude that both W and PtIr can be used as electrode material for stimulation or registration 

within the MR-scanner, as we were able to visualize the global effect of DBS on the oxidative 

metabolism by detecting responses in brain structures local and downstream from the site of 

stimulation, with both materials (Fig. 2.14).  
 

In this work, both materials were used. PtIr was used when a quadri-polar electrode (i.e. bipolar 

stimulation plus bipolar registration) was required, since tungsten appeared to be far less 

workable (breaking or splitting) when using four wires. However, tungsten was used when a 

bipolar electrode was sufficient. A bipolar electrode was used during DBS-fMRI experiments in 

PD, while a quadripolar electrode was used during DBS-fMRI experiments in epilepsy because 

this also requires simultaneous registration of the encephalogram to verify that no seizures 

occurred during the experiments.  
 

 

 

 

 

Figure 2.13: Electrode artifact on a T2 anatomical MR-image, axial 

slice at height of the electrode. Left: PtIr, Right: W. 

 

 

 

  

Figure 2.14: DBS-induced BOLD response in axial slice at height of the 

electrode (GLM, p < 0.001). Left: PtIr, Right: W. 
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2.2 Positron Emission Tomography 
 

2.2.1 Basic principles 
 

Positron emission tomography (PET) - together with single photon emission tomography 

(SPECT) - is a functional nuclear imaging technique. These nuclear imaging techniques are 

based on the tracer principle, proposed by George de Hevesy in 1911 (de Hevesy, 1948), and 

require the injection of a radioactive labeled molecule or tracer, into the human body, that 

participates in the subject’s metabolism and distributes accordingly. A molecule can be turned 

into a radioactive tracer by linking a radionuclide to it, or by replacing one or more atoms in that 

molecule by a radionuclide. In case of PET, the radionuclides that are used are positron 

emitters. These positrons are very unstable particles and move typically ±1mm into our body, 

after which they annihilate with an electron, producing two gamma photons that will travel into 

opposite directions and that have an energy of 511 keV. These two gamma photons are picked 

up by the detector ring and readout-electronics of the PET scanner, resulting into the detection 

of a line of response. A line of response is characterized by a position and an angle, and many 

lines of response can be accumulated into a so-called sinogram. This acquired sinogram can be 

used to reconstruct a three-dimensional image, visualizing the distribution of the radioactive 

tracer into the body. The basics of PET imaging are illustrated in Fig. 2.15.  

 

 

 

 

Figure 2.15: The basic principles of PET: positron 

annihilation forming two back-to-back gamma-rays with an 

energy of 511 keV, detected by the detector ring of the PET 

scanner. This information can be reconstructed resulting in 

a brain image showing the affected structures. (Figure 

adopted from Espinosa et al., 2009). 
 

 

 

 
 

Nowadays, a spatial resolution of 4-5mm and 1-2mm can be achieved using a clinical and 

preclinical PET system, respectively. The spatial resolution is dependent on a combination of 

many factors, such as the detector size, acollinearity, positron range, penetration into the 

detector ring, imperfect decoding in the PET camera, geometry of the subject, and sampling 

error or statistical noise (Moses, 2011). A detailed review of the hardware of the PET system, 

the reconstruction techniques and these confounding mechanisms is out of the scope of this 

dissertation. 

 

2.2.2 Radioactive glucose 
 

The most commonly used radionuclide for PET is 18F and has a half-life of 109.8min. 18F is 

produced using a cyclotron by the irradiation of enriched water with protons. A very well 

known PET tracer is fluorodeoxyglucose (
18

F-FDG), a radioactive glucose analog, where the 

hydroxyl group at the 2-position is replaced by 18F (Fig. 2.16). 
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Figure 2.16: Chemical coupling of 
18

F to the glucose molecule, replacing the OH-group at the 2-position. This 

results in a radioactive glucose analogue 
18

F-FDG. (Figure adopted from Grull and Robillard, 2006).  

 

The brain uses glucose as its main source of energy and increased neural activity requires more 

glucose. Since the uptake of FDG by the different tissues into our body is analogue to that of 

endogenous glucose and the mammalian brain uses glucose as its main source of energy, FDG-

PET can be used to visualize changes in the glucose metabolism of the brain due to disease 

progression or due to the effects of a therapy.  
 

Once the 
18

F-FDG is produced, it is intravenously injected into the patient’s bloodstream. The 

blood-brain-barrier is semi-permeable, and small and highly soluble molecules such as FDG are 

able to pass it. 
18

F-FDG targets the Glut-1 transporters of the cell, which are groups of 

membrane proteins that are responsible for the transport of glucose from the blood stream into 

the cells. In the cell, both endogenous glucose and 
18

F-FDG are then phosphorylated by the 

enzyme hexokinase II (HK II), rendering glucose-6-phosphate and 
18

F-FDG-6-phosphate (
18

F-

FDG-6-PO4) respectively. From this step on, the metabolism differs for both molecules: 

glycolysis continues for the glucose-6-phosphate molecule, resulting in the production of ATP 

(adenosine triphosphate) by the cell’s mitochondria. In contrast,
18

F-FDG-6-PO4 cannot be 

further metabolized, because it lacks the hydroxyl group at the 2-position. The radioactive 

phosphorylated FDG molecule is now trapped in the cell, resulting in an imaging signal at that 

specific cell (Fig. 2.17). The biodistribution of the 
18

F-FDG reaches a steady state condition in 

the brain about 30-45min after injection, enabling visualization of the glucose metabolism in a 

qualitative way (Games and Gambhir, 2012; Choi and Gruetter, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: Metabolism process for glucose and 18F-FDG: (A) Glucose is taken up from the blood stream to the cell 

with the help of glut proteins. It is then phosphorylated and further metabolized in order to produce ATP and thus 

energy for the cell (glycolysis). (B) 18F-FDG undergoes the same first two steps (glut transport and phosphorylation 

by hexokinase), but is then trapped in the cell because it lacks the hydroxyl group at the 2-position for further 

metabolic progress. (Figure adopted from Games and Gambhir, 2012). 

 

FDG-PET is widely used in clinical practice to visualize the glucose metabolism for diagnosis, 

assessment of disease severity, and evaluation of novel medical and (surgical) therapy in 

oncology and neurology.  

 

A      B 
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2.2.3 Micro-PET 
 

Since the advance in the wide range of small animal models of human disease in the mid 90’s, 

PET has extended to small animal imaging (micro-PET). Considering the size difference 

between humans and rodents (75kg versus 200g), it is clear that a better spatial resolution is 

needed in order to obtain useful images. Whilst clinical PET systems are characterized by 

spatial resolutions in the order of 4 to 5mm, small animal PET has already reached values 

around 0.7-2mm (Boss et al, 2010; Palmowski et al., 2013; Kuntner and Stout, 2014). Over the 

past years, the spatial resolution of PET has been improved by the use of smaller scintillator 

crystals and spatial localization has been improved due to the combination of PET with CT. 

This improved spatial resolution can be achieved by decreasing the size of the scintillator 

detectors (Chatziioannou et al., 2001; Yang et al., 2004). On the downside, smaller scintillation 

crystals means less counts per crystal and thus a decreasing SNR (Kuntner and Stout, 2014). 

Not only the size of the crystals is important for the resulting sensitivity of the scanner, but also 

the type of material used, its packing fraction and the way in which the material covers the 

detector ring. Keeping in mind that a trade-off between sensitivity and spatial resolution has to 

be made, small animal PET has usually a lower sensitivity in comparison with clinical PET 

(±6% vs. ±9%), although this can be increased by enlarging the axial field of view (FOV) and 

decreasing the bore diameter (Kuntner and Stout, 2014; Saha et al., 2010). Moreover, new 

innovative micro-PET systems have become available with improved sensitivity up to 16% 

(SOFIEBiosciences). 
 

The most extensive application of micro-PET imaging in small animal models is in the area of 

oncology (tumor detection and follow-up). Micro-PET is able to monitor molecular and cellular 

processes in vivo, and because repeated imaging of the same animals is possible, quantitative 

information about migration and expansion of tumours can be acquired over time.  
 

A challenge specific for small animal imaging, is the need for animal immobilization during 

imaging. This can be accomplished by restraining devices, which unfortunately alter the 

metabolic rate of the animal and thus confound the result. The same holds for the use of 

anaesthetics, which show confounding effects on cardiovascular, respiratory and central nervous 

system. More recently, preclinical PET studies have been performed with tracer uptake in 

conscious condition by means of a carefully attached tail vein catheter. 

 

 

2.2.4 DBS-PET applications 
 

Over the past twenty years, PET imaging has been used in the domain of deep brain stimulation 

to investigate DBS-induced changes in the glucose metabolism nearby the electrode as well as 

in more distant brain regions (Klein et al., 2011). One of the main advantages of PET imaging 

in comparison to functional Magnetic Resonance Imaging (fMRI) for the investigation of DBS, 

is that the acquired images are not influenced by the presence of intracerebral metal as opposed 

to fMRI images. Even though fMRI studies make use of MR-compatible DBS-electrodes, the 

fMRI image will always be confounded by an artifact around the DBS-electrode (Lai et al., 

2014).  Moreover, with DBS-PET there are no risk for heating effects and electrical induction at 

the level of the electrodes, caused by gradient switching of RF pulses.  

To investigate the effect of DBS on the glucose metabolism of the brain, the PET scan is usually 

run twice, namely, once at the baseline condition (i.e. no DBS) and once at the experimental 

condition (i.e with DBS). The difference between both conditions can then be determined, 
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resulting in the visualization of the brain structure(s) that are affected by the experimental 

condition. 

 
 

2.2.4.1  Patient studies 
 

Several DBS-related PET studies have been conducted in PD patients (Kalbe et al., 2009; Arai 

et al., 2008; Hilker et al., 2008; Karimi et al., 2008; Asanuma et al., 2006; Trost et al., 2006; 

Goerendt et al., 2006; Hershey et al., 2003; Thobois et al., 2002). However, the outcomes have 

not always been identical, probably due to methodological differences. STN-DBS has 

demonstrated correction of abnormal PD-related metabolic activity for motor networks, but not 

for cognitive networks (Eckert et al., 2007). More specifically, STN-DBS has shown reduced 

metabolism in the GPi and caudal midbrain (Trost et al., 2006); and appropriate recruitment of 

motor areas and widespread nonspecific reductions of compensatory or competing cortical 

activity (Grafton et al., 2006). Moreover, Haslinger et al. demonstrated that the STN-DBS-

frequency was correlated to rCBF changes around the STN, and that frequency increases were 

correlated to motor cortex activity decreases (Haslinger et al., 2005). 

 

In the field of epilepsy, FDG PET can be used to help identify the seizure onset zone. Ideally, 

PET imaging could be used to compare the cerebral metabolism during a seizure (i.e. ictal PET) 

with the subject’s basal metabolism (i.e. interictal PET). However, ictal PET-scans usually 

reflect a mix of interictal, ictal and post-ictal metabolic activity because the ictal state is usually 

shorter than the FDG-uptake period of 30-45min. Therefore, the use of ictal PET is limited and 

only used in patients with frequent extratemporal seizures (Nooraine et al., 2013; Meltzer et al., 

2000). More commonly, interictal PET is used in the presurgical evaluation of refractory TLE-

patients, mainly to lateralize the epileptogenic focus, which presents as unilateral temporal 

hypometabolism. The observed focal interictal glucose hypometabolism is usually associated 

with the seizure focus. It is particularly useful in patients with a normal brain CT or MR scan or 

multi-focal MR scan. Yet, the hypometabolic area is typically larger than the ictal focus, 

reflecting the altered neuronal function in the ictal focus and possibly extending to the areas of 

first ictal spread. The mechanism explaining the hypometabolism in ictal areas is not yet fully 

understood. According to existing hypotheses the hypometabolism might reflect a protective 

inhibitory effect induced by repeated seizures on the brain or the underlying dysfunctional 

cortex (i.e. dysplasic areas, tubers…) (Kumar et al., 2012).  

In contrast to PET, ictal SPECT is feasible and allows to assess the cerebral blood flow changes 

in the ictal state because the tracer reaches a steady state within 1 minute and the distribution 

remains almost unaltered until after the seizure. Interictal PET and ictal SPECT offer similar 

diagnostic sensitivity (Bouilleret et al., 2002; Hwang et al., 2001; Ho et al., 1995; Spencer, 

1994) and serve as complementary tools in patients with inconclusive lateralization on ictal 

video-EEG monitoring and MR imaging (Siclari et al., 2013; Kim and Mountz, 2011; Won et 

al., 1999). 
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2.3 Optogenetics 
 

Optogenetics is a new state-of-the-art technology that allows cell-type specific manipulation of 

neural circuits with unprecedented cellular, spatial and temporal specificity. For a better 

understanding of this complex and challenging technology, we will explain how optogenetics 

was discovered, its basic principles, and readout methods to investigate its effects. In addition, 

we will list some challenges and applications of the technique. 

 

 

2.3.1 Short history 
 

Optogenetics is a recent technique that was pioneered by Karl Deisseroth at Stanford University 

in early 2000. Optogenetics technology uses light to control neurons, which have been 

genetically modified to become responsive to light. The initial idea to control cell behavior 

using light can be traced back to the 1970s. Scientists realized that in order to understand how 

the brain works, there is a need for selective cell manipulation without affecting surrounding 

cells. However, this was highly challenging with the available techniques at that time, since 

microelectrodes could not differentiate between different cells within the targeted brain 

structure. Francis Crick was the first to bring up the idea of using light instead of electricity for 

selective manipulation (Crick, 1979). The first actual experiment that used light to activate 

neurons, was carried out by Fork, and later Yuste, in 1971. They demonstrated activation of 

neurons within intact tissue using laser light. However, this was not done in a genetically 

targeted manner. The earliest reported method, which used light to control genetically sensitized 

neurons, was performed by Miesenböck and Zemelman in 2002. They employed photoreceptors 

from the fruit fly for controlling neural activity in cultured mouse neurons (Zemelman et al., 

2002). But although this was a breakthrough and a proof that light could be used to control 

neurons, the effectiveness of light in stimulating neurons was limited, and their protocol was 

hard to translate to other biological systems, preventing other neuroscientist from implementing 

this technique. 
 

The real breakthrough of optogenetics came in 2005, when Deisseroth’s laboratory published 

the first paper, showing the successful implementation of a microbial opsin, called 

channelrhodopsin-2 (ChR2), to activate mammalian neurons with blue light. ChR2 is a single-

component light-activated ion channel from unicellular algae. Deisseroth’s group figured out 

how to get these opsins safely into mammalian neurons in order to make these neurons 

responsive to light (Deisseroth et al., 2006 and Zhang et al., 2006). Since then, research using 

optogenetics technology has rocketed and hundreds of papers have been published, 

investigating several neurological and neuropsychiatric disorders (Gradinaru et al., 2009; 

Covington et al., 2010; Alilain et al., 2008; Kravitz et al., 2010, Witten et al., 2010; Busskamp 

et al., 2010; Tye et al., 2011). For instance, Kravitz et al. targeted two basal ganglia pathways in 

mice responsible for movement. By selective control of those pathways, they were able to 

induce or stop movement of the mice using only light. When they performed the same 

experiment in Parkinsonian mice, they found that activating the pathway that stimulates 

movement reestablishes normal movement in Parkinsonian mice (Kravitz et al., 2011). These 

experiments indicate great potential of optogenetics as a research tool to develop new and refine 

existing therapies, and to understand diseased brain functioning. 
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2.3.2 Optogenetics versus electrical stimulation 
 

The use of optogenetics in neuroscience research has become extremely popular, mainly due to 

its increased specificity and speed compared to previous methods. It is far more specific than 

electrical stimulation and much faster than pharmacological intervention. In order to understand 

how the brain works, specific cells need to be controlled with a millisecond-scale precision in 

living tissue. In the past, fast control of neuronal activity was achieved with microelectrodes, in 

vitro, as well as in vivo in both animals and humans. However, the brain is complex and a single 

brain structure can contain many different types of neurons, through which microelectrodes 

cannot differentiate. Electrical stimulation therefore causes unwanted off-target effects in the 

surrounding tissue. In contrast, flashing light onto a brain area solely affects the cells that you 

have specifically targeted to express a light-sensitive protein. This means that researchers can 

now selectively trace the function of a certain group of neurons that is blent within other groups 

of neurons in the targeted brain structure, without confounding effects of those other neuron 

groups (Histed et al., 2009; Llewellyn et al., 2010).  

 
 

 

 

 

 

 

 

 

 

Figure 2.18: Targeted excitation (as with a blue light–activated channelrhodopsin) or inhibition (as with a yellow 

light– activated halorhodopsin), conferring cellular specificity and even projection specificity not feasible with 

electrodes while maintaining high temporal (action-potential scale) precision. (Figure modified from Deisseroth, 

2011).  
 

Because of its high temporal and spatial resolution, optical stimulation of cells is superior to 

classical activation by microelectrodes. This high temporal and spatial resolution that defines 

optogenetics can be achieved by using a combination of optics and genetics. Additionally the 

neuron group of interest can be excited or inhibited, depending on the light-sensitive protein and 

light that is used. Depending on the opsin used, a specific color of light enables excitation or 

inhibition of a specific group of neurons or non-neuronal cells (Fig. 2.18).  

 

 

2.3.3 Basic principles 
 

In order to control cell behavior with light, two questions need to be answered: (1) how to 

achieve selective in vivo control over a specific group of neurons? (2) how to measure the 

effects of such selective neuromodulation with a similar precision? In order to achieve this, a 

combination of techniques from genetics and optics is used.  
 

The entire process of optogenetics includes five steps: (1) creation of a gene construct; (2) 

insertion of the gene construct into a virus; (3) insertion of the virus deep into organisms as 

complex as mammals; (4) insertion of the optical fiber (or optrode, i.e. optical fiber plus 

electrode) and fiber-optic cable; (5) administration of light with a specific wavelength to the 

cells of interest, which causes the ion channels of those specific neurons to open (Yizhar et al., 



 

2.3   Optogenetics 43 

  

2011). Each of the steps are visualized in Fig. 2.19. The genes for light-activated ion channels 

are introduced to a population of cells by a human engineered virus. The cells that express these 

light-sensitive channels depends on the promoter region of the inserted DNA sequence. Cells 

which contain a promoter that can recognize the promoter sequence will express these channels 

while cells that lack a promoter specific for the sequence will not. Once the genes have been 

inserted, it can take 1-3 weeks for them to be fully expressed. An optic fiber is surgically 

inserted near the brain area of interest and attached to the top of the skull. After, a fiber-optic 

cable is connected to the optic fiber, so light can be sent to control the neurons. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Five steps to optogenetics: (1) creation of a gene construct; (2) insertion of the gene construct into a 

virus; (3) insertion of the virus deep into the mammalian brain; (4) insertion of the optical fiber; (5) administration of 

light with a specific wavelength to the cells of interest. (Figure modified from Yizhar et al., 2011). 

Optogenetics makes use of optogenetic actuators, such as microbial rhodopsins, for spatially-

precise neuronal control; and temporally-precise readouts (Yizhar et al., 2011). � Both are 

explained in the next paragraphs. 

 

 

2.3.4 Microbial rhodopsins 
 

The major optical stimulation approach is the activation of light-sensitive proteins (such as 

rhodopsins) using light, which then excite the cells that express the opsin in their membrane. 

The discovery of ChR2 from the unicellar alga (i.e. Chlamydomonas reinhardtii) was the 

starting point for the optogenetic approach by enabling the activation of mammalian cells using 

blue light (λmax 470nm) (Nagel et al., 2003; Zhang et al., 2008). More recently, the discovery 

of halorhodopsin (NpHR) from the archea Natronomonas pharaonis, enables inhibition of neural 

activity with yellow light (λmax 580nm) (Matsuno-Yagi and Mukohata, 1977; Lanyi and 

Oesterhelt, 1982). The light-sensitive ion channels, called ChR2, activate the cells with blue 

light by depolarization, whereas the light-driven ion pumps, called NpHR, inactivate the cells 

with yellow light by hyperpolarization of the cells (Fig. 2.20). Together, these proteins form an 

ideal pair for the activation and inhibition of neural cells (at two different wavelengths). 

Because ChR2 and NpHR and their variants can be easily expressed in neural cells or used to 

form transgenic animals, these microbial rhodopsins have now become very popular tools 

within neurobiological research.  
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Figure 2.20: (A) Schematic representation of the action of channelrhodopsin2 and halorhodopsin on neural cells. (B) 

Triggering of spikes by channelrhodopsin-2 (blue light) and their repression by halorhodopsin (yellow light) in 

cultivated hippocampal cells (© MPI of Biophysics).  

 

Yet a major limit to the utility of optogenetic inhibition using NpHR is the limited addressable 

quantity of neural tissue. Very recently, next-generation inhibitory opsins have become 

available such as the chloride-conducting channelrhodopsins iC++ and ArchT3.0. Currently, 

iC++ and ArchT3.0 have successfully inhibited volumes of approximately one cubic millimeter. 

ArchT is a light-driven proton pumps found in archaebacteria that provides silencing via a 

hyperpolarizing current in response to 566 nm light. A comparison study performed by 

Deisseroth’s lab has shown that archeorhodopsins seem to perform slightly better than the best 

available halorhodopsin mutant. In particular ArchT3.0 (an enhanced version of ArchT) 

generates about twice as much photocurrent and a exhibits slightly faster kinetics than 

NpHR3.0. In addition, it was demonstrated that brief episodes of NpHR3.0 activation tend to 

increase the probability of spiking in response to a stream of presynaptic action potentials, while 

Arch activation did not (Mattis et al., 2012).  

 

 

2.3.5 Readout methods 
 

As important as establishing optogenetic control of neural activity is, is the monitoring of the 

effects of the manipulated cellular activity. The monitoring method chosen depends on the 

experimental goals. The most common readout methods include behavioral testing, 

electrophysiological recordings, calcium imaging, and more recently also fMRI. They are 

shortly reviewed below.  
 

2.3.5.1  Behavioral testing 
 

The development of lightweight and flexible fiber-optic neural interfaces enabled the 

assessment of complex behaviors in freely moving mammals, including worms, flies, fish and 

mammals (Adamantidis et al., 2007; Aravanis et al., 2007; Gradinaru et al., 2009; Witten et al., 

2010; Tye et al., 2011).  

2.3.5.2  Electrophysiological recordings 
 

In contrast to electrical stimulation, optogenetic stimulation allows simultaneous electrical 

recording of neural activity without confounding artifacts associated with electrical stimulation. 

The extracellular unit recordings are easily integrated within the optogenetics technology. The 

integration of the optical fiber and electrode into a single component is called “optrode” 

(Gradinaru et al., 2009). Alternative to the regular fusion approach of the optical fiber and the 

microelectrode, coaxial integrated multi-electrode devices (Zhang et al., 2009a, Zhang et al., 

2009b), or silicon probes are used (Royer et al., 2010).  

A    B   B  
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2.3.5.3  Calcium imaging 
 

The combination of using simultaneous calcium imaging and optogenetic stimulation enables 

cell-type-specific readout of cell-type-specific control (by optogenetic stimulation) (Zhang et 

al., 2010; Airan et al., 2009; Dreosti et al., 2009; Dreosti and Lagnado, 2011, Lundby et al., 

2010; Tian et al., 2009). Calcium imaging allows to optically probe intracellular calcium, by 

using calcium indicators, which are fluorescent molecules that respond to the binding of 

calcium
 
ions by changing their fluorescence properties.  In vivo calcium imaging can be 

achieved by using mini epi-fluorescent microscopes that are equipped with microendoscopes, or 

two-photon microscopy in the freely moving or fixed rodent respectively. 
 

2.3.5.4  Functional Magnetic Resonance Imaging 
 

In 2010, Lee and colleagues combined optogenetics with fMRI for the first time, and called it 

‘opto-fMRI’. They used the technique to validate that increased activity in local excitatory 

neurons causes an increase in the local BOLD signal, and showed that opto-fMRI could be used 

to visualize the effects of precise optogenetic manipulations throughout the entire brain (Lee et 

al., 2010; Leopold, 2010; Desai et al., 2011; Li et al., 2011). Using opto-fMRI, Lee et al. 

provided the first direct evidence that the fMRI signal is in fact closely related to neural activity, 

as opposed to simply correlated with (Lee et al., 2010). Lee et al. also stated in that paper that 

“unidirectional stimulation of downstream structures, eliminating the antidromic drive from 

which electrical stimulation suffers, also shows a distinct and robust BOLD response enabling 

macro-circuit mapping of the brain” (Lee et al., 2010). Therefore, the most significant value of 

opto-fMRI will be as a research tool for mapping the global effect of defined cells throughout 

the entire brain, and potentially identifying disease-related or therapy-related circuit 

modulations, in a very specific way. This degree of specificity was not feasible earlier with the 

use of microelectrodes. With optogenetics specific local cells can be directly accessed using 

global fMRI signal mapping. Or alternatively, when targeting specific axons, the effect of 

specific distant cells can be assessed. Thus, downstream activation of other circuits or brain 

structures is a resultant from the output of the targeted cells only, and not due to off-target 

effects from which electrical stimulation suffers. 

 

 

2.3.6 Challenges 
 

As with any new technology, many improvements are necessary in each step of the optogenetics 

protocol, i.e. transfections methods, opsins and light source. These technical challenges are 

shortly reviewed below. 
 

2.3.6.1  Transfection methods 
 

Transfection methods are focused on the construction of vectors and promoters for cell specific 

expression of the microbial rhodopsins. There is enormous variety of constructs, which have to 

be tested by time consuming screening, presenting a major challenge. As carriers for gene 

transfer one can chose between different viruses or transgenic animal models. The virus 

approach is quick and efficient, whereas the construction of transgenic animals (rodents, 

fruitflies, zebrafish and C. elegans) are time consuming but have been proven to be ideal for a 

variety of different experiments in basic research. Most commonly, viral transduction is 
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preferred to introduce the promoter-opsin construct. However, there's only a limited, small 

amount of genetic info that can be packaged in viral vectors, although some can contain more 

than others (e.g. lentivirus (LV) can store more than adeno-associated virus (AAV)) (Yizhar et 

al., 2011). 
 

2.3.6.2  Opsins 

 

LV and AAV are particularly useful for optogenetics because they are characterized by a high 

multiplicity or opsin expression level so they are able to provide the high number of opsin genes 

that are required to ensure robust in vivo optogenetic responses. On average, LVs yield a lower 

expression and diffusion rate, and higher immunogenic potential, compared to AAVs (Yizhar et 

al., 2011). Besides the opsin expression level, a good light sensitivity is necessary for effective 

in vivo experiments. Despite the well-established use of ChR2 and NpHR, their transmittance is 

rather low. Some mutations can cause longer channel-opening times, ranging from seconds to 

minutes, resulting in an improved light sensitivity.  
 

Additionally, transgenic rodent models were developed for applications that require inhibition 

of neural activity. For example, by using the Cre/loxP system, limitations imposed by the 

weakness of a promoter can be circumvented (Kuhlman and Huang, 2008, Zhang et al., 2008, 

Atasoy et al., 2008; Sohal et al., 2009).  
 

Finally, an important group of neurons are the fast-spiking inhibitory interneurons (i.e. 

parvalbumin neurons), which are responsible for the interneuronal communication and are 

involved in complex cognitive processes (Freund, 2003). It has to be noted that ChR2-based 

activation of these fast-spiking neurons is not accurate at frequencies higher than 40Hz. 

ChETA-based (i.e. a channelrhodopsin mutated with E123) activation has demonstrated very 

accurate spike detection up to 200Hz in vitro. Moreover, the most recent opsin providing ultra-

fast optogenetic control is chronos, which is developed by Boyden’s lab. Chronos is a blue- and 

green-light drivable channelrhodopsin with kinetics faster than any previous channelrhodopsin 

and it appears to work better in vivo than ChETA (Klapoetke et al., 2014). 

 

2.3.6.3  Light source 
 

Arrays of micro light pipes are sufficient for light stimulation of cortical brain structures or 

within the brain if only a submillimeter scale is needed. For subcortical optogenetic stimulation 

of tiny brain structures, a high spatial resolution in the micrometer range is required. This can be 

achieved by using light emission diodes (LED ́s) or lasers due to their inherent higher 

transmittance (Yizhar et al., 2011).  

 

 

2.3.7 Applications 
 

Optogenetics has demonstrated great potential for basic research, because it allows for neuronal 

excitation and silencing with high spatial and temporal precision in a reversible manner, using 

just light. Additionally, the microbial rhodopsins appear harmless in the mammalian brain. This 

paragraph provides a short overview about its most important current preclinical applications 

and its clinical potential. 
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2.3.7.1  Preclinical applications 
 

Brain network mapping - Optogenetics provides new opportunities to analyze neural circuitry, 

since it has the ability to investigate functionally connected, but anatomically downstream brain 

structures to the targeted brain structure (Petreanu et al., 2009). Simultaneous recording of 

electrical activity of neurons in anatomically distant areas during light stimulation of neurons in 

a targeted area would reveal whether the recorded neurons are functionally connected 

downstream to the stimulated neurons, or whether they share the same neural circuit. For 

example, Douglas et al. demonstrated that stimulation of a single neuron can trigger the 

downstream circuit responsible for escape behavior in zebrafish (Douglas et al., 2008). Zhang 

and Oertner demonstrated that optogenetics can induce long-term potentiation of orthodromic 

connections in the hippocampal CA1 area. Additionally, results are obtained on the movement 

of whisker of rodents, on the olfactory system where light replaces the ligands, and on the 

movement of animals after light stimulation of the motor cortex (Tye and Deisseroth, 2012, 

Huber et al., 2008, Nagel et al., 2005). Together, these studies have shown the potential of 

optogenetics to examine in vivo neural circuitry. Moreover, the use of opto-fMRI has shown 

great potential for global brain mapping of precise optogenetic manipulations (Lee et al., 2010; 

Leopold, 2010; Desai et al., 2011; Li et al., 2011). 

 

Deep brain stimulation - Preclinical DBS studies allow for the experimental introduction of 

optogenetic tools, which provide superior neural circuit stimulation specificity compared to 

electrical stimulation (Fiala et al., 2010; Yizhar et al., 2011). The geometry of DBS-electrodes 

allows a precision of about one millimeter only. Consequently, electrical DBS also recruits 

nonreciprocal afferent inputs (via antidromic signal propagation), as well as neighboring fibers 

of passage. In contrast, optogenetic stimulation generally only recruits the opsin-expressing 

cells and their efferent outputs. Because of this added specificity for neural modulation, 

optogenetic tools have been employed to inform potential circuit mechanisms of DBS therapy 

in preclinical models (Creed et al., 2015; Gradinaru et al, 2009).  
 

2.3.7.2  Clinical applications 
 

Optogenetics has potential for future direct clinical applications. In the future, gene therapy 

using optogenetics appears to be possible. The transduction of cells in the human retina to 

replace missing retinal enzymes via adeno-associated virus (AAV) has been performed 

successfully on the human eye to cure a rare eye disease called Lebers Congenital Amaurosis 

(Maguire et al, 2009). This means that when integrating microbial rhodopsins within AAV’s 

that they could be used for gene therapy to treat retinal diseases or Parkinson’s disease 

(Gradinaru et al., 2009) or epilepsy (Tønnesen et al., 2009).  Additionally, Zhang et al. 

demonstrated that opsin expression in mammalian systems lasts up to one year (Zhang et al., 

2006). However, for clinical purposes this has to be extended to longer timescales, and 

mammalian systems are different from human systems, so the foreign opsin proteins that seem 

harmless in animal studies, might harm humans. Finally, there are some ethical issues related to 

the direct control of human behavior. 
 

There is also substantial interest and discussion related to the future use of optogenetics as an 

alternative treatment for DBS (LaLumiere, 2011). The rationale for this discussion relates to the 

presumptive ability of optogenetic stimulation to achieve therapeutic efficacy with a reduced 

side-effect profile from ‘off-target’ circuit recruitment. The enhanced specificity of optogenetics 
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allows to distinguish between different substructures. For example, within the investigation of 

TLE, with electrical stimulation one can only distinguish between the dorsal and ventral 

hippocampus at the most. In contrast, with optogenetic stimulation one can distinguish between 

the different hippocampal substructures, and between the different neuron groups within a 

substructure, consequently, resulting in a deeper understanding of the cause of TLE. With 

respect to PD similar arguments would hold. On the other end, it is widely hypothesized that 

DBS exerts its therapeutic effects via large-scale network modulation (van Westen et al., 2015; 

Deniau et al., 2010), little is known regarding the extent to which optogenetic stimulation 

mirrors the circuit-level responses achieved with electrical DBS.  
 

In conclusion, optogenetics might not lead to immediate direct clinical implementations as a 

treatment. But, the use of optogenetics as a research tool to investigate healthy and diseased 

brain circuitry or to optimize existing treatment has demonstrated potential by many 

laboratories. Optogenetics offers great opportunities for basic neuroscience research, and is 

especially helpful in defining and describing the disruption of global circuit wiring of the brain 

in neurological disorders such as PD and epilepsy. Consequently the use of optogenetics as a 

research tool might have an important indirect clinical impact. Although optogenetics is not an 

answer to every neuroscience problem and should be used only after critical assessment of the 

research problem and consideration of other available research tools, optogenetics represents a 

powerful new technique within the available assortment of research strategies. 
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Chapter 3 
 

Functional Circuit Mapping of Two 

Striatal Output Nuclei using 

DBS-fMRI 
  

 

 

3.1  Introduction 
The striatum represents the major input nucleus of the basal ganglia, critical for the processing 

and regulation of motor, cognitive, and limbic functions. Striatal output pathways within the 

basal ganglia are classified as “direct” or “indirect”, based on neurochemical phenotype and 

axonal projection patterns. More specifically, direct pathway striatal neurons express the D1 

dopamine receptor and project to the substantia nigra pars reticulata (SNr) and/or internal 

globus pallidus (GPi), whereas indirect pathway striatal neurons express the D2 dopamine 

receptor and innervate the external globus pallidus (GPe). Both the direct and indirect pathways 

ultimately converge upon thalamocortical relays, either through direct innervation (SNr/GPi), or 

polysynaptic routes (GPe). According to long-upheld models of the basal ganglia, these 

pathways are functionally antagonistic; the direct pathway recruits thalamocortical circuits and 

the indirect pathway suppresses them (Albin et al., 1989; DeLong, 1990).   
 

In recent years, this relatively simplistic framework of direct/indirect pathway function has 

come under increasing scrutiny (Calabresi et al., 2014; Cui et al., 2013; Friend and Kravitz, 

2014; Gittis et al., 2014; Goldberg et al., 2013; Jahfari et al., 2011; Tecuapetla et al., 2014). 

Although evidence continues to support the notion of functional antagonism between these 

pathways (Freeze et al., 2013; Kravitz et al., 2010; Schmidt et al., 2013), additional anatomical 

and functional studies have identified unanticipated circuit connectivity in both the SNr and 

GPe (among other basal ganglia nuclei). Recent examples in the GPe include the identification 

of a pallidocortical projection that entirely bypasses thalamic relays to modulate frontal cortex 

(Chen et al., 2015; Saunders et al., 2015), as well as pallidostriatal innervation by so-called 

“arkypallidal” GPe neurons (Abdi et al., 2015; Mallet et al., 2012). The SNr, generally 

conceptualized as an inhibitory nucleus, contains a subset of glutamatergic neurons recently 

mapped to innervate and excite the reticular thalamus, a higher-order non-relay region (Dunn et 

al., 2009). The functional roles of these novel circuit elements are likely complex and not easily 

predicted.
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Functional Magnetic Resonance Imaging (fMRI) is a powerful tool to study neural circuit 

modulation on a global scale. When combined with neural stimulation approaches such as Deep 

Brain Stimulation (DBS), fMRI allows for the relatively unbiased identification of brain areas 

functionally interconnected with the stimulation target (Ross et al., 2016; Van Den Berge et al., 

2015; Younce et al., 2014; Albaugh and Shih, 2014; Lai et al., 2014; Shih et al., 2013a; Knight 

et al., 2013; Lee et al., 2010; Canals et al., 2009; Dunn et al., 2009; Shyu et al., 2004). In 

addition to identifying putatively connected areas, DBS-fMRI may also shed light on the 

directionality of these circuit relationships (based on whether the hemodynamic change is 

positive or negative). Importantly, both the recruitment of select circuits, as well as the 

directionality of their fMRI responses, may be strongly contingent upon stimulation frequency. 

For example, low frequency (10Hz) electrical stimulation of the ventrolateral thalamus in pigs 

generated a positive blood-oxygen-level-dependent (BOLD) response in the motor cortex, 

whereas high frequency (130Hz) stimulation evoked a negative BOLD response in the same 

region. Thus, in varying stimulation parameters, DBS-fMRI can shed light on the tuning 

properties of functionally connected circuits. 
 

The SNr and GPe represent the major striatal output nuclei of the rat direct and indirect 

pathways, respectively. In addition, both structures are currently being explored as potential 

non-canonical DBS targets for diverse neurological disorders (e.g. Parkinson’s disease, 

Huntington’s disease, epilepsy) (Chastan et al., 2009; Ligot et al., 2011; Piedimonte et al., 2013; 

Shi et al., 2006; Sutton et al., 2013; Temel et al., 2006; Velisek et al., 2002; Vitek et al., 2012; 

Weiss et al., 2013; Wille et al., 2011). However, more research is necessary to explore 

functional circuitry of these striatal output nuclei (Calabresi et al., 2014; Cui et al., 2013; Friend 

and Kravitz, 2014; Gittis et al., 2014; Tecuapetla et al., 2014). Therefore, in the present study, 

we employed simultaneous DBS-fMRI in the healthy rat to map the functional circuit 

connectivity of the SNr and GPe. More specifically, we chose to perform fMRI with cerebral 

blood flow (CBV) measurements, instead of the most commonly used BOLD measurements. 

Previous CBV fMRI studies have demonstrated a higher signal-to-noise ratio than traditional 

BOLD fMRI imaging (Kim et al., 2013; Zhao et al., 2009; Silva et al., 2007; 

Keilholz et al., 2006; Wu et al., 2003). In addition, we acquired both stimulus-evoked fMRI and 

functional connectivity MRI (fcMRI) data. In this way, DBS-sensitive circuit activity and 

connectivity changes on a whole-brain scale can be visualized. 
 

Evoked-fMRI revealed CBV modulation by SNr- or GPe-DBS in a diverse complement of both 

overlapping and distinct brain regions, including convergent and unexpected CBV decreases 

within striatum, and GPe-DBS-evoked positive modulation of frontal cortex. Functional 

connectivity was preferentially modulated in the hemisphere ipsilateral to SNr or GPe-DBS, and 

readily reversed following cessation of stimulation. Notably, both circuit and network 

modulation by DBS at both targets was sensitive to stimulation frequency. 

 

 

3.2  Materials & Methods 
 

3.2.1  Animals 
 

Thirteen adult male Sprague-Dawley rats (300–500g body weight; Charles River Laboratories, 

Wilmington, MA, USA) were used in this study. All procedures were performed in accordance 

with the National Institutes of Health Guidelines for Animal Research (Guide for the Care and 
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Use of Laboratory Animals) and approved by the University of North Carolina Institutional 

Animal Care and Use Committee. Animals were housed under environmentally-controlled 

conditions (12h normal light/dark cycles, 20-23°C and 40-60% relative humidity), with food 

and water provided ad libitum. 

 

3.2.2  Surgery 
 

Rats were anesthetized using nosecone-supplied isoflurane (1.5-2%), and headfixed within a 

stereotaxic frame (Model 962, Kopf Instruments, Tujunga, CA, USA).  Following head shaving 

and exposure of the skull, four small burr holes were drilled: three for the positioning of MR-

compatible miniature brass screws (Item #94070A031, McMaster Carr, Atlanta, GA, USA) and 

one for the insertion of a bipolar DBS electrode. Each electrode was custom-made using two-

channel tungsten microelectrodes (A-M Systems, WA, USA.), with a 50μm diameter (single 

lead), as previously described (Lai et al., 2015). These electrodes were fully insulated with 

polyimide except at the tips, and the leads were adhered for direct contact using a saturated 

sucrose solution. The in vitro impedance of these electrodes was previously measured as 18-22 

kΩ (Lai et al., 2015). 
 

Electrodes were implanted targeting either the right SNr (n=6) or GPe (n=7). Stereotactic 

implantation coordinates were generated using a standard rat brain atlas (Paxinos and Watson, 

2007) and are described as follows, in reference to bregma (anteroposterior, AP; mediolateral, 

ML) and cortical surface (dorsoventral, DV): SNr (AP -5.5mm, ML +2.2mm, DV -7.7mm); 

GPe (AP -0.96mm, ML +2.8mm, DV -5.8mm). Following electrode implantation, the 

placement was sealed using dental acrylic and the wound site was further protected with 

surgical sutures. A post-surgical recovery period of at least 24 hours was given prior to fMRI 

acquisition for each subject. 

 

3.2.3 Data acquisition 
 

In preparation for fMRI procedures, rats were endotracheally intubated and mechanically 

ventilated using a small animal ventilator (CWE Inc., SAR-830/PA, Ardmore, PA). Anesthesia 

was initially maintained under constant isoflurane (1.5-2%) mixed with medical air. Tail vein 

catheterization was then performed for intravenous drug and contrast agent injections. 

Immediately following intubation and tail vein catheterization, animals were placed within a 

head-holder, and harnessed to a small animal cradle (both plastic and custom-made). The cradle 

was lined with a circulating water blanket connected to a temperature-adjustable water bath 

located outside the scanner room (Thermo Scientific, Waltham, MA). A rectal probe was used 

and core body temperature was maintained at 37±0.5°C. Mechanical ventilation volume and 

rate were adjusted to maintain EtCO2 of 2.8-3.2% and SpO2 above 96%, using capnometry 

(Surgivet, Smith Medical, Waukesha, WI) and pulse oximetry (MouseOx Plus, STARR Life 

Science Corp., Oakmont, PA). EtCO
2 

values from the capnometry system were previously 

calibrated against invasive sampling of arterial blood gas, reflecting a pCO
2 level of 30–40 mm 

Hg (Shih et al., 2012; Shih et al., 2013b).   
 

MR images were acquired on a 9.4T Bruker BioSpec system with a BGA-9S gradient insert 

(Bruker Corp., Billerica, MA). A homemade single-loop surface coil with an internal diameter 

of 1.6cm, placed directly over the head, was used as a transceiver. Toothpaste was applied 

within the open coil loop to minimize MR susceptibility artifacts at the air-tissue interface. The 

set-up of the coil and DBS electrode is shown in Fig. 3.1A.  
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Figure 3.1: Experimetal set-up: (A) Schematic of experimental setup with homemade surface loop coil and tungsten 

microwire DBS electrode. (B) Electrode tip mapping to the SNr (n=6) and GPe (n=7) for all subjects. Tip placements 

were estimated using T2-weighted anatomical scans, which we deemed satisfactory given the relatively large size 

(including anteroposterior distance) of our targets, as well as the minimal electrode artifact.  

 

Magnetic field homogeneity was optimized first by global shim and followed by local first-

order shims, and when necessary, local second-order shims using the FASTMAP protocol. For 

anatomical referencing, a T2-weighted RARE pilot image was taken in the mid-sagittal plane to 

localize the anterior commissure; this structure is located at approximately 0.8mm posterior to 

the bregma and served as a reference for anteroposterior slice positioning in subsequent 

anatomical and functional scans. T2-weighted anatomical images were obtained using a RARE 

sequence (scan parameters: TR = 2500ms, TE = 33ms, RARE factor = 8, slice thickness = 

1mm, matrix size= 256x256, FOV= 2.56x2.56cm2). Twelve axial slices were acquired, with the 

5th slice from the anterior direction aligned with the anterior commissure (as acquired in the 

previous T2-weighted pilot scan). The reduced electrode artifact (Fig. 3.2), together with 

standardized slice positioning, rendered these images sufficient to localize the electrode tip 

placement, as previously described (Lai et al., 2015; Lai et al., 2014). Electrode placement 

within the SNr or GPe was confirmed for each rat before including it to this study (Fig. 3.1B/C).  

 

 

 

 

 

 

 

 

Figure 3.2: Representation of the electrode artifact on (A) an axial slice of an anatomical MR-image at height of the 

electrode (SNr), and on (B) five axial slices of a functional MR-image (SNr, same rat as in (A)). The electrode 

artifact is indicated with a yellow arrow. 
 

 

Following setup processes and immediately prior to CBV fMRI scan acquisition, rats were 

administered a monocrystalline iron oxide contrast agent (MION; Feraheme; 30mg Fe/kg, i.v.). 

MION-based CBV measurements provide a well-established fMRI tool with a higher signal-to-

noise ratio than traditional BOLD contrast imaging (Kim et al., 2013; Zhao et al., 2009; Silva et 

al., 2007; Keilholz et al., 2006; Wu et al., 2003). Subsequently, anesthesia was switched to 

dexmedetomidine (dexdomitor; 0.05mg/ml/hr, i.v.) cocktailed with the paralytic agent 

pancuronium bromide (0.5mg/ml/hr, i.v.). This cocktail was administered for the remaining 

scan duration, continuously supplemented by 0.5% isoflurane (Fukuda et al., 2013). 
 

CBV fMRI scans were acquired using a multi-slice single-shot gradient echo echo-planar 

imaging sequence (GE-EPI) (scan parameters: TR= 1000ms, TE= 8.107ms, slice thickness= 

1mm, matrix size= 80x80 (reconstructed to 128x128), FOV= 2.56x2.56cm2 and voxel size = 

0.312x0.312x1mm3). Image slice geometry was imported from the previously acquired T2-

weighted anatomical image (12 slices). 

A B 
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3.2.4  Deep brain stimulation 
 

Stimulation was applied in the same manner for all subjects, with bipolar and uniformly 

distributed unilateral stimulation of the SNr or GPe, with bipolar and uniformly distributed 

unilateral stimulation of the SNr or GPe.  Each stimulation period consisted of a series of TTL-

triggered biphasic, charge-balanced square-wave pulses with a pulse width of 500μs and a 

stimulation intensity of 300 μA. A 90 second block design paradigm was implemented, 

consisting of a 20 second baseline period (stimulation OFF) followed by 10 seconds of 

stimulation ON, and an additional 60 seconds of rest (stimulation OFF). An additional rest 

period of at least two minutes was given between each DBS scan to allow for neurovascular 

recovery. Stimulation frequencies were varied in a pseudo-randomized order (10, 40, 70, 130, 

200 and 400 Hz), and each DBS frequency scan was repeated 5 times per rat for within-

subject/session averaging (see section 3.2.5.1).    
 

Immediately following evoked-fMRI scan acquisition, fcMRI scans were conducted in each 

subject. These scan series consisted of five, 5 minute scans during which either no stimulation 

or continuous DBS was applied (OFF and ON, respectively; ON consisted of stimulation of 

300μA, 500μs pulse width, varied frequency). The fcMRI scans were conducted in succession 

without rest periods in the following order: OFF, ON (40Hz), OFF, ON (130Hz), OFF.  

 

3.2.5  Data-analysis 
 

3.2.5.1  Evoked fMRI 
 

Preprocessing and image analysis was performed using SPM codes and custom-written Matlab 

(MathWorks Inc., Natick, MA) similar to our previous DBS-fMRI studies (Lai et al., 2015; Lai 

et al., 2014; Younce et al., 2014). First, evoked-fMRI data were grouped by subject and DBS 

frequency, and realigned to the first volume of a well-positioned subject using a least squares 

approach and a 6 parameter rigid body spatial transformation. Secondly, the datasets were skull-

stripped using a semi-automatic threshold method with manual masking. Thirdly, the datasets 

were coregistered to an anatomical MRI rat atlas (Valdes-Hernandez et al., 2011). Finally, 

datasets were grand-averaged across subjects by stimulation frequency for generation of the 

mean response maps. Note that we used only 5 SNr-DBS subjects for the analysis of the evoked 

fMRI data and 6 SNr-DBS subjects for the analysis of the functional connectivity data. We 

decided to discard one subject in the SNr-DBS group due to poor image quality of the evoked 

fMRI datasets, probably caused by movement. 
 

Functional response maps for averaged SNr- or GPe-DBS datasets (SNr: n=5, GPe: n=7) were 

generated using the general linear model (GLM), with reference to baseline (frames 1-20). 

Additionally, a hemodynamic delay of 5s was applied according to the ROI-based time-courses 

analysis results. A Bonferroni correction was applied to adjust for the multiple comparisons of 

fMRI maps by the number of brain voxels (corrected p<0.05 for positive and negative 

responses). All images were smoothed by applying a mean filter with a 3×3 kernel, and overlaid 

on an anatomical atlas for visualization (Valdes-Hernandez et al., 2011).  

For temporal analysis of DBS-evoked CBV changes, 3-dimensional regions of interest (ROIs) 

were defined a priori according to anatomical structural boundaries (Paxinos and Watson, 2007; 

Valdes-Hernandez et al., 2011), and applied onto the coregistered data. The ROIs were chosen 

according to the anatomical areas showing statistically significant modulation in the functional 

response maps. Nineteen ROIs were identified for analysis, all ipsilateral to the DBS target 



 

 

56 SNr- and GPe-DBS-fMRI 

  

unless otherwise noted: cingulate cortex, dorsolateral striatum (ipsi- and contralateral), 

dorsomedial striatum (ipsi- and contralateral), GPe, infralimbic cortex, motor cortex, nucleus 

accumbens, orbitofrontal cortex, pedunculopontine tegmental nucleus, posterior hypothalamus, 

prelimbic cortex, SNr, somatosensory cortex, superior colliculus, ventral tegmental area, 

ventrolateral thalamus, and zona incerta. The baseline ΔR2* value was calculated as follows:  
 

Baseline ΔR2*= - 1/TE ln (Sprestim/S0), 

 

where Sprestim and S0 are the MR signal intensities after and before Feraheme injection, 

respectively. The stimulus-evoked ΔR2* value (after Feraheme injection) was calculated as 

follows:  
 

ΔR2*= - 1/TE ln (Sstim/Sprestim), 

 

where Sstim and Sprestim are the MR signal intensities during stimulation and before stimulation, 

respectively. CBV changes were calculated by dividing stimulus-evoked ΔR2* by baseline 

ΔR2* values. For each ROI, the CBV signal time-course was plotted across all 90 volumes (i.e. 

repetitions or time frames). 

 

DBS-evoked changes in CBV amplitude were also compared across stimulation frequencies and 

ROIs. Stimulus-evoked CBV responses were averaged across the stimulation period (frames 21-

30) for each DBS frequency and ROI. These data are presented as mean ± standard error of the 

mean (SEM). Statistical comparisons of DBS frequency effects on ΔCBV for each ROI were 

conducted using Graphpad Prism software (San Diego, CA). Two-tailed, one-way ANOVA 

tests were conducted, and when statistically significant (p ≤ 0.05), Tukey post-hoc analyses 

were employed. 
 

 

3.2.5.2  Functional connectivity MRI 
 

Functional scans were preprocessed using the Analysis of Functional NeuroImages software 

suite (AFNI v2011-12-21-1014).  The workflow included discarding the first 20 volumes (of 

each fcMRI-scan), slice-timing correction, motion correction, alignment to a pre-existing high-

resolution T2-weighted template, spatial smoothing (Gaussian kernel FWHM = 1.5mm), band-

pass filtering (0.001– 0.5Hz), and regression of whole brain signal and the six motion 

parameters. The number of volumes discarded was increased from the traditional number 

(approximately 3-10) in order to ensure DBS-related changes from the initial stimulation were 

minimized. Furthermore, warping in the alignment procedure was limited to shifts and rotations 

to avoid unnecessary shearing and scaling of brain regions with signal drop-out associated with 

the DBS electrode.  
 

Statistical fcMRI analysis was conducted using the temporal correlation method. Fisher-Z 

transformed correlation matrices were generated using the average functional time series 

extracted for each region-of-interest (ROI) in the template atlas. Ipsilateral and contralateral 

hemispheres ROIs were analyzed separately yielding correlation matrices detailing mean within 

and between hemisphere connectivity (SNr: n=6, GPe: n=7). Individual connections were 

further evaluated across animals using repeated measures ANOVA models and categorized 

based on direction of effect. For each significant pairwise connection (rANOVA p<0.01) a basic 

correlation analysis was carried using a tent function and the resulting sign was used to 

categorize connections as either enhanced (increased correlation) or suppressed (increased anti-
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correlation). Pair-wise connections with weak modulation (|ΔZ-corr.|<0.10) were ignored. Finally, 

connections were grouped based on network classifications (sensorimotor, executive, limbic, 

and between network connections).  

 

 

3.3 Results 
 

3.3.1 Evoked fMRI 
 

Both SNr- and GPe-DBS produced significant and frequency-dependent CBV responses in 

several brain structures both within and outside the basal ganglia circuit. Averaged response 

maps to 40 and 130Hz DBS are shown in Fig. 3.3A and Fig. 3.3B for SNr and GPe subjects, 

respectively. Four additional DBS-frequencies are displayed in Supplementary Fig. 3.2A/B for 

both groups. Supplementary Fig. 3.1 displays activation of 130Hz SNr-DBS on EPI. All 

supplementary figures mentioned in this chapter are included in paragraph 3.7 at the end of this 

chapter. In addition to generating functional response maps, CBV timecourses for each DBS 

target and stimulation frequency were calculated for anatomical 19 ROIs (Fig. 3.4 and 

Supplementary Fig. 3.3-4).  

 

 

Figure 3.3: Functional activation maps of CBV modulation by SNr- and GPe-DBS. Two DBS stimulation 

frequencies are shown for each target: SNr- DBS at 40 or 130Hz (A and B, respectively), GPe-DBS at 40 or 130Hz 

(C and D, respectively). Notable observations include CBV decreases in the striatum at both targets, as well as large, 

ipsilateral frontal cortical modulation by GPe-DBS. At both targets, stimulation responses were largely ipsilateral and 

stronger at 130Hz compared to 40Hz. 12 slices were acquired in each scan, with numbers below slices denoting 

relative distance from bregma (in mm). Color bar denotes t score values obtained by GLM analyses, with a 

significance threshold of p<0.05. Functional activation maps for all additional tested frequencies are located in 

Supplementary Fig. 3.2.   
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10Hz DBS at either target produced no significantly modulated voxels, including within the 

electrode target region. In contrast, significant and extensive CBV modulation was noted at all 

other frequencies tested (40-400Hz). The spatial pattern of CBV modulation was qualitatively 

similar across stimulation frequencies, and in some respects also similar between SNr and GPe 

stimulation targets. For example, both GPe- and SNr-DBS resulted in CBV changes 

predominantly ipsilateral to the stimulation site, with the exception of the dorsal striatum, which 

was bilaterally modulated by DBS at either target. Dorsal striatal CBV changes were strongly 

positive in the ipsilateral hemisphere during GPe-DBS, yet vasoconstriction was observed 

concomitantly in the contralateral hemisphere (during GPe-DBS), and bilaterally during SNr-

DBS. Also of note, a  “double peak” of CBV modulation was a characteristic response to DBS 

in certain regions, including the ipsilateral somatosensory cortex (both DBS targets), and dorsal 

striatum (SNr-DBS) (see Fig. 3.4). 
 

During GPe-DBS (40-400 Hz), robust CBV increases were observed in ipsilateral frontal and 

prefrontal cortices, including cingulate, motor, prelimbic, infralimbic, and orbitofrontal cortices. 

A wealth of subcortical areas also showed positive CBV responses, including the substantia 

nigra, nucleus accumbens, ventral tegmental area, zona incerta, and others (see Supplementary 

Fig. 7.4).  Of all regions examined, peak CBV responses to GPe-DBS were strongest in 

orbitofrontal cortex, reaching nearly 30% CBV increases with 400 Hz stimulation.  
 

SNr-DBS (40-400Hz) evoked positive CBV changes in multiple basal ganglia nuclei (GPe, 

substantia nigra striatum), as well as additional areas intimately tied to the basal ganglia 

(pedunculopontine tegmental nucleus, zona incerta, ventral tegmental area) (see Fig. 7.4 and 

Supplementary Fig. 7.3). Of all regions examined, the substantia nigra showed the largest CBV 

changes (nearly 30% CBV increases at 200 or 400 Hz DBS). In stark contrast to GPe-DBS, 

frontal and prefrontal cortical modulation by SNr-DBS was relatively sparse; functional 

activation maps revealed spatially restricted vasodilation (e.g., in cingulate cortex), as well as 

contralateral vasoconstriction in prefrontal cortex (most apparent at 130 Hz). However, a closer 

examination of this data by means of CBV traces revealed that many of these areas (e.g., motor, 

somatosensory, prelimbic cortices) were likely positively modulated by 200 Hz SNr-DBS, 

albeit with a long delay (and thus not detected with our functional activation maps). Also of 

note, the superior colliculus, which receives direct innervation from the SNr (Deniau et al., 

2007; Kaneda et al., 2008), had little to no detectable CBV changes during SNr-DBS.  
 

Lastly, to determine the frequency-dependency of DBS responses at both targets, the amplitude 

of CBV responses was quantified for a subset of ROIs: GPe, substantia nigra, dorsolateral 

striatum (ipsi- and contralateral, somatosensory cortex, posterior hypothalamus (SNr-DBS 

only), and prelimbic cortex (GPe-DBS only)) (Fig. 7.4). These amplitude measures correspond 

to the mean CBV changes during the stimulation epoch for each DBS frequency (see Methods); 

because of differences in the characteristic trace dynamics for each ROI (e.g., hemodynamic 

delays), the calculated values are best compared across frequencies but not across ROI’s. A 

main effect of DBS frequency was found for each ROI analyzed (p < 0.05), and post-hoc testing 

revealed that 10Hz DBS drove CBV amplitude changes that often significantly differed from 

many other frequencies. However, as suggested by the CBV traces, the influence of stimulation 

frequency on CBV responses was inconsistent across ROIs. For example, CBV amplitudes for 

some ROIs scaled positively with DBS frequency (e.g., the GPe during SNr-DBS), whereas 

peak amplitudes occurred at frequencies below 400 Hz for other ROIs (e.g., prelimbic and 

somatosensory cortices during SNr-DBS). 
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Figure 3.4: DBS evoked CBV changes at select, anatomically-defined regions of interest for (A) SNr-DBS and (B) 

GPe-DBS. CBV traces are shown for all frequencies, i.e. 10-400Hz. The yellow bar denotes the stimulation epoch. 

Note: a different Y-axis scale is used across ROIs. CBV traces are accompanied by bar graphs displaying percent 

changes in CBV amplitude changes during the stimulation period (mean ± SEM CBV values for the DBS stimulation 

period). Anatomically-defined ROIs are highlighted as figure inserts (single slice shown; note that many ROIs 

encompassed multiple slices). *p≤0.05 for 10Hz compared to all other frequencies (no other statistically significant 

comparisons). Additional ROIs (total=19) are located in Supplementary Fig. 3.3 (SNr-DBS) and 3.4 (GPe-DBS). 

 

SNr‐DBS (all frequencies)  GPe‐DBS (all frequencies) 
A  B 



 

 

60 SNr- and GPe-DBS-fMRI 

  
3.3.2 Functional connectivity MRI 
 

Complementing our evoked-fMRI findings, fcMRI measurements revealed global and 

frequency-dependent modulation by DBS at both targets. Mean correlation matrices were 

generated for SNr  (Fig. 3.5A) and GPe (Fig. 3.5B) subjects, for three rest and two stimulus 

conditions: rest1 (pre-DBS), Stim 40Hz, rest2 (in-between DBS), Stim 130Hz and rest3 (post-

DBS). These cross-correlational matrices, displaying functional connectivity strength between 

90 discrete brain regions (45 per hemisphere), revealed readily observable modulation during 

130Hz DBS (compared to non-stimulation conditions), including both enhancements and losses 

of connectivity in the ipsilateral hemisphere. This modulation of fcMRI signals appeared readily 

reversible, as the post 130Hz stimulation “rest” scan (conducted immediately following the 

130Hz DBS fcMRI scan), was qualitatively similar to prior non-stimulation scans. Functional 

connectivity modulation by 40Hz DBS was less apparent at both targets.  
 

These observations were quantitatively confirmed by post-hoc testing (note that connections 

which were enhanced or suppressed during DBS were analyzed separately). These analyses 

revealed that functional connectivity was significantly altered during 130Hz DBS at both targets 

compared to either the 40Hz or resting conditions (see Fig. 3.6).  

 

Figure 3.5: fcMRI Modulation by 40 and 130Hz (A) SNr-DBS and (B) GPe-DBS. Mean correlation matrices (SNr: 

n=6; GPe: n=7) for each rest and stimulus condition (rest1 (pre-DBS), Stim 40Hz, rest2 (in-between DBS), Stim 

130Hz and rest3 (post-DBS)) using 45 regions-of-interest (ROIs, see Figure Key). Abbreviations: PLC: Prelimbic 

Cortex; ILC: Infralimbic Cortex; OFC: Orbitofrontal Cortex; CC: Cingulate Cortex; Insula: Insular Cortex; NAc: 

Nucleus Accumbens; AS; Anterior Striatum; vPAll: Ventral Pallidum; Sept: Septum; lHyp: Lateral Hypothalamus; 

Amyg: Amygdala; BNST: Bed Nucleus of the Stria Terminalis; MDT: Mediodorsal Thalamus; vHipp: Ventral 

Hippocampus; VTA: Ventral Tegmental Area; AC: Auditory Cortex; AOB: Accessory Olfactory Bulb; DLS: 

Dorsolateral Striatum; DMS: Dorsomedial Striatum; ENT: Entorhinal Cortex; GPe: External Globus Pallidus; 

Motor: Motor Cortex (Primary and Secondary); OT: Olfactory Tubercle; PAG: Periaqueductal Grey; PPTg: 

Pedunculopontine Tegmental Nucleus; PC: Parietal Cortex; Piriform: Piriform Cortex; pHyp: Posterior 

Hypothalamus; pThal: Posterior Thalamus; S2: Secondary Somatosensory Cortex; SN: Substantia Nigra; Somato: 

Primary Somatosensory Cortex; STN: Subthalamic Nucleus; TeA: Temporal Association Cortex; VL: Ventrolateral 

Thalamus; VPL: Ventral Posterolateral Thalamus; Visual: Visual Cortex (Primary and Secondary); ZI: Zona Incerta; 

dHipp: Dorsal Hippocampus; dRaphe: Dorsal Raphe Nucleus; lHab: Lateral Habenula; mPOA: Medial Preoptic 

Area; SC: Superior Colliculus; vHyp: Ventral Hypothalamus. 

A 

B 
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Figure 3.6: Statistical information concerning fcMRI modulation during rest, 40 and 130Hz for (A) SNr-DBS and 

(B) GPe-DBS. The graphs represent z- correlation mean and variance. Note, all ROIs with significant enhanced or 

suppressed connections were grouped, and the degrees of freedom (df) is dependent on the amount of connections 

within one group. 
 

 

Next, individual fcMRI connections were measured (rANOVA, p < 0.01 uncorrected, ΔZ-Corr 

> 0.10) and visualized according to functional network groupings (Sensorimotor, Executive, 

Limbic, and Between network connections) and modulation direction (enhanced or suppressed) 

(see Supplementary Fig. 3.5A: SNr, Fig. Supplementary Fig. 3.5B: GPe). Note that Between 

network connections reflect connections that crossed functional category (e.g., between 

Sensorimotor and Limbic regions). Of connections meeting significance criteria, a larger 

proportion of enhancements were observed compared to suppressed connectivity (SNr: 21 

enhanced, 8 suppressed; GPe: 23 enhanced, 14 suppressed). Most of these DBS-sensitive 

connections fell within the Between network category (SNr: 20; GPe, 25). Of the other 

networks examined, the Limbic network was the most highly represented by SNr-DBS (4 

connections), whereas the Sensorimotor network had the strongest representation for GPe-DBS 

(6 connections). 

 

 

3.4 Discussion 
 

The present study was undertaken to map the functional circuit and network connectivity of the 

SNr and GPe, and to further evaluate the influence of stimulation frequency on the measured 

connectivity profiles. Although both regions have traditionally been classified as simple relay 

nuclei, our DBS results reveal extensive functional circuit and network interconnectivity, 

consistent with “extra-relay” processing power. Below, we highlight the major findings and 

limitations of this work. 

 

3.4.1 Frequency-dependency 
 

The usage of multiple stimulation frequencies in DBS-fMRI studies allows for the 

characterization of frequency tuning in neural circuits (Canals et al., 2008; Krautwald and 

Angenstein, 2012; Lai et al., 2014; Paek et al., 2015). 10Hz stimulation of either the SNr or GPe 

did not result in any detectable fMRI signal changes, while the stimulation frequency that 

evoked the largest CBV responses varied considerably by region. Perhaps the most compelling 

example of frequency selective circuit modulation in the present study occurred with 200Hz 

A      B 
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SNr-DBS. At both lower and higher frequencies (40-130, 400Hz), prefrontal and frontal cortical 

regions (e.g., infralimbic, motor, cingulate cortices) responded to SNr-DBS with CBV increases 

that were modest and time-locked to the stimulation period. However, these brain regions 

responded to 200Hz stimulation with CBV increases that were much larger than at other 

frequencies, and peaked with a long delay (in certain case, after the cessation of stimulation).  

The reasoning behind such remarkably frequency selectivity in these responses, with highly 

unique temporal characteristics (in relation to the stimulation period), is an interesting area for 

future study.  
 

The inclusion of very high stimulation frequencies in the present study (i.e., 130Hz and above) 

is also notable in the context of therapeutic DBS. Particularly as applied at basal ganglia targets, 

high frequency DBS has demonstrated therapeutic potential in neurological and 

neuropsychiatric diseases (DeLong and Wichmann, 2012; Goodman and Alterman, 2012). Both 

the SNr and GPe are being explored as potential non-canonical DBS targets for diverse 

neurological disorders (e.g., Parkinson’s disease, Huntington’s disease, epilepsy) (Chastan et 

al., 2009; Ligot et al., 2011; Piedimonte et al., 2013; Shi et al., 2006; Sutton et al., 2013; Temel 

et al., 2006; Velisek et al., 2002; Vitek et al., 2012; Weiss et al., 2013; Wille et al., 2011). 

Although we used a healthy rodent model, precluding behavioral tests of DBS efficacy, our 

evoked-fMRI results highlight strong parallels in circuit modulation by either moderate or high 

frequency stimulation of the SNr and GPe. The frequency sensitivity of symptom amelioration 

by SNr- or GPe-DBS would be interesting to study in the clinical setting, particularly in light of 

the possibility of prolonging the battery life of DBS pulse generators using lower frequency 

stimulation protocols. 

 

3.4.2 Evoked fMRI 
 

3.4.2.1  Striatal CBV modulation by SNr- and GPe-DBS  
 

Both the SNr- and GPe are downstream targets of the striatum, receiving GABAergic input 

through the so-called direct and indirect pathways, respectively. Although striatal activity 

changes may thus be anticipated during either SNr- or GPe-DBS, our demonstration of striatal 

modulation by DBS at each target is of remarkable interest for several reasons. First, although 

the basal ganglia are frequently modeled as intrahemispheric systems, we observed pronounced 

bilaterality in striatal modulation by SNr- or GPe-DBS. Irrespective of whether this modulation 

occurs through feedforward thalamo-cortico-striatal loops, antidromic recruitment of striatal 

fibers, or other means, our results strongly suggest that presence of powerful bilateral 

connectivity within the basal ganglia systems. Of further interest is the directionality of this 

striatal hemodynamic response; prominent CBV decreases were noted within the dorsal striatum 

during DBS of either the SNr or GPe, and occurred across a wide range of stimulation 

frequencies (40Hz and higher). The extent and magnitude of these signals was greater at the 

SNr target compared to the GPe, and was also greater in the hemisphere contralateral to 

stimulation (although ipsilateral decreases were also observed with both DBS targets).  

Although it may be intuitive to interpret our data as DBS-evoked neuronal inhibition, the 

situation appears to be particularly muddled in striatum, wherein dopaminergic 

neurotransmission has been hypothesized to induce vasoconstriction independent of direct 

activity changes within striatal neurons (Hsu et al., 2014) or regional metabolism (Shih, 2011). 

In addition, striatal CBV decreases have previously been shown with heightened local neuronal 

activity (Shih et al., 2014, Shih et al., 2009). In light of these complexities, further work will be 
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necessary to determine the underlying mechanism of striatal CBV decreases evoked during 

SNr- and GPe-DBS. 

 

3.4.2.2 Frontal cortical CBV increases evoked by GPe-DBS 
 

One major unexpected finding in this study was the robust modulation of frontal cortical areas 

(including prefrontal and motor cortices) by GPe-DBS. Historically, the GPe has been viewed 

primarily as a basal ganglia relay nucleus with only indirect control over cortical activity (Albin 

et al., 1989; DeLong, 1990). Very recently, however, two studies have identified a direct, 

ipsilateral projection from GPe to frontal cortex in mouse, rat, and monkey (Chen et al., 2015; 

Saunders et al., 2015). The GPe neurons that make up this projection are GABAergic and 

express the GABA vesicular transporter (vGAT), with a large subset additionally being 

cholinergic (expressing choline acetyltransferase (ChAT)). This pathway innervates all layers of 

cortex, targeting both pyramidal cells and interneurons. Unsurprisingly, selective optogenetic 

stimulation of this pathway results in mixed patterns of modulation among frontal cortical 

neurons, with both inhibition and enhanced firing rates observed in vivo (Saunders et al., 2015). 

As expected based on neurochemical makeup, selective stimulation of this projection is 

predominantly inhibitory for cortical neurons. However, given that this projection has been 

reported to biasedly innervate cortical interneurons, it is possible that distant inhibitory 

mechanisms result in enhanced cortical activity and vasodilatation. The robust modulation of 

frontal cortex by GPe-DBS observed in the present study may be the result of such pallido-

cortical transmission, although the use of nonselective electrical stimulation precludes a 

definitive interpretation. 

 

3.4.2.3 Comparison to canonical STN-DBS and GPi-DBS 
 

High frequency DBS at the STN and GPi are widely used with great success for the 

symptomatic treatment of PD. However, the therapeutic mechanisms and how DBS at these 

”classic” targets modulate neural circuitry are also still largely unknown. Therefore, prior to this 

study, an STN- and GPi-DBS-fMRI was performed by Lai et al. to map global brain responses 

to DBS at the STN and GPi of the rat. The authors demonstrated that STN- and GPi-DBS 

resulted in positive BOLD responses in multiple ipsilateral cortical brain structures, with peak 

responses observed at clinically relevant stimulation frequencies (i.e. 100-130Hz), indicating 

that both targets are functionally connected with the motor cortex at therapeutic stimulation 

frequencies. Additionally, negative BOLD responses were observed in contralateral cortical and 

striatal areas during GPi-DBS, but not during STN-DBS (Lai et al., 2013). When comparing the 

STN-and GPi-DBS data from Lai et al., to our SNr- and GPe-DBS data, we find that the 

responses to GPi-DBS resemble the responses to GPe-DBS. This is not surprisingly since the 

GPi and GPe are adjacent brain structures. 

 

3.4.3 Functional connectivity MRI 
 

Complementing our evoked-fMRI findings of modulation of the striatal output nuclei by SNr- 

and GPe-DBS, fcMRI measurements revealed robust enhancements in functional connectivity 

between many of the same regions. In general, we observed a trend of enhanced functional 

connectivity in the hemisphere ipsilateral to stimulation. Additionally, our data indicates that 

these connectivity shifts are frequency-dependent, being more apparent with 130Hz than 40Hz 
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stimulation of either DBS target. To our knowledge, this is the first example of DBS-induced 

frequency-dependent functional connectivity modulation. 

 

3.4.4 Limitations 
 

Our study includes several limitations that are generally characteristic of preclinical DBS-fMRI 

experiments. The usage of anesthesia, as is commonly employed in preclinical fMRI 

experiments (Haensel et al., 2015; Krautwald and Angenstein, 2012; Lai et al., 2014; Min et al., 

2012), may alter the responsiveness of neural circuits to the effects of DBS. One possible means 

by which an anesthetic effect may be evident could be in the stimulation strength threshold for 

detectable fMRI responses. In pilot experiments, we were unable to reliably achieve evoked or 

functional connectivity fMRI responses with current amplitudes below 300μA (data not shown), 

and thus our experiments relied upon higher amplitudes than those generally used in preclinical 

DBS studies in awake rodents (typically 100-150μA) (Ewing et al., 2013; Hamani et al., 2014; 

Vassoler et al., 2008), although higher amplitudes have been reported for studies in both awake 

and anesthetized states (McCracken et al., 2007; van Dijk et al., 2013). We postulate that the 

relatively higher current amplitudes needed for DBS effects in the present study (i.e. 300μA) 

may have been necessitated by the usage of anesthesia in our model. This in turn increases the 

possibility of “off-target” stimulation effects, due to current spread outside the anatomical 

boundaries of the target regions. Future studies may rely upon conscious animal imaging to 

tackle these potential limitations (Ferris et al., 2006). 

Second, the use of electrical stimulation for circuit mapping may be viewed as either a strength 

or weakness in the present study; it is highly translationally relevant in the context of clinical 

DBS therapy, yet comes with limitations of circuit recruitment specificity. As suggested above, 

electrical stimulation may be prone to off-target circuit recruitment, and may present another 

limitation to the present study. Electrical stimulation is capable of recruiting fibers of passage, 

and current may also spread beyond the anatomical boundaries of the target region; in either 

instance, “off-target” areas may be recruited by DBS. An additional, related point concerns the 

directionality of connectivity between the DBS target region and other modulated areas. 

Because DBS can recruit connected brain areas through both ortho- and antidromic signal 

propagation across fibers (Grill et al, 2008; Li et al., 2012) this approach to functional circuit 

mapping cannot readily distinguish between up- and downstream circuit elements. The use of 

opto- and/or pharmacogenetic tools should provide a more precise means for functional 

imaging-based circuit mapping (Lee et al., 2010; Michaelides et al., 2013), although at the 

likely expense of translational relevance in the context of therapeutic clinical DBS.

 

3.5 Conclusions 
 

This study implemented a simultaneous DBS-fMRI approach to investigate the functional 

connectivity of the SNr and GPe, the two major striatal output nuclei. Through their roles in the 

basal ganglia loops, these regions have a diverse number of functional roles in cognition, motor 

control, and emotional processing. As demonstrated here and elsewhere, DBS-fMRI provides a 

global perspective of a brain region’s functional connectivity profile, ultimately allowing for the 

identification and characterization of novel circuit connections. In the present work we 

identified, among other results, DBS-evoked negative fMRI signals in the bilateral striatum, as 

well as frequency-dependent, large-scale functional connectivity changes. Broadly, our work 

contributes to a growing literature demonstrating functional connectivity of the striatal outputs 
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outside of canonical thalamic relay connections. Further, the inclusion of high frequency 

stimulation in our DBS experiments facilitates a translational perspective on our connectivity 

maps, as high frequency DBS at the SNr or GPe has demonstrated therapeutic benefits in 

neurological disorders such as Parkinson’s Disease.  

 

 

3.6 Original contributions 
 

The work presented in this chapter resulted in a number of international conference 

contributions (see [12-13] in list of conference contributions). The results of this study were 

submitted to the peer-reviewed A1 journal NeuroImage (see [3] in list of publications) (shared 

first author). Dan Albaugh and the author of this section both equally contributed to this study. 

Data-analysis of the functional connectivity data was performed in collaboration with Andrew 

Salzwesel. 
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3.7 Supplementary figures 

 

 

 

 

 

 

 

 

 

 

 
Supplementary Figure 3.1: Representative raw EPI images from averaged SNr-DBS scans (130Hz). Additional 

details regarding these images is located in the Fig. 3.3 caption. 
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Supplementary Figure 3.2: Functional activation maps of CBV modulation by 10/70/200/400Hz of (A) SNr-DBS and 

(B) GPe-DBS. The maps represent a mean of 5 and 7 subjects, for SNr and GPe respectively. Coordinates (in mm) 

reflect approximate anteroposterior slice positioning relative to bregma. 
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Supplementary Figure 3.3: SNr-DBS evoked CBV changes at select, anatomically-defined regions of interest for all 

frequencies (temporal trace CBV dynamics and percent change amplitudes measured during stimulation period). 

Continuation of Fig. 7.4 displaying additional ROIs: (A) Cingulate (B) Motor cortex (C) Prelimbic cortex (D) 

Pedunculopontine nucleus (E) Ventrolateral thalamus (F) Infralimbic cortex (G) Zona incerta (H) Orbitofrontal 

cortex (I) Ventral tegmental area (J) Nucleus accumbens (K) Superior colliculus (L) Ipsilateral dorsomedial striatum 

(M) Contralateral dorsomedial striatum. 

 

 

  

Supplementary Figure 3.4: GPe-DBS evoked CBV changes at select, anatomically-defined regions of interest for 

all frequencies (temporal trace CBV dynamics and percent change amplitudes measured during stimulation period). 

Continuation of Fig. 7.4 displaying additional ROIs: (A) Cingulate (B) Motor cortex (C) Posterior Hypothalamus (D) 

Pedunculopontine nucleus (E) Ventrolateral thalamus (F) Infralimbic cortex (G) Zona incerta (H) Orbitofrontal 

cortex (I) Ventral tegmental area (J) Nucleus accumbens (K) Superior colliculus (L) Ipsilateral dorsomedial striatum 

(M) Contralateral dorsomedial striatum. 
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Supplementary Figure 3.5: Network-level visualization pair-wise fcMRI modulations during130Hz (A) SNr-DBS 

and (B) GPe-DBS. Significant (rANOVA, p < 0.01 uncorrected, ΔZ-Corr > 0.10) enhanced (red) or suppressed (blue) 

individual pair-wise connections grouped by canonical networks (Sensorimotor, Executive, Limbic, and Between 

Network Connections). Thick red lines represent ΔZ-Corr  > 0.20. 
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Chapter 4 
 

Functional Circuit Mapping of the 

Globus Pallidus externa using 

Simultaneous Opto-fMRI  
 

 

4.1  Introduction 
 

As explained in chapter 1, deep brain stimulation (DBS) is a widely accepted treatment for 

advanced Parkinson’s disease (PD) (Okun et al., 2012; Bronstein et al., 2011). The subthalamic 

nucleus (STN) and the globus pallidus interna (GPi) are usually targeted in PD patients, because 

they appeared to work best in the previously used surgical treatment. Unlike the lesion-based 

approaches that earlier predominated surgical therapy, DBS is advantageous for its reversibility 

and the capacity to modulate stimulation parameters (active contacts, voltage, frequency, pulse 

width) (Benabid et al., 1991; Kuncel and Grill, 2004). The latter trait is particularly important 

for optimizing the therapeutic benefits of DBS while reducing stimulation-related side effects 

(McIntyre et al., 2004). Despite widespread clinical use, the therapeutic mechanisms of DBS are 

poorly understood. A better understanding of the neuronal networks modulated by DBS at new 

potential targets, is therefore required to improve treatment efficacy.  
 

PD causes a progressive loss of inhibitory dopamine-producing cells within the basal ganglia, 

consequently inducing abnormalities in the spontaneous activity and sensorimotor responses of 

basal ganglia nuclei (Betchen and Kaplitt, 2003; Lozano et al., 2002; Marsden, 1984). This 

results in a rewiring of the basal ganglia in PD subjects (Lang and Lozano, 1998). Evidence 

exists that changes in striatal GABAergic microcircuits contribute to basal ganglia dysfunction 

in several movement disorders such as PD. These inhibitory interneurons could potentially be a 

therapeutic DBS target, since they are genetically and neurochemically distinct from striatal 

projection neurons (Gittis and Kreizer, 2012). Therefore, the Globus Pallidus externa (GPe), a 

GABAergic striatal output nuclei, is currently being explored as a potential non-canonical DBS 

target for PD (Angeli et al., 2005; Vitek et al., 2012). A contrasting effect on PD symptoms has 

been previously suggested depending on DBS being applied in GPi or GPe, with akinesia and 

gait being improved by GPe DBS even though with worsening of dyskinesia, while ventral GPi 

DBS improves dyskinesias but may worsen akinesia and gait (Angeli et al., 2005). Vitek et al. 

also showed that DBS of the GPe is associated with improvements in parkinsonian motor signs
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Their data provided additional evidence that the GPe might be a potential therapeutic target for 

DBS in PD patients, and that DBS modulates GPe output in order to normalize the on-going 

pathologic neuronal activity within the basal ganglia. However, the mechanisms responsible for 

this therapeutic effect remain to be elucidated, and the beneficial effects of GPe-DBS need 

further investigation. Of particular clinical interest are the circuits modulated by GPe-DBS, as 

these may provide critical information about the underlying mechanisms for both therapeutic 

and off-target effects.  
 

Whole-brain mapping of DBS-induced circuit modulation can be achieved using functional 

magnetic resonance imaging (fMRI). The key strengths to fMRI-based studies of DBS include 

the ability to detect dynamic changes in stimulus-evoked activity and connectivity, in vivo, 

across the whole brain with reasonably high spatiotemporal resolution. Previous attempts have 

used fMRI to study DBS effects in clinical populations (Figee et al., 2013; Jech et al., 2001), 

although its use is strongly limited by appropriate safety considerations (largely related to 

dangers associated with the introduction of DBS equipment to the MR environment) (Nazzaro 

et al., 2010; Tagliati et al., 2009; Chhabra et al., 2010). Animal models of DBS can be 

employed with simultaneous fMRI under more flexible experimental conditions, allowing for 

thorough mapping of DBS effects (Van Den Berge et al., 2015; Younce et al., 2014; Knight et 

al., 2013). Moreover, electrodes may be chosen with more MR-compatible materials (Lai et al., 

2015), minimizing susceptibility artifacts that could otherwise preclude visualization of DBS 

effects in the area surrounding the electrode. 
 

Preclinical DBS studies also allow for the experimental introduction of optogenetic tools, which 

provide superior neural circuit stimulation specificity compared to electrical DBS (Fiala et al., 

2010; Yizhar et al., 2011). Specifically, in addition to modulation of neuronal populations 

proximal to the electrode, electrical DBS can also recruit nonreciprocal afferent inputs (via 

antidromic signal propagation), as well as neighboring fibers of passage. In contrast, 

optogenetic stimulation is generally confined to only the opsin-expressing cells and their 

efferent outputs. Because of this added specificity for neural modulation, optogenetic tools have 

been employed to inform potential circuit mechanisms of DBS therapy in preclinical models 

(Creed et al., 2015; Gradinaru et al., 2009). Additionally, when using simultaneous fMRI 

measurements, the artifact of the optic fiber is considerably smaller compared to the artifact of 

the metal DBS-electrode used in electrical stimulation, hereby increasing the quality of the MR 

images substantially. 
 

There is also substantial interest and discussion related to the future use of optogenetic tools for 

refined, next-generation clinical DBS (LaLumiere, 2011; McDevitt et al., 2014; Williams et al., 

2013). The rationale for this discussion relates to the presumptive ability of optogenetic 

stimulation to achieve therapeutic efficacy with a reduced side-effect profile from “off target” 

circuit recruitment. On the other hand, DBS is popularly suggested to exert its therapeutic 

effects via large-scale network modulation (van Westen et al., 2015; Deniau et al., 2010). 

However, little is known regarding the extent to which optogenetic stimulation mirrors the 

circuit-level responses achieved with electrical DBS.  
 

Therefore, in the present study, we aimed to investigate the functional circuit response profile 

obtained by optogenetic stimulation of the GPe, measured with fMRI, in a healthy and PD rat 

model. The simultaneous employment of optogenetics and fMRI is further referred to as opto-

fMRI, a technique that is currently being used to investigate DBS in preclinical studies 

(Detorakis et al., 2015; Creed et al., 2015; Gradinaru et al., 2009; Yizhar et al., 2011).  For a 

rodent model of PD, we will use the unilateral 6-hydroxydopamine (6-OHDA) lesion model, 
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attractive due to its ease-of-use, robust motor deficits, and consistently demonstrated sensitivity 

to parkinsonian therapeutics, including DBS (So et al., 2012; McConnel et al., 2012; Iancu et 

al., 2005; Yuan et al., 2005). 6-OHDA is a hydroxylated analog of dopamine, and when injected 

into the medial forebrain bundle, 6-OHDA rapidly lesions the nigrostriatal pathway. Such 

lesioning induces degeneration of striatal terminals, consequently destructing dopaminergic-

producing cells in the striatum (Tieu, 2011; Sarre et al., 2004).  
 

Electrical stimulation of the GPe resulted in widespread modulation of evoked- and fcMRI 

signals (see chapter 3). Notable findings from our evoked-fMRI dataset include robust CBV 

increases of the ipsilateral prefrontal cortex, as well as bidirectional, stimulation frequency-

dependent modulation of striatal CBV signals (negative at 10Hz, positive at 70Hz and above). 

fcMRI provided evidence of robust, frequency-dependent global network modulation by 

electrical GPe stimulation, with more robust network changes observed with 130Hz compared 

to 40Hz stimulation. Compared to electrical stimulation, optogenetic stimulation at 40Hz 

resulted in a more spatially restricted pattern of modulation, with prominent CBV increases 

locally within the GPe, and CBV decreases in the neighboring dorsal striatum. Surprisingly, in 

Parkinsonian rats, optogenetically-evoked striatal vasoconstriction downstream was 

substantially reduced. Moreover, a unique prefrontal negative CBV signal emerged during GPe 

stimulation in these subjects.  

 

 

4.2 Materials & Methods 
 

4.2.1 Animals 

 

Twelve adult male Sprague-Dawley rats (300–500g body weight; Charles River Laboratories, 

Wilmington, MA, USA) were used in this study. All procedures were performed in accordance 

with the National Institutes of Health Guidelines for Animal Research (Guide for the Care and 

Use of Laboratory Animals) and approved by the University of North Carolina Institutional 

Animal Care and Use Committee. Animals were housed under environmentally-controlled 

conditions (12h normal light/dark cycles, 20-23°C and 40-60% relative humidity), with food 

and water provided ad libitum. 

 

 

4.2.2  Optogenetic constructs 

 

For optogenetic experiments (see paragraph 4.2.4), neuronal opsin expression was achieved 

using adeno-associated viral vectors (AAV, serotype 5), encoding either a humanized variant of 

ChannelRhodopsin-2 (hChR2; H134R) fused to an enhanced yellow fluorescent protein 

(EYFP), or EYFP alone.  Both constructs were placed under the human Synapsin (hSyn) 

promoter to target GPe neurons. All viruses were obtained from the Vector Core at the 

University of North Carolina at Chapel Hill. 

 

 

4.2.3  Surgery 

 

For all surgical procedures, rats were endotracheally intubated and mechanically ventilated 

using a small animal ventilator (CWE Inc., SAR-830/PA, Ardmore, PA). Anesthesia was 

maintained under a constant flow of 2% isoflurane mixed with medical air, and physiological 
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parameters were continuously monitored and maintained within normal ranges using 

capnometry (Surgivet, Smith Medical, Waukesha, WI) and pulse oximetry (MouseOx Plus, 

STARR Life Science Corp., Oakmont, PA). Animals were head-fixed to a stereotactic frame 

(Kopf Instruments, Model 962, Tujunga, CA). Following head shaving and exposure of the 

skull, five small burr holes were drilled: four for the positioning of MR-compatible miniature 

brass screws (Item #94070A031, McMaster Carr, Atlanta, GA, USA), and one for the injection 

of the vector and the insertion of the custom-made optical fiber. In 5/12 rats an extra burr hole 

was drilled for the unilateral microinjection of 5μl of 6-OHDA (3μg/μl 6-OHDA dissolved in 

saline containing 0.02% ascorbic acid as antioxidants), targeting the medial forebrain bundle 

(MFB). Stereotactic injection coordinates were generated using a standard rat brain atlas 

(Paxinos&Watson, 2007), and are described as follows, in reference to bregma (anteroposterior, 

AP; mediolateral, ML) and cortical surface (dorsoventral, DV): AP -4.5mm, ML +1.4mm, DV -

8mm). Injections were carried out at a rate of 0.5μl/min and a volume of 5μl was injected using 

a 10μl Hamilton microsyringe. The needle was left at the injected sites for 10min before being 

withdrawn. Degeneration of dopaminergic neurons takes place within 12h preceding a 

significant loss of striatal terminals, which occurs 2-3days later. Two weeks after injection the 

animals exhibited robust PD behavior. Already 2-3days after injection, all rats showed initial 

signs of PD, namely all rats turned to the right when lifting the animal up at its tail, due to the 

lesion in the right hemisphere, confirming successful hemiparkinsonism in all five rats. 
 

For optogenetics, viral microinjections were targeted to the GPe, with the same stereotactic 

coordinates used for electrode implantations in the previous study (see chapter 7), namely AP -

0.96mm, ML +2.8mm, DV -5.8mm (Paxinos&Watson, 2007). Injections were administered as 

2μl volumes at a flow rate of 0.2μl/min, with a total infusion time of 10min. An additional 10 

minutes was given for virus diffusion prior to slow retraction of the microsyringe needle. 

Chronically implantable optic fibers were placed 0.5mm above virus injection sites (see Fig. 

4.1C). The optical fibers were custom-made according to the construction protocol for 

implantable optical fibers for long-term optogenetic manipulation of neural circuits, established 

by Sparta et al. (Sparta et al., 2012). At least three weeks were given before opto-fMRI 

experiments where undertaken, to allow for sufficient virus expression. 

 

 

4.2.4 Optogenetic stimulation 

 

For optogenetic stimulation of the GPe (n=10 for ChR2; n=2 for EYFP control), a 473nm 

wavelength diode-pumped solid-state (DPSS) laser (model BL473T8-200, Shanghai Laser & 

Optics Century, Shanghai, China) was connected via a coupler to a homemade patch cable 

terminating above the chronically implanted optic fibers. Wavelength-specific light output at the 

terminating end of the patch cable was calibrated to 20mW using a wattage meter. Optogenetic 

stimulation periods consisted of a series of TTL-triggered light pulses with a stimulation 

frequency of 10, 20 and 40Hz, and pulse duration of 10ms. A 100 seconds block design 

paradigm was implemented, consisting of 20 seconds of rest (stimulation OFF) followed by two 

10 seconds stimulation periods (stimulation ON), with intervening and final rest periods of 30 

seconds (i.e. 20sOFF-10sON-30sOFF-10sON-30sOFF) (see Fig. 4.1D).   
 

A recent study has demonstrated hemodynamic changes following blue light laser stimulation 

(50% duty cycle) in naïve rat brain, possibly due to a laser heating artifact (Christie et al., 

2012). To exclude the possibility of such an artifact as the source of the observed optogenetic 
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response, an identical stimulation paradigm was employed in two rats expressing an inert EYFP 

fluorophore in the GPe.  

 

  

 

 

 

 

 

 

 

 

 

Figure 4.1: Experimental protocol: (A) Schematic of experimental imaging setup with homemade surface loop coil 

and optical fiber. (B) Schematic of 6-OHDA injection in the medial forebrain bundle (MFB). (C) Schematic of GPe-

opto, representative confocal image illustrating ChR2 expression in the GPe (green). (D) Stimulation paradigm.  
 

 

 

4.2.5  Data acquisition 
 

The preparation for the fMRI procedures and the CBV fMRI data acquisition itself were 

performed identical as described in the previous study (see paragraph 3.2.3.1), with the only 

difference fewer scans were acquired since only three different frequencies were evaluated (i.e. 

10/20/40Hz). The set-up of the coil and the optical fiber is shown in Fig. 4.1A. 
 

Similar to the DBS experiments described in the previous chapter, optic fiber placements above 

the GPe virus injection site were visualized using the anatomical MR image. Optic fiber 

placements within the GPe were confirmed for each rat. As opposed to the DBS-electrode, optic 

fibers are characterized by a smaller artifact on the fMRI images (see Fig. 4.2). 

 

 

 

 

 

 

 

 

Figure 4.2: Representation of the fiber artifact on (A) an axial slice of an anatomical MR-image at height of the fiber 

and on (B) five axial slices of a functional MR-image (same rat as in (A)). The artifact is indicated with a white 

arrow. 

 

 

4.2.6 Histology 
 

Following scan procedures, rats were deeply anesthetized with 1-2ml Euthasol and 

transcardially perfused with saline followed by 10% formalin. Extracted brains were stored 

overnight in 10% formalin and transferred to a 30% sucrose solution (in DI water) for 2-3 days, 

until brains sunk to bottom of storage bottles. Brains were cut to 40 μm thick sections on a 

freezing microtome and mounted on glass slides for fluorescent imaging. Vectashield mounting 

medium with DAPI stain (Vector laboratories, Item # H-1200) was used to provide a cell body 

counterstain. Slides were imaged using a Zeiss 780 confocal microscope to verify the 

transfected area. A representative example of virally-mediated ChR2 expression in GPe neurons 

is provided in Fig. 4.1C. The expressions of tyrosine hydroxylase (TH) were examined by 
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immunofluorescence to verify the degree of induced hemiparkinsonism. A large number of cells 

estimated by TH-staining indicates successful induction of hemiparkinsonianism in all five rats. 

A representative example is shown in Fig. 4.3.  

 

 

 

Figure 4.3: Representative image confirming dopamine loss in the striatum, 

ipsilateral to the injection site.  

 

 

 

 

4.2.7   Data-analysis 
 

Data-analysis was performed identically as described in the previous study (see paragraph 

3.2.5.1). 

 

 

4.3 Results 
 

Our study was able to demonstrate circuit-level effects of neural modulation by optogenetic 

stimulation of the GPe in healthy and Parkinsonian rats. Optogenetic stimulation of the GPe 

with a 40Hz stimulation frequency produced a significant positive CBV response in the GPe 

and a negative CBV response in the striatum, only ipsilateral, in both healthy and Parkinsonian 

rats. The response maps for healthy and Parkinsonian rat are shown in Fig. 4.4A and Fig. 4.4B 

respectively. Response maps for other frequencies (i.e. 10 and 20Hz) are shown in Fig. 4.5 for 

both groups.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Mean functional response maps of CBV modulation by 40Hz GPe-opto in (A) healthy (n=5) and (B) 

Parkinsonian (n=5) rats expressing ChR2, and (C) control rats, expressing EYFP only (n=2). Coordinates (in mm) 

reflect approximate anteroposterior slice positioning relative to bregma. 

C: Healthy – EYFP 

B: 6-OHDA – ChR2 A: Healthy – ChR2 

C: Healthy – EYFP 
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Figure 4.5: Mean functional response maps of CBV modulation by 10Hz and 20Hz GPe-opto in (A) healthy (n=5) 

and (B) Parkinsonian (n=5) rats. Coordinates (in mm) reflect approximate anteroposterior slice positioning relative to 

bregma.  

 

Our data demonstrates distinct differences in the response maps between healthy and PD rats, 

we observe a (1) enhanced CBV-response in the GPe, (2) reduced CBV-response in the 

striatum, (3) a negative prefrontal response, in the PD rats compared to the healthy rats.  
 

The temporal profile in the ipsilateral GPe shows an increase of 2.11±0.72% in the mean 

amplitude of the CBV-response at 40Hz in PD rats, and the temporal profile in the ipsilateral 

dorsolateral striatum shows a decrease of 2.08±0.23% in the mean amplitude of the CBV-

response at 40Hz in PD rats, as opposed to healthy rats. Besides the differences in intensity of 

the CBV-response, we also observe distinct differences in the spatial extent of the CBV-

responses in the GPe and the striatum, namely a wider and smaller CBV-response in the GPe 

and striatum, respectively, in the PD rats. Temporal profiles and complementing statistics of six 

regions of interest are displayed in Fig. 4.6. Note that, when comparing the temporal profile and 

the functional response map at the GPe, the temporal profile shown in Fig. 4.6 is most likely an 

underestimation of the actual CBV response at the GPe. This is probably because the actual 

response does not entirely overlap with the a priori drawn ROI, which was based on the 

location of the GPe in the rat brain atlas. 
 

Since we did not intentionally close the eyes during the acquisition, responses to the light were 

observed in the rat superior colliculus and the lateral geniculate nucleus (LGN) in all groups. 

The responses in these relay nuclei of the visual system are located in the most posterior three 

slices of the shown response maps. This visual response is induced by the light-pulses that are 

sent during the optogenetic stimulation, and are therefore unrelated to the effect of optogenetic 

stimulation of the GPe. Note that the response in the superior colliculus and LGN increases with 

decreasing stimulation frequency (Fig. 4.5). Because the rodent visual system, like humans, 

cannot process high frequency inputs, responses are better at lower frequencies (<10Hz).  
 

To exclude the possibility of a laser-induced heating artifact as the source of the observed 

optogenetic response, an identical stimulation paradigm was employed in rats expressing an 

inert EYFP fluorophore in the GPe. In these animals, no significant CBV modulation by 

optogenetic stimulation of the GPe was observed (Fig. 4.4C), except for in the superior 

colliculus. It is worth noting that our laser pulse duration was substantially shorter than that 

previously reported to induce heating artifacts, likely explaining the absence of such a response 

during laser stimulation in GPe-EYFP subjects. Thus, we can conclude that all CBV-responses 

observed in the healthy and PD groups are due to the optogenetic stimulation itself and not due 

to any laser heating effects. 

Healthy 

 

 
 

 

 

 

6-OHDA 
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Figure 4.6: Temporal dynamics and amplitudes (bar graphs) of CBV responses by GPe-opto at 40Hz in healthy 

(red), Parkinsonian (blue) and control (brown) rats. All CBV responses are expressed as a percent change from pre-

stimulation baseline values. Anatomically-defined ROIs are highlighted as figure inserts (single slice shown; note 

that many ROIs encompassed multiple slices). *p≤0.05 for controls compared to healthy and Parkinsonian rats (no 

other statistically significant comparisons).   

 

 

For investigation of the frequency-dependency, timecourses (averaged across subjects) at 3 

different stimulation frequencies were calculated (i.e. ΔR2*). Quantitative comparisons of 

frequency-dependent CBV modulation by optogenetic stimulation of the GPe are shown in Fig. 

4.7 for healthy and PD rats, respectively. Frequency-dependency is similar between groups. 

Interestingly, the duration to peak CBV amplitude varied in a regions-specific manner. In 

general, optogenetics induced sharp decreases in CBV that returned to baseline values by the 

end of the stimulus ON period, and induced slow increases in CBV that returned to baseline 

values close to the end of the stimulus OFF period (i.e. 20s recovery period). Post-hoc testing 

revealed that 20 and 40Hz frequencies of optogenetic stimulation significantly altered CBV in 

the striatum, with a significant frequency-dependency in healthy rats. In PD rats, we did not 

observe a frequency-dependency in the striatum. CBV-responses in the GPe were frequency-

insensitive for 20-40Hz, but significantly different from 10Hz, in both groups. 
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Figure 4.7: Temporal dynamics of CBV responses by GPe-opto in healthy (left) and Parkinsonian (right) for all 

frequencies. All CBV responses are expressed as a percent change from pre-stimulation baseline values. 

Anatomically-defined ROIs are highlighted as figure inserts (single slice shown; note that many ROIs encompassed 

multiple slices).  

 

 

 

4.4 Discussion 
 

In the previous study, we investigated the effect of electrical stimulation of the GPe, a potential 

target for DBS in PD. In this study, we performed opto-fMRI with selective stimulation of GPe 

neurons in healthy and Parkinsonian rats to investigate the downstream GPe-DBS response 

more in detail, since electrical stimulation is likely to have diffuse, off-target effects. Comparing 

electrical and optogenetic stimulation, we find distinct differences in the response maps, 

confirming fundamental differences between both stimulation approaches. Comparing healthy 

and Parkinsonian subjects, our data demonstrates: (1) enhanced CBV-response in the GPe, (2), 

reduced CBV-response in the striatum, and (3) negative prefrontal CBV-response, in PD rats, as 

opposed to healthy rats. 

 

4.4.1 Optogenetics vs. electrical stimulation 
 

In addition to electrical stimulation, optogenetic tools are being increasingly exploited for 

mapping functional connectivity among neural circuits. Several studies have also employed 

optogenetic stimulation to elucidate potential mechanisms of therapeutic DBS action at several 

targets (Gradinaru et al., 2009; Tye and Deisseroth, 2012; Luthi and Luscher, 2014; Creed et al., 

2015). Thus, we were interested in qualitatively evaluating the functional circuit response 

profile obtained by optogenetic stimulation of the GPe. 
 

Our comparison of evoked fMRI responses during electrical or optogenetic stimulation of the 

GPe revealed a greater capacity of electrical stimulation to modulate diverse and long-range 

neural circuits. In contrast, optogenetic stimulation of the GPe evoked CBV increases only 

within the local target region and the ipsilateral striatum.  The comparison of both is shown in 

Fig. 4.8.  
 

The main difference is the lack of a large positive CBV-response in prefrontal and motor 

cortices. The reason for these large differences in circuit modulation patterns between 

optogenetic and electrical stimulation is unclear, although several possibilities exist. First, it 

may simply be that GPe-opto was too weak to recruit detectable distal responses. However, we 

did get a large negative response in an extra-target area, namely the striatum. And, we observed 

CBV-responses in the prefrontal cortex in PD animals, confirming the ability of our 

optogenetics protocol to recruit downstream structures.  
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Figure 4.8: Above: Functional activation maps of CBV modulation by (A) 40Hz GPe-opto and (C) 40Hz GPe-DBS 

in healthy rats. Below: temporal dynamics of CBV responses by (B) GPe-opto and (D) GPe-DBS in healthy rats, 

across stimulation frequencies. All CBV responses are expressed as a percent change from pre-stimulation baseline 

values. Anatomically-defined ROIs are highlighted as figure inserts (single slice shown; note that many ROIs 

encompassed multiple slices).   
 

 

A second possibility concerns more fundamental differences between these stimulation 

approaches. Specifically, while electrical stimulation may recruit all neural circuit elements 

within the target region (including afferent and passing fibers), optogenetic stimulation is 

generally confined to the opsin-expressing neurons and their efferent fibers. Thus, it is possible 

that extra-target areas modulated by DBS are downstream of passing fiber recruitment and 

antidromically-stimulated target afferents. However, such off-target effects might be important 

for therapeutic DBS. Gradinaru and colleagues compared the therapeutic efficacy of electrical 

and optogenetic high frequency stimulation of the STN in hemiparkinsonian rats (Gradinaru et 

al., 2009). They reported that optogenetic stimulation was unable to effectively reduce the 

motor symptoms, as opposed to electrical stimulation that was characterized by successful 

motor recovery.  In addition, optical stimulation of motor cortical afferents to the STN, or motor 

cortex directly, has been shown to reduce pathological turning behavior in PD models. These 

findings support the hypothesis that antidromic stimulation effects may contribute to the 

therapeutic efficacy of DBS in motor disorders (Li et al., 2012; Dejean et al., 2009; Grill et al., 

2008). Similarly, the GPe is the source of several non-reciprocal inputs that may be 

antidromically-driven by DBS, and modulation of these “upstream” areas may be 

therapeutically relevant.  
 

Next, we explain why electrical stimulation of the GPe can influence upstream areas in addition 

to downstream areas. The GPe has two major reciprocal connections, namely with (1) the STN 

(and adjacent lateral hypothalamic area) (DeVito and Anderson, 1982; Harnois and Fillion, 

1982; Kim et al., 1976; Kuo and Carpenter, 1973) and with (2) the striatum. Within the 

subthalamo-pallidal system, the GPe sends inhibitory input to the STN, and the STN sends in 

turn excitatory input to the GPe. Within the pallido-striatal system, the striatum sends inhibitory 

input to the GPe, and the GPe sends inhibitory input back to the striatum. Like in the pallido-

striatal system, distinct regions of the STN may influence wider pallidal regions than it receives 

input from (Gittis et al., 2014; Parent and Hazrati, 1993; Smith et al., 1998). In other words, 

A 

B D 
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while downstream projections from the various striatal regions are generally conducted via 

separate trajectories from the striatum to the GPe and from the GPe to the STN, such separation 

is apparently not strictly maintained in the upstream projections from the STN to the GPe and 

from the GPe to the striatum. Thus, separation of circuits is maintained downstream (i.e. the 

striato-pallido-subthalamic direction) but not upstream (i.e. the subthalamic-pallido-striatal 

direction). Consequently, a small substructure of the STN can influence greater parts of the 

striatum along upstream trajectories. 
 

In addition, Mallet et al. recently discovered GABAergic projections from the GPe to striatal 

projection neurons and interneurons. This means there are two types of GABAergic neurons 

present in the GPe with distinct temporal, structural, physiological and molecular profiles. 

About two third of the GPe neurons are parvalbumin-expressing neurons that fire antiphase to 

the STN, and about one third of arkypallidal-expressing neurons fire in-phase with the STN, 

targeting the STN and the striatum, respectively. These recently identified arkypallidal-

expressing neurons present the largest complement of external GABAergic projections to the 

striatum. The authors conclude that this newly identified bi-fold organization with distinct 

properties within GPe is fundamental to normal dopamine-intact GPe functioning. Further 

research is necessary to determine the therapeutic properties of these projection neurons in the 

context of GPe-DBS (Abdi et al., 2015; Mallet et al., 2012). 
 

The attentive reader might have noticed the high degree of similarity between the activated 

networks induced by 40Hz of SNr-DBS (see Fig. 3.3 in chapter 3) and 40Hz of GPe-opto. The 

main similarity is the lack of the large positive prefrontal cortical response in the SNr-DBS 

group (and GPe-opto group) compared to the GPe-DBS group. This phenomenon might be 

explained by two mechanisms, namely the recently reported direct GABAergic GPe-FC 

projections (Saunders et al., 2015) and the passing fibers from the Internal Capsule (IC). The IC 

is a large white matter structure with fibers going to and coming from the cerebral cortex, and 

lies in close proximity to the targeted area within the GPe. In contrast, no direct SNr-FC 

projections have been reported and the passing fibers from the Cerebral Penduncle (CP), a white 

matter structure that lies next to the SNr, is much smaller than the IC and is further located form 

the area we targeted within the SNr. Taken, together this might explain the lack of prefrontal 

cortical response in the GPe-opto group as well as in the SNr-DBS group. 
 

Note that optogenetics has a lower temporal spasticity compared to deep brain stimulation, 

meaning optogenetic stimulation is characterized by a much smaller volume of tissue activated 

(VTA). The irradiance in brain tissue during optogenetic stimulation can be calculated using 

Deisseroth’s model for irradiance (Yizhar et al., 2009). The model is based on direct 

measurements in mammalian brain tissue and on a mathematical model of light propagation in 

brain tissue taking into account light absorption, scattering and geometric dispersion. For our 

experimental set-up (i.e. 473nm wavelength, 16mW power from fiber tip), 0.065mm fiber core 

radius, 0.22 fiber numerical aperture) the irradiance value is about 0.8mW/mm2 at 0.125mm 

from the fiber tip and 0.2W/mm2 at 0.5mm from the fiber tip. Thus, we could conclude that the 

optogenetic stimulation activates about 0.125mm2 volume of tissue, as opposed to the estimated 

1 mm2 of VTA in the electrical stimulation (with 0mm distance between poles). Note that the 

heating effect (which can cause undesirable differences in membrane potential and spontaneous 

spiking) at 473nm might expand over a larger volume of tissue than the VTA, however we used 

a small pulse width with low duty cycle to reduce the risk. Moreover we did not observe any 

heating effects in the opsin-negative control animals. 
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4.4.2 Healthy vs. Parkinsonian subjects 
 

As explained in section 1.2, it is well known that beta-oscillations under dopamine depletion 

become synchronized in the STN and GPe, which are strongly correlated to PD motor issues. In 

addition, studies have indicated that the direct and indirect pathways modify after dopamine 

depletion due to rewiring of the basal ganglia. Comparing healthy and Parkinsonian subjects, 

we find distinct differences in the response maps, confirming the rewiring of the basal ganglia 

associated with PD. As shown in Fig. 4.9, our data demonstrates: (1) enhanced CBV-response 

in the GPe, (2), reduced CBV-response in the striatum, and (3) negative prefrontal CBV-

response, in PD rats, as opposed to healthy rats. These three effects are discussed below. 

 

 

 

 

 
 

 

Figure 4.9: Comparison of mean functional response maps of CBV modulation by 40Hz GPe-opto in (A) healthy 

(n=5) and (B) Parkinsonian (n=5) rats, in three axial slices, demonstrating the three main differences in PD subjects: 

bottom slice: enhanced CBV in the GPe; middle slice: reduced CBV in the striatum; top slice: negative CBV in the 

prefrontal cortex. 
 

4.4.2.1  Enhanced positive CBV-response in the GPe 
 

Dopamine depletion has long been known to alter striatal circuit connectivity. One striking 

example of such a connectivity change reported, were the alterations in striatal feedforward 

inhibition (Gittis et al., 2011). Specifically, fast spiking interneurons (i.e. the major drivers of 

feedforward inhibition in the striatum) preferentially target direct pathway neurons under 

normal conditions. Following dopamine depletion, innervation patterns of these interneurons 

change dramatically, with enhanced, preferential input to indirect pathway neurons (see Fig. 

4.10) (Kravitz et al., 2010; Albin et al., 1989; DeLong, 1990). This finding suggests the 

possibility that the indirect pathway is enhanced in response to dopamine lesioning, possibly as 

a compensatory mechanism for reduced direct striatonigral output, caused by the injection of 6-

OHDA. Downstream of the striatum in the GPe, dopamine loss has also been shown to alter 

circuit connectivity (Mallet et al., 2012; Abdi et al., 2015). For example, pallido-subthalamic 

neurons show decreased firing rates, while pallido-striatal neurons show more tightly-coupled 

firing rates (Abdi et al., 2015). This data may similarly be explained by enhanced striato-

pallidal output, although this remains to be tested. 

 

 

 

 

 

 

 

 

 

Figure 4.10: Innervation pattern of interneurons in (A) a normal situation (without dopamine depletion), and in (B) a 

PD situation (with dopamine depletion). Abbreviations: FSI: fast-spiking interneuron; iSPN: indirect pathway 

neurons; dSPN: direct pathway neurons; PLTS: persistent low-threshold spiking interneurons  (Figure adopted from 

Gittis and Kreizer, 2012). 
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Our study confirms the above described circuit changes in the indirect pathway by dopamine 

loss. We hypothesize that striato-pallidal drive is enhanced in PD animals. Thus, the efficacy of 

the indirect pathway in the Parkinsonian state is enhanced, hereby “boosting” GABA-ergic 

projections to the GPe. Consequently, the reduced basal activity in the Parkinsonian state might 

lead to stronger CBV responses in PD rats.  

 

4.4.2.2  Reduced negative striatal CBV-response 
 

The origin of the negative fMRI signal remains to be elucidated, nonetheless, three theoretical 

mechanisms have been proposed to account for the fMRI signal decreases: (1) active neuronal 

suppression; (2) vascular steal; and (3) depleted local oxygen levels. See section 2.1.3.4 for a 

more detailed explanation. The active suppression hypothesis is supported by many showing 

that some cortical regions can exhibit a negative BOLD response linked to activation in the 

opposite hemisphere (Tootell et al., 1998, Shmuel et al., 2002). Although it may be intuitive to 

interpret our data as stimulus-induced striatal inhibition, the situation appears to be particularly 

muddled in the striatum, wherein dopaminergic neurotransmission has been hypothesized to 

induce vasoconstriction independent of direct activity changes within striatal neurons (Hsu et 

al., 2014). Since the injection of 6-OHDA causes dopamine depletion, this neurotransmitter-

mediated vasoconstriction could be reduced in PD rats, consequently leading to a reduced 

negative striatal response in PD animals, as opposed to healthy animals. In addition, striatal 

CBV decreases have previously been correlated with heightened local neuronal activity (Shih et 

al., 2009) or uncorrelated with neuronal activity at all (Shih et al., 2014). In light of these 

complexities, further work will be necessary to determine the true source of striatal CBV 

decreases evoked during optogenetic stimulation, and to determine whether the differences 

between healthy and PD subjects are due to the loss of dopamine. 

 

4.4.2.3  Negative prefrontal CBV-response 
 

It has long been known that the basal ganglia interact closely with the frontal cortex (Alexander 

et al., 1986) and that damage to the basal ganglia can produce many of the same motor or 

cognitive impairments as damage to the frontal cortex (Brown et al., 1997; Middleton & Strick, 

2000). It has been hypothesized that the basal ganglia modulates the prefrontal cortex indirectly 

through the thalamus, which is regulated by the inhibitory indirect and direct pathway of the 

striatum (Kravitz et al., 2010; Freeze et al., 2013). But recently, direct interactions between the 

GPe and the prefrontal cortex (PFC) have been demonstrated that this projection is made up of 

GABAergic and cholinergic neurons (based on electrophysiological recordings). Additionally 

the authors stated that inhibition of this GPe–PFC projection is sensitive to dopamine (D2) 

receptor signaling. Therefore, this pathway opens new possibilities for pharmacological 

treatment of neuropsychiatric disorders, where drugs target dopamine receptors in the basal 

ganglia in order to modulate frontal cortices (Saunders et al., 2015). Our GPe-opto data could be 

explained by the presence of this direct interaction between the GPe and the PFC. Alternatively, 

downstream effects of other circuits might also contribute to the GPe response. However, 

unexpectedly, our data demonstrates negative CBV-responses in all Parkinsonian rats, but no 

CBV-responses at all in all healthy rats. It is unclear why we only see a detectable response in 

PFC structures in Parkinsonian rats, and not in healthy rats. The strength of using fMRI as a 

measuring tool for the effect of optogenetic stimulation is the relatively unbiased nature of this 

imaging method, leading to discovery of unexpected responses. Complementing these findings 
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with, other techniques, such as electrophysiological recordings, are necessary to further explore 

the properties of this circuit.  
 

Taken together, this study confirms rewiring of the basal ganglia in PD animals, since there are 

distinct differences in the measured connectivity profiles of healthy and Parkinsonian rats. 

Further research is necessary to evaluate whether the PD-induced alterations are due to the loss 

of dopamine depletion itself, or due to the indirect effect of it, such as changes in the indirect 

pathway. 

 

 

4.4.3 Limitations 
 

There are several limitations to the present study to consider.  Firstly, there are limitations 

related to preclinical fMRI studies, namely: (1) the usage of anesthesia, which may alter the 

responsiveness of neural circuits to the effects of optogenetics, causing an underestimation or 

complete suppression of the CBV-response in certain brain structures; (2) the use of an acute 

stimulation paradigm, which was necessary in the context of our experimental MR setup.  

Similar OFF-ON-OFF paradigms are traditionally used in evoked fMRI studies (Knight et al., 

2013; Lai et al. 2014), although they may provide a biased perspective on stimulus-evoked 

changes in functional connectivity.  A recent report by Ewing and Grace highlights the 

importance of studying DBS network effects under chronic stimulation conditions over more 

translationally relevant timespans (i.e. days or weeks) (Ewing and Grace, 2013). Functional 

connectivity MRI, which does not require within-session baseline (“OFF”) periods, provides an 

ideal experimental measure for future longitudinal examinations of effects of electrical or 

optogenetic stimulation across time and brain regions; (3) the artifact of the optical fiber affects 

the quality of the EPI around the fiber, potentially causing underestimation of the CBV response 

at the site of the fiber. Yet, compared to DBS-fMRI where a metal DBS-electrode is implanted 

in a brain structure, the artifact is much smaller with opto-fMRI. In addition, our data shows 

clear ipsilateral CBV responses, and therefore we can conclude the design of our opto-fMRI 

experiment minimizes the bias introduced by this artifact; (4) Deviations in the viral injection 

site and fiber placement, smaller than the spatial resolution of the MR images, may lead to large 

differences in response. However, our group-analysis indicates small inter-subject variability, 

indicating minimal bias due to the variation in viral injection or fiber placement; (5) optogenetic 

stimulation might cause temporary changes in cellular activity that might be overlooked with 

fMRI.  
 

Besides limitations associated with preclinical fMRI studies, there are some limitations 

associated with the use of optogenetics, namely the reduced degree of specificity of the vector 

used, and the fact that translational research of optogenetics is highly challenging. Targeting 

specificity depends on multiple overlapping mechanisms, such as viral expression, the need for 

distinct viral tropisms for different cell types (Nathanson et al., 2009; Burger et al., 2004;), as 

well as on the use of cell-type-specific promoters to drive expression of the transgene 

(Nathanson et al., 2009; Dittgen et al., 2004; Jakobsson et al., 2003; Brenner et al., 1994). For 

example, when comparing expression of transgenes under the same promoter with AAV2 or 

LV, LV vectors were biased to transduction of excitatory neurons whereas AAV2 vectors 

expressed more in inhibitory neurons in the mice somatosensory cortex (Nathanson et al., 

2009). And, AAV5 has shown to transduce larger volumes, i.e. a higher degree of viral spread, 

in both rodents (Burger et al., 2004; Paterna et al., 2004) and primates (Markakis et al., 2010). 

LV is characterized by a lower viral spread and thus can be used to target for example 
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hippocampal substructures. We chose to work with AAV5, which is among the most widely 

used AAV vectors, which transfect a larger volume of tissue, display low immunogenicity and 

are considered safer than LV (i.e. BSL1, compared with the BSL2+ for LV). However, some 

studies demonstrated selective retrograde transport of AAV5 along axon terminals, in addition 

to transducing cell bodies at the site of injection, thereby mediating gene expression in remote 

cell bodies having axons that terminate in the injected structure (Watakabe et al., 2015; 

Aschauer et al., 2013; Cearley and Wolfe, 2006; Burger et al., 2004). It is well known that 

optogenetics is characterized by a high spatial specificity because only a priori specified local 

neurons, and no incoming afferents, are transduced (e.g. Pama et al., 2013; LaLumiere, 2011; 

Lee et al., 2010). However, this possible axonal-transduction property (shared with rabies 

viruses, pseudotyped LVs, some other AAVs, and pseudorabies viruses (Miyamichi et al., 

2011; Kato et al., 2011; Callaway, 2008; Kato et al., 2007; Burger et al., 2004; Kaspar et al., 

2002) might diminish the expected specificity of the vector. But, it has to be noted that virus 

and promotor specificity, observed in a certain brain structure of a certain organism in one 

study, cannot readily be translated to other brain structure or organism of another study. 

Therefore, findings and promoter and tropism strategies of different studies cannot be 

generalized.  Note, that this possible axonal transduction could be validated in our experimental 

set-up by using confocal images at the CPu to verify whether the EYFP signals arise from 

projection terminals or cell bodies. 
 

The challenge of building an optogenetic system involves several steps, each presenting distinct 

translational challenges, such as inserting opsins into an a priori specified group of neurons, 

piping in sufficient light, and illuminating a volume of tissue with the proper pattern. Although 

the creation of a transgenic human application involving germline modification is not feasible, it 

is believed that the use of optogenetics through viral delivery in a gene therapy setting might be 

a potential clinical application in the long run (Chow et al., 2013). New delivery methods that 

improve gene therapy safety, such as self-regulating and self-inactivating vectors or nonviral 

genetic delivery packages, have been developed. In addition, some viral vectors, such as AAV, 

are now considered generally safe by regulatory bodies, so that the remaining safety issues 

concern the transgenes, rather than the viral delivery vectors themselves. Currently, there are 

several gene therapy trials on-going for the treatment of PD (Berry et al., 2011). And, 

optogenetic modulation using ChR2 in human neurons has been successfully demonstrated 

(Weick et al., 2010). 
 

Management of energy in an optogenetic system is challenging because optogenetics is very 

inefficient at stimulating neuronal activity as opposed to electrical stimulation. The currently 

available opsins require a thousand times higher power investment to affect an equivalent 

volume of tissue. This created temperature fluctuations, the need for too large devices and 

shorter implant lifetimes. New and more sensitive opsins and opsins with lower duty cycles 

might provide a solution (Yizhar et al., 2011). Because the risk-benefit ratio of optogenetics is 

largely unknown, a lot of research is required to clear the clinical translational obstacles. 

Optogenetics as a neuromodulation therapy in humans is believed to be possible, but direct 

application is still far away (Bullmore, 2012; LaLumiere, 2011). However, using optogenetics 

as a complementary tool for a better understanding of the mechanisms underlying current 

clinical treatments is promising. 
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4.5 Conclusion 
 

The ultimate goal of our research is to identify and investigate therapeutically effective DBS-

targets within the circuit modulated by DBS. In this study, we aimed to explore the GPe as a 

non-canonical target for DBS in Parkinson’s disease. Therefore, we performed opto-fMRI with 

selective stimulation of GPe neurons in healthy and Parkinsonian rats to investigate the 

downstream GPe-DBS response more in detail, since electrical stimulation is likely to have 

diffuse, off-target effects.  

This study provides an in-depth characterization of the functional connectivity of the GPe, in 

both healthy and parkinsonian rodents. Our data clearly do not conform to the traditional model 

of the GPe as a straightforward relay nuclei; modulation of several noncanonical downstream 

circuits was observed, including prefrontal cortex and striatum. Our finding of reduced striatal 

vasoconstriction during GPe stimulation in parkinsonian animals is strongly suggestive of 

pallidostriatal circuit rewiring in the dopamine-depleted state. Future studies will address the 

electrophyiological correlates of this disease-altered striatal fMRI signal.  

 

 

4.6 Original contributions 
 

The work presented in this chapter resulted in an international conference contribution (see [13] 

in list of conference contributions). The results of this study are in preparation to submit to the 

peer-reviewed A1 journal NeuroImage (see [4] in list of publications) (shared first author). Dan 

Albaugh and the author of this section both equally contributed to this study. 
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Chapter 5 
 

Investigation of the Effect of 

Hippocampal DBS on the 

Glucose Metabolism using PET 
 

 

5.1 Introduction 
As explained in chapter 1, deep brain stimulation (DBS) is a widely accepted treatment for 

advanced Parkinson’s disease (PD) (Okun, 2012; Bronstein et al., 2011) and is a promising 

therapy for other neurological and psychiatric disorders, such as refractory epilepsy (Vonck et 

al., 2013; Fischer et al., 2010; Boon et al., 2009). Currently, hippocampal DBS (hDBS) is an 

experimental treatment for refractory epilepsy (Sprengers et al., 2014). It is strongly believed 

that the hippocampal formation is involved in seizure initiation in drug resistant epilepsy, and it 

has the lowest seizure threshold of all brain structures (Theodore and Fischer, 2007; Morrell, 

2006; Spencer, 2002). Therefore, the hippocampus has been selected as an alternative DBS 

target to the anterior nucleus of thalamus  (ANT), which is already FDA (Food and Drug 

Administration) approved for DBS-therapy of refractory epilepsy (Fischer et al., 2010). Velasco 

et al. discovered that unilateral hDBS decreased interictal and ictal epileptiform activity in 

refractory TLE patients (Velasco and Fischer, 2014; Velasco et al., 2007; Velasco et al., 2001). 

These findings were confirmed in other clinical trials (Cuckiert et al. 2014; Boon et al., 2007; 

Osorio et al., 2005; Vonck et al., 2002) and in animal experimental studies (Akman et al. 2011, 

Wyckhuys et al., 2009; Goodman et al., 2005). The refractory epilepsy center at Ghent’s 

university hospital has over a decade of experience with hippocampal DBS as a treatment for 

refractory epilepsy. A seizure frequency reduction of at least 90% was reached in more than half 

of the patients treated (Vonck et al., 2013). Despite its remarkable clinical success, the precise 

mechanism of action of hDBS remains to be elucidated. A better understanding of the neuronal 

networks modulated by hDBS is therefore required to improve treatment efficacy. Since 

research in patients is restricted because of ethical and practical reasons, animal research 

becomes indispensable. 
 

The preclinical investigation of hDBS is one of the main focuses of the Laboratory for 

Experimental and Clinical Neurophysiology, Neurobiology and Neuropsychology (LCEN3) of 

Ghent University. In 2010, a collaboration between the small animal imaging lab (INFINITY) 

and LCEN3 lead to the investigation of hippocampal DBS on the regional cerebral blood flow,
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(rCBF) using small animal Single Photon Emission Computed Tomography (SPECT). 

Interestingly, this study revealed DBS-induced hypoperfusion in both hippocampi. Moreover a 

clear distinction in spatial extent and intensity of hypoperfusion was observed between 

stimulation parameters. A SPECT scan is primarily used to visualize cerebral blood flow and 

only provides an indirect measure of the brain’s metabolism. Extra research is thus necessary to 

confirm that this hypoperfusion is caused by actual DBS-induced decreases in the brain’s 

metabolism, as opposed to pure DBS-induced vasoconstriction. PET is the only imaging 

modality that allows the direct measurement of the glucose metabolism. Therefore, in this study, 

we aimed to employ 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG)-PET to investigate the effect 

of hippocampal DBS on the glucose metabolism, in the same experimental set-up as used in the 

SPECT-study.  
 

We chose Poisson distributed stimulation over regular distributed high frequency stimulation 

because irregularity in interpulse intervals seems to induce more potent anti-seizure effects 

(Wyckhuys et al., 2010a; Wyckhuys et al., 2007). It has also been suggested that Poisson 

distributed DBS may cause disruption of the generation and propagation of synchronous 

epileptic activity (Cuellar-Herrera et al., 2006). Moreover, we decided to investigate the effect 

of DBS in the healthy brain in order to rule out the diseased brain as a confounder.  

 

 

5.2 Materials & methods 
 

5.2.1 Animals 
 

Seven adult male Sprague-Dawley rats (200–250g body weight; Janvier, France) were used for 

this experiment. All rats were treated according to guidelines approved by the European Ethics 

Committee (decree 2010/63/EU). All experimental procedures were approved by the Animal 

Experimental Ethical Committee of Ghent University Hospital (ECD 13/14). The animals were 

kept under environmentally controlled conditions (12h normal light/dark cycles, 20-23°C and 

40-60% relative humidity) with food and water ad libitum. 

 

5.2.2 Surgery 
 

The rats were anesthetized with an isoflurane mixture (2–5% isoflurane and medical O2). After 

exposure of the skull, five small burr holes were drilled: four for the positioning of nylon anchor 

screws (Bilaney consultants GmbH, Germany) and one for insertion of the quadri-polar DBS-

electrode. This DBS-electrode was inserted stereotactically in the right hippocampus (AP -

5.6mm, ML 5.2mm, DV -7.4mm relative to bregma) (Paxinos and Watson, 2007), as illustrated 

in Fig. 4.1a.  

Each DBS-electrode was custom-made by twisting together four polyimide coated stainless 

steel wires. The most ventral and dorsal electrode contact (Bilaney, Germany), with 125µm 

diameter, were used for stimulation purposes. The distance between the tips was 3mm. The two 

inner wires (California Fine Wire, CA, U.S.A.), with 70µm diameter, were used for electro-

encephalographic (EEG) recording. The distance between these two tips was 0.5mm. The 

design of the electrodes is based on previous studies of DBS in rat models for TLE, where 

bipolar DBS with a 3mm gap between poles was shown to be therapeutically effective (Van 

Nieuwenhuyse et al., 2015; Wyckhuys et al., 2010a; Wyckhuys et al., 2007). The two inner 

wires were used for intracranial electro-encephalographic (iEEG) recording. The distance 

between these two tips was 0.5mm. The electrode and its placement are illustrated in Fig. 5.1. 
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Figure 5.1: (A) The quadri-polar electrode was stereotactically implanted in the right hippocampus (AP -5.6, DV -

7.4, ML +5.2 relative to Bregma (Paxinos & Watson, 2007)) together with four anchor screws. The outer two 

electrodes are used for stimulation and the inner two electrodes for EEG. The red dot represents the electrode 

insertion location on the skull. The black dots indicate anchor screw positions. (B) MR images, acquired after careful 

removal of the electrode, were used to verify the electrode track position. For all rats the electrode track was located 

in right the hippocampus. 

 

For impedance optimization, all electrodes were electrolytically cleaned. The impedance was 

checked immediately before implantation and did not exceed 45kOhms (IMP-2, Bak 

electronics, Sanford Florida, USA). One additional polyimide coated stainless steel wire 

(Bilaney, Germany), with 125μm diameter, was inserted subcutaneously as a ground. The DBS-

electrode and the ground-electrode were attached to a connector that was fixed to the screws and 

the skull with acrylic dental cement. Rats were allowed seven days of post-surgical recovery, 

during which they were handled. 

  

 

5.2.3 Deep Brain Stimulation 
 

All rats were subjected to the same DBS paradigm, namely a bipolar Poisson distributed 

unilateral hippocampal stimulation. The stimulation itself consisted of a series of biphasic, 

charge-balanced square-wave pulses with a pulse width of 100μs. The mean frequency of the 

stimulation paradigm was 130Hz and the inter-stimulus intervals were Poisson distributed with 

a mean and variance of 1/130s. Pulses were delivered to the outer two electrode contacts of the 

quadri-polar MR-compatible DBS-electrode using a constant current linear isolated stimulator, 

which was triggered by a data acquisition card (NI-DAQ USB-6343, National Instruments, 

Austin, TX, U.S.A.) that was connected to a standard PC.  
 

The stimulation was applied continuously for 60 minutes. For each rat the stimulation intensity 

was determined individually (i.e. thresholding), one day after the post-surgical recovery period. 

The stimulation intensity was set at 60% of the stimulus intensity giving rise to an epileptic 

seizure. This seizure threshold was determined iteratively by applying 15s of stimulation, 

followed by 60s of rest, during which the iEEG was evaluated for epileptic discharges. For 

every stimulation episode, stimulation intensity was augmented with 25μA until an ictal 

discharge was observed on the iEEG. The EEG-signal was amplified using a custom made 

amplifier (gain 510) and connected to same data acquisition card used to trigger the current 

source. Ictal discharges were characterized on the iEEG by spiking activity with an amplitude 

exceeding at least three times the baseline amplitude and with a frequency exceeding 5Hz for at 

least 10 seconds (Wyckhuys et al., 2010b; Williams et al., 2009; White et al., 2006). Both the 

thresholding process and the DBS during the PET experiment itself were applied when the rat 
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was awake. Because the stimulation intensity causing the ictal discharge was subject-dependent, 

the length of stimulation is dependent on the subject during the thresholding step, preceding the 

actual imaging experiment. During the experiment the length of stimulation was the same for all 

subjects. Every rat received exactly one hour of DBS preceding the PET acquisition, from 

which 30 minutes were during tracer uptake. 
 

 

5.2.4 Data acquisition 
 

Each rat underwent three PET scans at three different time-points: one before surgery (i.e. 

baseline condition), one 9 days after surgery (i.e. surgery condition) and one after one hour of 

DBS (i.e. stimulation condition), 10 days after surgery. The general PET imaging was the 

following. All animals were food deprived for at least 18h prior to PET imaging. Rats were 

shortly anesthetized with an isoflurane mixture (2–5% isoflurane and medical O2) to insert a 

catheter in one of the tail veins for tracer injection. This was done at least one hour before tracer 

administration in order to avoid the effects of anesthesia as a possible confounder for the 

experiment. Next, animals were, while awake, intravenously injected with 28.1±1.8MBq of 18F-

FDG (Ghent University Hospital, Belgium) dissolved in 200μl saline. Thirty minutes after 

tracer injection, the animals were placed under general anesthesia using an isoflurane mixture 

(2–5% isoflurane and medical O2) and a 30-minutes PET scan was acquired in list-mode on a 

microPET scanner with a 75mm axial field-of-view and a 1.5mm spatial resolution (FLEX 

Triumph II, TriFoil Imaging®, Northridge CA). Animals were placed in the center of the field-

of-view, in a prone position, receiving further anesthesia through a nose cone. The rat body 

temperature was maintained at ~37°C by a heated bed. The imaging protocol for the third PET 

scan (i.e. stimulation condition) required some additional actions on top of the general PET 

imaging protocol. The intravenous injection with 28.1±1.8MBq was done 30 minutes after 

starting hDBS and stimulation was not interrupted during injection of 18F-FDG. Stimulation was 

delivered to the rat by means of a flexible cable and a commutator, allowing the rat to move 

freely. Continuous EEG recording was performed throughout the delivery of stimulation to 

evaluate for EEG abnormalities during DBS. Then, stimulation was interrupted, rats were 

anesthetized and moved to the PET scanner, after which a 30 minutes PET acquisition was 

initiated, followed by CT. After the last PET scan, rats were sacrificed, the DBS-electrode was 

removed with high caution and an MR-scan was acquired. Fig. 5.2 depicts the experimental 

imaging protocol.  

The acquired PET images were reconstructed into a 200x200x50 matrix by a 2D Maximum 

Likelihood Expectation Maximization (MLEM) algorithm (LabPET Version 1.12.1, TriFoil 

Imaging®, Northridge CA) using 100 iterations and a voxel size of 0.5 x 0.5 x 1.175mm3 (x, y, 

z). Each PET-scan was followed by a Computed Tomography (CT) scan, acquired for co-

registration purposes, on the same scanner. CT projection data were acquired using the 

following parameters: 256 projections, detector pixel size 50µm, tube voltage 75kV, tube 

current 500µA and field-of-view 59.2mm. CT images were analytically reconstructed using the 

filtered back projection reconstruction software of the scanner into a 512x512x512 matrix with 

100µm isotropic voxel size. Each resultant CT image is inherently co-registered with the 

corresponding PET scan.  
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Figure 5.2: (A) Timeline of the experimental imaging protocol. (B) Sequence of actions of the last day of imaging. 

Before intravenous injection with 28.1±1.8MBq of 18F-FDG rats received 30 minutes of hDBS. Stimulation was 

continued during and 30 minutes following tracer administration. Then, stimulation was interrupted, rats were 

anesthetized and moved to the PET scanner, after which a 30 minutes PET acquisition was initiated, followed by CT. 

Finally rats were sacrificed, the DBS-electrode was removed with high caution and an MR-scan was acquired. 

 

After termination of all PET-CT scans, rats were sacrificed with pentobarbital (120mg/kg, i.v.) 

and the electrodes were carefully removed. Subsequently, rats underwent a magnetic resonance 

(MR) scan to obtain anatomical information and to verify electrode position. MR images were 

acquired on a 7 Tesla-system (PharmaScan 70/16, Bruker, Ettlingen, Germany) with a dedicated 

rat brain volume RF send/receive coil. Fixation of the head of the animal was achieved using the 

tooth and ear bars of the Bruker MR bed, before placement inside the magnet. In this way, the 

electrode is positioned as perpendicular as possible in comparison with the scanner bed. T2-

weighted anatomical images, with a 100µm isotropic voxel size, were obtained using a RARE 

(Rapid Acquisition with Relaxation Enhancement) sequence. MR images were co-registered to 

CT, based on anatomical reference points, providing a registration between PET, MRI and CT. 

This way, an accurate anatomical correlation and electrode track position verification was 

possible. 

 

 

5.2.5 Data-analysis 
 

As each rat underwent three PET scans we divided the acquired PET data into three groups: (1) 

baseline condition-group, (2) surgery condition-group, (3) stimulation condition-group. Two 

rats were excluded from statistical group-analysis in group 2 and 3, meaning that only 5 datasets 

could be included in group 2 and 3. One of these animals was showing wet dog shakes and ictal 

activity on the EEG during administration of hDBS and tracer uptake, even though we took only 

60% of the threshold for ictal activity. Wet dog shake behavior has been studied in different 

models of epilepsy in the rat and is associated with limbic seizures (Rondouin et al., 1987). We 

decided to exclude also a second animal since an irregular lesion was observed in the MR image 

of the animal, as indicated in Fig. 5.3. The electrode was not implanted perpendicular, since it is 

visible in three consecutive slices of the MR image. The implantation left a wider track 

compared to the other subjects. 
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Figure 5.3: (A) Axial anatomical slices illustrating the big lesion caused by fault electrode implantation. Slices 

progress from most anterior at the left to most posterior at the right. The electrode track is indicated with white 

arrows. (B) One axial anatomical slice illustrating a typical electrode track. The electrode track is indicated with 

white arrows. 
 

Further processing of the PET data was done in 4 steps. First, spatial smoothing was performed 

using a 3D Gaussian filter with FWHM of 1 mm. All datasets were then normalized to the 

global activity measured in a box drawn over the complete head of the animals to correct for 

physiological variations in tracer uptake. Third, all datasets from one group were co-registered 

onto the first animal scanned of that group using a mutual information (MI) algorithm with 

Powell's convergence optimization method (Press et al., 1992) implemented within PMOD 

(http://www.pmod.com). Fourth, a template was generated for each group, by calculating the 

mean value and the standard deviation in each voxel. The templates of group 2 and 3 were co-

registered onto the template of group 1, also using the MI algorithm in PMOD. Finally, 

statistical analysis between groups was done using a voxelwise two-sample t-test, working in 

Matlab 2010.  
 

To separate the effects of surgery from stimulation effects, data-analysis was undertaken three 

times: (1) comparison of the stimulation- and surgery condition-group (stimulation effect); (2) 

comparison of the surgery- and baseline condition-group (surgery effect); and (3) comparison of 

the stimulation- and baseline condition-group (combined effect). The p-value was determined 

for each voxel, indicating the significance of differences between groups and clusters (> 20 

voxels) were accepted as significant if p-values were 0.01 or less after Bonferroni correction for 

multiple comparisons. Each resultant statistical map was co-registered onto the MR images for 

anatomical correlation. Additionally, all five rats from the group-analysis were analyzed 

individually using a voxelwise one-sample z-test to evaluate the impact of the stimulation 

intensity on the spatial extent and the intensity of the metabolic changes. Also, the two rats that 

were excluded from the statistical group-analysis were compared individually using this test-

statistic. 
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5.3 Results 
 

5.3.1 Template configuration 
 

The three rat brain templates generated from the PET data, acquired in the three different 

conditions, are shown in Fig. 5.4. Each template is characterized by a mean image and a 

standard deviation image. In Fig. 5.4 only the mean images are depicted. Visual analysis of the 

three templates reveals hypometabolic changes in the ipsilateral hippocampus in template 2 and 

in both the ipsilateral and contralateral hippocampus in template 3, when comparing to template 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Three rat brain templates representing the mean data of their group. Axial, coronal and sagittal slices are 

shown on the left, middle and right, respectively. (A) Template from PET-data acquired one day before surgery. (B) 

Template from PET-data acquired nine days after electrode implantation and one day after determination of the 

stimulus intensity. Hypometabolic changes are observed in the ipsilateral hippocampus when comparing to A are 

indicated with a black arrow. (C) Template from PET-data acquired three days after post-surgical recovery. 

Unilateral hippocampal stimulation was initiated 30 minutes before tracer injection and continued during the tracer 

uptake for 30 minutes. Hypometabolic changes are observed in the ipsilateral and contralateral hippocampus when 

comparing to A and are indicated with black arrows. 
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5.3.2 Statistical analysis on group level 
 

The results of the statistical group-analyses are displayed in Fig. 5.5: (1) statistical analysis 

between group 3 and 2, (2) statistical analysis between group 2 and 1, (3) statistical analysis 

between group 3 and 1, in order to investigate the ‘stimulation’ effect, the ‘surgery’ effect and 

the ‘combined’ effect, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Hypometabolic t-maps resulting from statistical analysis. All t-values were converted to a corresponding 

p-value. (A) Hypometabolic t-map from statistical analysis between group 2 and 3. Coronal, sagittal and axial 

anatomical scans are co-registered with the t-map illustrating ‘true’ hypometabolic changes induced by hDBS, 

compared to the glucose metabolism one week after surgical intervention. Axial anatomical scans progress from most 

anterior to most posterior from top to bottom, respectively. (B) Hypometabolic t-map from statistical analysis 

between group 1 and 2. Axial anatomical scans are co-registered with the t-map illustrating the hypometabolic 

changes induced by stereotactical surgery. (C) Hypometabolic t-map from statistical analysis between group 1 and 3. 

Axial anatomical scans are co-registered with the t-map illustrating the ‘summed’ hypometabolic changes induced by 

hDBS and electrode implantation, compared to the glucose metabolism before surgical intervention. Axial anatomical 

scans progress from most anterior to most posterior from top to bottom, respectively. (D) Axial slice from rat brain 

atlas (Paxinos and Watson, 2007) at height of electrode. Hippocampal substructures and other limbic structures are 

marked in color. 

 

Statistical group-analysis of group 3 and 2 (i.e. stimulation effect) revealed significant decreases 

in glucose uptake in the different structures of the hippocampal formation: the CA areas, the 

subiculum and the dentate gyrus; and in other limbic structures: entorhinal cortex, thalamic 

structures, the posteromedial part of amygdalohippocampal area, posterolateral cortical 

amygdaloid nucleus, amygdalopiriform cortex; from which the latter three substructures are part 

of the limbic cortex. Statistical group-analysis of group 2 and 1 (i.e. surgery effect) revealed 

very localized hypometabolic changes in the ipsilateral hippocampus due to electrode 

implantation. Statistical group-analysis of group 3 and 1 (i.e. combined effect) revealed 

hypometabolic changes in the ipsi- and contralateral hippocampus and other limbic structures. 

Taken together, this means DBS might have a similar effect on brain tissue as the electrode 

implantation itself, however the intensity and spatial extent of its effect is larger. No areas of 

significant hypermetabolism were detected.  
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5.3.3 Statistical analysis on subject level 
 

All rats were also analyzed individually (i.e. compared to template 1) to evaluate the impact of 

the stimulation intensity on the spatial extent and the intensity of the metabolic changes. As 

mentioned before, the stimulation intensity was determined for each rat individually and was set 

at 60% of the stimulus intensity giving rise to ictal activity. We noticed a large variation among 

rats. Fig. 5.6 shows the relation between the administered stimulation intensity during hDBS 

and the spatial extent (Fig. 5.6A) and the intensity (Fig. 5.6B) of the hDBS induced 

hypometabolic changes in the ipsi- and contralateral hippocampal formation. The ipsilateral and 

contralateral hippocampal volumes were delineated based on an anatomical atlas of the rat brain 

(Paxinos and Watson, 2007). The spatial extent is characterized by the ratio of the significant 

(pcorr<0.05) hypometabolic volume in the ipsilateral and contralateral hippocampus, to the total 

ipsilateral and contralateral hippocampal volume, respectively. These results indicate higher 

stimulus intensity leads to more widespread hypometabolic changes in the ipsi- and 

contralateral hippocampus, although this relation is less clear in the contralateral hippocampus. 

The mean intensity of the DBS induced changes in the glucose uptake (i.e. mean z-score) was 

similar for all rats in both the ipsi- and contralateral hippocampus. These results only indicate a 

trend, further research is necessary in order to investigate the true relationship between the 

stimulation intensity and the level of hypometabolic changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: (A) Graph illustrating the relation between the stimulation intensity during hDBS and the spatial extent 

of the hDBS induced hypometabolic changes in the ipsi- and contralateral hippocampal formation. The spatial extent 

is characterized by the ratio of the significant (pcorr < 0.05) hypometabolic volume in the ipsilateral and contralateral 

hippocampus, to the total ipsilateral  (ILHC) or contralateral hippocampal (CLHC) volume, respectively. (B) Graph 

illustrating the relation between the administered stimulation intensity during hDBS and the mean intensity of the 

hDBS induced hypometabolic changes in the ipsi- and contralateral hippocampal formation. The mean intensity is 

characterized by the mean z-score of the significant (pcorr < 0.05) hypometabolic volume in the ipsi- and contralateral 

hippocampus. Both graphs display results of individual subjects to the group1-template and subjects are sorted by 

increasing stimulation intensity. 

 

 

5.4 Discussion 
 

Statistical group-analysis of PET data revealed that unilateral Poisson distributed hDBS 

decreases the glucose metabolism in the different structures of the bilateral hippocampus, and 

also in thalamic and cortical limbic structures. With this study our aim was to understand how 

DBS affects the glucose metabolism throughout the entire healthy brain. Our experimental 

design allows to discriminate whether the observed changes in the glucose metabolism are due 

to DBS or due to the implantation of the DBS electrode or both, because scans were acquired 
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before and after surgical intervention. Furthermore, our study visualizes the true stimulation 

effect of DBS on the glucose metabolism in the brain, and is not biased by an interaction with 

brain pathology.  

 

 

5.4.1 Whole-brain response of DBS 
 

The current study revealed decreases in the glucose metabolism in the hippocampal formation 

and other anatomically connected limbic structures. This provides evidence for an interaction of 

hDBS with widespread limbic pathways in brain regions spatially remote from the targeted 

brain structure. It is well-known limbic structures and bilateral brain structures are connected. 

fMRI studies of the healthy rat brain have showed robust and reproducible autonomous circuits 

(Vedam-Mai et al., 2012; Beurrier et al., 2001). The observed bilateral synchrony of fMRI 

signals reflects these inter-hemispheric commissural connections, especially in brain regions 

with strong commissural connections such as the hippocampus (Vedam-Mai et al., 2012). This 

explains why we observed not only local hDBS induced changes in the cerebral glucose 

metabolism around the electrode tip but also remote changes in the contralateral hippocampus 

and anatomically connected limbic structures. Our findings suggest the hippocampus and other 

mesial and cortical limbic structures up- and downstream are affected by hippocampal DBS. 

However, it still remains to be elucidated if these structures are only temporarily affected. DBS 

induced changes in brain activity over time may lead to learning and plasticity in neural 

networks, leading to chronic changes located in the same and/or in another set of brain 

structures.  
 

To our knowledge there is only one other PET imaging study of DBS in the healthy rat brain. 

Klein et al. investigated with 18F-FDG-PET the neuronal network activity patterns in the healthy 

rat brain, affected by DBS of the subthalamic nucleus. They also concluded that unilateral DBS 

affects brain activity ipsi- as well as contralateral to the stimulation site, which implies a 

bilateral effectiveness (Klein et al., 2011). However, it has to be mentioned that the authors used 

an uncorrected p-value < 0.05 for statistical significance, meaning that they didn’t correct for 

multiple comparisons. Since they used a Gaussian filter of 2mm FWHM for post-smoothing, the 

final spatial resolution of the images is limited for most of the brain structures they investigated. 
 

A SPECT study in the healthy rat brain has been performed in our lab prior to this study, where 

they investigated the effect of unilateral Poisson distributed hDBS in the healthy rat on the 

rCBF, by means of 99mTc-hexamethylpropyl-eneamineoxime (99mTc-HMPAO)-SPECT 

(Wyckhuys et al., 2010b). The authors of that study observed hDBS induced hypoperfusion in 

the ispi- and contralateral hippocampal formation and found that the intensity of the 

hypoperfused region remained unaltered for all stimulation amplitudes, but that the total volume 

of hypoperfused tissue became more widespread and shifted contralaterally with higher 

stimulation intensities, meaning that higher stimulation intensities lead to larger volumes being 

stimulated. Our PET findings correspond with the SPECT study, since we find hDBS-induced 

decreases in the glucose metabolism. Moreover, we find that hypometabolic changes also 

become more widespread in the ipsi- and contralateral hippocampal formation with increasing 

stimulus intensity and that the intensity of the hypometabolic region and the stimulation 

intensity could not be correlated. Similar animal experimental studies have also observed a 

linear relationship between stimulus intensity and spatial extent of the DBS induced changes 

(Canals et al., 2008; McIntyre, 2004). More research needs to be done to investigate this 

relation between the intensity and spatial extent of hDBS induced hypometabolic changes and 
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the stimulation parameters used. If a correlation between DBS parameters, imaging result and 

seizure suppressive effect would exist, PET imaging could be used as a potential biomarker for 

responders to DBS. 

Taken together, the earlier SPECT study and current PET study performed in our lab to 

investigate metabolic changes during hDBS, indicate that hDBS does cause decreases in the 

metabolism, suggesting an underlying functional inhibition mechanism of DBS. 

 

 

5.4.2  Physiological meaning  
 

Homeostatic downscaling mechanisms (i.e. downregulation of neuronal activity) might 

contribute to the explanation of the observed hypometabolic hDBS induced changes. By 

keeping the amplitude of stimulation below the threshold for seizure generation, no seizures are 

evoked, but neural circuits are subjected to a continuous and strong synaptic input. In order for 

these neural circuits not to become hyperactive, neurons decrease their intrinsic excitability and 

synaptic strength to keep their firing rates within the functional range (Turrigiano and Nelson, 

2004), consequently leading to a reduced energy utilization of the synapses. It is well known the 

hippocampus is a highly plastic brain structure (Neves et al., 2008). Since unilateral Poisson 

distributed hDBS mimicks a continuous but irregular synaptic input towards the targeted area, 

we could expect homeostatic downscaling mechanisms are taking place, at a certain point in 

time during the stimulation, in the hippocampus to normalize the activity and bring the neuronal 

circuit to a less excitable state by reducing hippocampal excitatory glutamatergic output, 

consequently leading to a reduced PET signal. Importantly, these findings may explain the 

seizure-suppressive of DBS, since a seizure is characterized by excessive and hypersynchronous 

neural activity. 
 

Our results indicate that unilateral hippocampal DBS causes significant hypometabolism in all 

limbic structures, ipsi- and contralateral to the stimulation side. These observations of a 

widespread involvement of limbic structures caused by hippocampal DBS are supported by the 

observed hypoperfusion in all limbic structures caused by unilateral hippocampal DBS 

(Wyckhuys et al., 2010b). Taken together the available cellular studies of DBS and our SPECT 

and PET study of DBS in the healthy rat brain, DBS likely exerts its effect not just locally but 

also using specific circuits, via complex modifications of the ongoing underlying molecular 

processes (Chang et al., 2012; Lyons et al., 2011). Besides commissural connections that 

connect both hemispheres, activated astrocytes might also contribute to the distal effects of 

inhibition induced by DBS. Astrocytes react to and communicate changes detected within their 

immediate external environment both locally and over networks (Vedam-Mai et al., 2012), 

through a complex calcium-wave induced regulation of glutamate levels in the extracellular 

environment of all the synapses they envelope. While astrocytic regulation might explain distal 

effects ipsilaterally, it is more likely the bilateral effect is explained by the commissural 

connections. It has to be noted that commissural fibers, especially those connecting the left and 

right hippocampus, are proportionally more pronounced in rats than in humans. Although 

connectivity studies in humans also show bilateral networks (van den Heuvel et al., 2009; 

Damoiseaux et al., 2006), it remains unclear whether bilateral effects of DBS will be observed 

in humans. Yet, bilateral DBS may hold superior efficacy to unilateral DBS in the treatment of 

mesial TLE (Vonck et al., 2013).  
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5.4.3  Limitations  
 

The study has a number of limitations. First of all, 18F-FDG-PET is limited by its spatial and 

metabolic resolution. Since the micro-PET scanner used in this study has a spatial resolution of 

1.5mm we were able to retrieve signals from brain volumes such as the hippocampus, thalamus 

and limbic cortex. Considering the metabolic resolution, the hDBS induced metabolic changes 

should be large enough in order to distinguish them from noise. This is indeed the case, since 

significant metabolic changes were only present within the brain, and not in non-brain tissue in 

the FOV. Taking into account the spatial and metabolic resolution in the experimental set-up 

and data-analysis of our study, statistical group-analysis of PET data has provided us with a 

means to investigate hDBS induced changes in the glucose metabolism in the entire rat brain. 

Thus, we demonstrated that 18F-FDG-PET neuroimaging studies have the potential to 

investigate how DBS affects the glucose metabolism throughout the entire brain, and may be a 

valuable tool to visualize and evaluate therapeutic effect of DBS, and the effect of various 

stimulation paradigms and target areas for DBS.  

Secondly, the determination of the stimulation intensity, one day before the post-surgical scan, 

may act as a confounder of statistical analysis between PET data from before and after surgical 

intervention. The stimulation intensity was set at 60% of the stimulus intensity giving rise to 

ictal activity. Since we do not know what the impact of this short (order of seconds) ictal period 

might be on the post-surgical PET acquisition the next day, this process might also contribute to 

the hypometabolic changes observed in the group-analysis between template 1 and 2. However, 

comparison of the individual data of one rat, excluded from group-analysis due to an irregular 

lesion, to the group-data might indicate these changes are rather due to the surgical intervention 

or ‘lesioning’ than due to this thresholding process. Statistical analysis of this rat revealed more 

significant and more widespread hypometabolic changes in the ipsi- and additionally the 

contralateral hippocampus due to surgical intervention, compared to the observed changes in the 

group-analysis as shown in Fig. 5.7. These results coincide with literature findings (Schiffer et 

al., 2006). Since the thresholding process is exactly the same for all rats and the only difference 

in this is the larger lesion, we tend to believe it is in fact the lesioning that causes the 

hypometabolic changes when comparing data before and after surgical intervention.  

Finally, a potential limitation of this study might be the length of stimulation, i.e. 30 min of 

DBS before tracer injection and 30 min of DBS during tracer uptake. There is a DBS study in 

epileptic patients that reports a succesful short term hippocampal stimulation in a closed loop 

system (van Luijtelaar and Huang, 2013), but in general hippocampal DBS in epileptic patients 

is administered continuously. However, this is not evidence based and it is through preclinal 

investigation in animals, e.g. by means of functional imaging techniques, that we should first 

explore both the short and long term effects, before any translation to clinical investigation is 

possible. Our study indicates significant short term (i.e. after 30 min) changes in brain structures 

relevant for epilepsy. However, certain plasticity mechanisms, such as habituation, sensitisation 

and homeostatic plasticity, etc., might cause additional effects. Further research needs to be 

done to evaluate those long term effects of DBS in healthy and epileptic subjects, both in a 

preclinical as well as in a clinical set-up.  
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Figure 5.7: Hypometabolic t-maps resulting from statistical analysis of the rat with a bigger than regular lesion. The 

colors indicate the level of significance of the changes in the glucose metabolism induced by hDBS. Each time axial 

anatomical scans are co-registered with the t-map, and scans progress from most anterior to most posterior from top 

to bottom, respectively. (A) Hypometabolic t-map from statistical analysis between group 2 and this rat during hDBS. 

(B) Hypometabolic z-map from statistical analysis between group 1 and this rat after surgery. (C) Hypometabolic t-

map from statistical analysis between group 1 and this rat during hDBS. No significant hypermetabolic changes were 

observed in the latter three cases. 

 

 

 

5.5 Conclusion 
 

Statistical group-analysis of PET-data revealed that unilateral Poisson distrubuted hDBS 

decreases the glucose metabolism, both in the ipsi- and contralateral hippocampus and other 

limbic structures. This means hDBS seems to interact with widespread limbic pathways in brain 

regions spatially remote from the targeted brain structure. The major contribution of this study 

to the investigation of DBS mechanisms, as opposed to studies on a cellular level, is that this 

study shows that DBS affects specific circuits, rather than just nearby tissue, due to 

neuroanatomical connections between limbic structures and interhemispheric commisures. This 

study demonstrates that hDBS causes immediate changes in the healthy rat brain and provides 

important additional evidence that hDBS exerts an effect on the entire circuit of the targeted 

structure, leading to a resultant functional inhibition of the affected areas, resulting in decreases 

in the glucose metabolism. Moreover, with this study we validated the results of an earlier 

SPECT study performed in our lab, where indirect measurements of the brain’s metabolism 

already suggested a hypometabolic effect of DBS. 

Thus, we demonstrated that 18F-FDG-PET is a valuable tool to provide direct measures of 

metabolic responses to DBS throughout the entire brain. Consequently, 18F-FDG-PET 

neuroimaging studies have the potential to provide better insight into the mechanism of action 

of DBS by simultaneously observing activity at multiple sites in the in vivo brain and may be a 

valuable tool to visualize the effect of various stimulation paradigms and target areas for DBS.  
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5.6 Original contributions 
 

The work presented in this chapter resulted in two international conference contributions (see 

[2-3] in list of conference contributions). The results of this experiment were published in the 

peer-reviewed A1 journal Molecular Imaging & Biology (see [1] in list of publications) (first 

author). The surgeries discussed in section 5.2.2 were performed by Ine Dauwe. The design of 

the electrode, stimulation set-up, acquisition and data-analysis, were performed by the author of 

this chapter. 

 

 

 

 

 



 
 
 

  

  

 

 

 

Chapter 6 
 

Functional Circuit Mapping of the 

Hippocampus using 

Simultaneous DBS-fMRI 
 

 

 

6.1 Introduction 
DBS in the hippocampus has been proposed as an alternative treatment in case of drug resistant 

epilepsy. Clinical trials (Cuckiert et al. 2014; Vonck et al., 2013; Boon et al., 2007; Osorio et 

al., 2005) and animal experimental studies (Akman et al. 2011, Wyckhuys et al., 2007; 

Goodman et al., 2005) have shown promising results. More specifically, seizure frequency 

reduction of at least 90% was reached in more than half of the patients treated in Ghent’s 

University hospital (Vonck et al., 2013). Despite its remarkable clinical success, the precise 

mechanism of action of hDBS remains to be elucidated. A better understanding of how 

hippocampal DBS and its stimulation parameters modulate neural circuitry, through animal 

research, is therefore necessary to ultimately improve treatment efficacy in patients. In our 

university, animal research has shown that electrical stimulation of the hippocampus results in 

reduced metabolism of several regions of the limbic system (chapter 5). In addition to the 

investigation of the glucose metabolism, it would be interesting to image whole-brain activation 

and functional connectivity changes during local hDBS. 
 

fMRI allows the investigation of functional processes in the brain and is mainly used to image 

brain activation. This functional imaging technique can be used in both clinical and preclinical 

settings to evaluate the influence of brain region-specific activity upon neural circuits and 

networks. Stimulus-evoked fMRI detects hemodynamic changes across the entire brain that 

correlate with an experimental manipulation, such as electrical stimulation. Therefore, in this 

study, we aimed to visualize the brain network modulated by hippocampal DSB using fMRI. 
 

In contrast to PET imaging, fMRI enables the investigation of the modulatory potential of 

electricity on a subcortical-cortical pathway, because stimulation parameters can easily be 

varied during a single fMRI scanning session (Lauritzen, 2005; Haslinger et al., 2003; Stefurak 

et al., 2003). Several PET scanning sessions would be needed to investigate the 

neuromodulatory effects of DBS, as a single PET scanning session does not allow the 



 

 

 

 

  

  

104 Hippocampal DBS-fMRI 

  

acquisition of the physiological changes induced by making selective and reversible changes in 

the stimulation parameters.  

Proper anesthetic use is crucial for successful fMRI experiments in rodents. It is known that the 

use of medetomidine, a selective alpha-2-adrenoreceptor agonist, as an anesthetic agent results 

in a reliable stimulus-induced hemodynamic response. Additionally, it can be used in 

longitudinal studies, since it is administered subcutaneously requiring no catheterization and no 

intubation, because the animal can be kept in a free breathing state (Chao et al., 2014; Pawela et 

al., 2009; Zhao et al., 2008, Weber et al., 2006). Another major benefit of the alpha-2-agonist is 

that its effect can be rapidly reversed by administration of alpha-2-antagonists and that it has a 

short in vivo half-life, which also favors the use of medetomidine to be used in chronic follow-

up studies (Weber et al., 2006). Using the suggested dose of medetomidine, the animal is under 

sedation rather than full anesthesia, and a reliable fMRI signal can be detected.  

 

 

6.2 Materials & Methods 
 

6.2.1 Animals 
 

Seven adult male Sprague-Dawley rats (200–250g body weight; Janvier, France) were used for 

this experiment. All rats were treated according to guidelines approved by the European Ethics 

Committee (decree 2010/63/EU). All experimental procedures were approved by the Animal 

Experimental Ethical Committee of Ghent University Hospital (ECD 13/14). The animals were 

kept under environmentally controlled conditions (12h normal light/dark cycles, 20-23°C and 

40-60% relative humidity) with food and water ad libitum. 

 

 

6.2.2 Surgery 
 

The surgical procedures in this experiment were performed in the exact same way as in chapter 

5 (see section 5.2.2), with the only difference that we implanted an MR-compatible electrode 

for the fMRI experiments. Each DBS-electrode was custom-made by twisting together four 

MR-compatible, PFA-coated, Platinum Iridium wires (A-M Systems, WA, USA), with 140μm 

diameter. Platimum Iridium was selected as the better MR-compatible material for our 

experimental set-up based on its MR-compatibility, conductivity, workability and bio-

compatibility characteristics obtained in the in vivo pilot experiments described in chapter 2 (see 

section 2.1.6). Also in this case, the most ventral and dorsal electrode contacts were used for 

stimulation purposes, providing a bipolar stimulation, with a distance between the tips of 3mm. 

The electrode and its placement are illustrated in Fig. 6.1.  
 

For impedance optimization, all electrodes were electrolytically cleaned. The impedance was 

checked immediately before implantation and did not exceed 70kOhms (IMP-2, Bak 

electronics, Sanford Florida, USA). The stimulator (DS4 Bi-phasic Stimulus Isolator, Digitimer 

Ltd, Hertfordshire, England) can generate up to 48V, meaning the impedance cannot be over 

approximately 74kOhms for a stimulation intensity of 650μA (i.e. the maximal administered 

intensity during threshold determination). Note, the impedance meter is designed for recording 

micro-electrodes, and does not provide accurate impedance measurements for stimulation 

electrodes, but is systematically overestimated due to non-linearity and frequency dependency. 

However, this overestimation does not imply practical consequences to this study. 
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Figure 6.1: DBS-electrode specifications. (A) The quadri-polar DBS-electrode was stereotactically implanted in the 

right hippocampus (AP -5.6, DV -7.4, ML +5.2 relative to Bregma (Paxinos & Watson, 2007)) together with four 

anchor screws. The outer two electrodes are used for stimulation and the inner two electrodes for iEEG. The red dot 

represents the electrode insertion location on the skull. The black dots indicate anchor screw positions. (B) 

Illustration of the quadri-polar DBS-electrode. The DBS-electrode is custom made by twisting together four platina 

iridium wires (fMRI). The unused connection pin is reserved for connection to a ground-electrode, which is 

subcutaneously implanted in the neck. (C) Illustration of the DBS-electrode after fixation to the skull.  

 

 

 

6.2.3 Deep Brain Stimulation 
 

All rats received Poisson distributed unilateral hippocampal stimulation with the same 

parameters as used in the PET experiments (chapter 5), namely 100μs pulse width and 130Hz 

frequency. Yet the stimulation paradigm and intensity differ from those used in the PET 

experiments. 

For the fMRI experiments, the stimulation paradigm was a five-minute-block-design paradigm 

with five cycles consisting of 40 seconds of rest (stimulation OFF) followed by 20 seconds of 

stimulation ON. For each rat the DBS paradigm was applied ten times using five different 

stimulation intensities, which were determined individually based on the subject’s seizure 

threshold. The five different stimulation intensities were set at 10%, 30%, 50%, 70% and 90% 

of the minimal stimulus intensity that gives rise to an epileptic seizure. Every subject underwent 

fMRI on three different scandays, meaning that the DBS paradigm was applied thirty times (i.e. 

30 minutes) in total. Note, in the PET study (chapter 5) only one stimulation intensity (i.e. 60% 

of the threshold determined in the awake rat) was used in the experiments, as a single PET 

scanning session does not allow for the investigation of several DBS-parameters within one 

PET scan. 

Because DBS-fMRI was performed under medetomidine anesthesia, all rats were sedated with 

medetomidine during the thresholding process as well, and the stimulation itself started after at 

least one hour of continuous infusion of medetomidine.  

The detection of ictal discharges was performed by recording the iEEG-signal using the inner 

two wires of the quadri-polar DBS-electrode. The iEEG-signal was amplified using an MRI-

compatible amplifier (Brain Products, Gilching, Germany). The seizure threshold had a mean of 

515μA, and a standard deviation of 130μA. The variation of seizure threshold between rats 

might be depending on three factors. First, the intrinsic biological variability causes differences 

in seizure susceptibility between rats. Second, small deviations in the electrode design (i.e. 

distance between poles) and electrode placement might generate variations in the volume of 

tissue activated (VTA). Since cells are activated at a given membrane current threshold, the 

VTA is dependent on the distance between the electrode and the individual target elements. 

Consequently, it could be that a certain volume of the initial target needs to be activated in order 
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for downstream structures to respond with a seizure. Third, the electrical stimulation can 

activate somata, axons or passing fibers. It is possible that one specific item must be stimulated 

to induce the final effect (i.e. modal recruitment). Therefore variations in electrode placement 

and design can cause variations in modal recruitment, which may lead to variations in the 

seizure threshold. The latter two factors are important to consider especially when working with 

a (rather large) 3mm distance between stimulation poles of the electrodes. However, the 

hippocampus is a large structure (less risk for off-target effects) and this 3mm-electrode design 

appears to work well in preclinical studies of hippocampal DBS (Van Nieuwenhuyse et al., 

2015; Wyckhuys et al., 2010; Wyckhuys et al., 2007). 

The variation in seizure threshold cannot be related to the impedance because the DS4 stimulus 

isolator is characterized by compliance voltage of 48V, which is large enough for our 

experimental purposes. As mentioned earlier, the measured impedances were kept under the 

upper limit and thus for every experiment enough voltage was available at the counter electrode 

to force current to flow while remaining control of the working electrode voltage. 

 

 

6.2.4 Data acquisition 
 

The timeline of the experimental protocol is shown in Fig. 6.2. Every subject underwent MR-

acquisitions on three different timepoints. The first timepoint was one day after the threshold 

determination for all animals. Depending on scanner availability, the time between scanning 

days ranged from one day up to four days. Electrode impedance was checked at the start of each 

scanning day, by connecting an impedance meter (IMP-2, Bak electronics, Sanford Florida, 

USA) to the stimulation poles of the DBS-electrode using 1kHz sine wave testing stimuli. The 

currents used within the set-up are of magnitude < 30nA, meaning this set-up can be used in 

vivo. The impedance did not exceed 70kOhms in 4/7 subjects, and did not exceed 80kOhms in 

3/7 subjects, which is still acceptable to administer up to 90% of the highest seizure threshold. 

 

 

 

 

 

 

 
 

Figure 6.2: Timeline of the experimental imaging protocol. The animals were allowed one week of post-surgical 

recovery, after which the seizure threshold was determined. One day after threshold, the 1st series of fMRI datasets 

were acquired. The 2nd and 3rd series of fMRI datasets were acquired 1 to 4 days after the first set was acquired, 

depending on scanner availability. Finally rats were sacrificed, the DBS-electrode was removed with high caution 

and an MR-scan was acquired. 

 

All acquisitions were performed under medetomidine anesthesia. All rats were initially 

anesthetized with a mixture of isoflurane (5% for induction and 2% for maintenance) and 

medical O2. A bolus of 0.05mg/kg medetomidine was injected subcutaneously, and isoflurane 

was stopped 10 minutes afterwards. Continuous subcutaneous infusion of medetomidine 

(0.1mg/kg/hour) was started 15 minutes after the bolus injection to maintain sedation. At least 

30 minutes was allowed for equilibration before the actual fMRI acquisition was started. After 2 

hours the infusion rate was increased to 0.3mg/kg/hour. After stepping the infusion rate, a 30 

minutes equilibration period was allowed before continuing fMRI acquisitions. Previous fMRI 

studies have shown that tripling the infusion rate after 2.5 hours resulted in a prolonged period 

of similar sedation level up to 6 hours, which could not be achieved with a constant infusion 
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rate (Pawela et al., 2009). After the acquisition atipamezole (0.03mg/kg) was administered to 

reverse the effects of the anesthesia.  

In this study we employed fMRI with blood oxygenation level-dependent (BOLD) contrast, 

which is the most commonly used contrast in fMRI. MR images were acquired on a 7T system 

(Pharmascan 70/16, Bruker, Ettlingen, Germany) using a rat head volume coil in order to 

optimally acquire BOLD responses in deeper subcortical brain structures, such as the 

hippocampus. Fixation of the head of the animal was achieved using the tooth and ear bars of 

the Bruker MR bed, before placement inside the magnet. Rat body temperature was maintained 

at ~37°C by a water-circulated heating pad. Magnetic field homogeneity was optimized in two 

steps. First- and second-order shims were applied on the global volume, followed by local first-

order shims on a volume of 4x6x12mm3 using MAPSHIM. BOLD fMRI acquisitions were 

performed using a multi-slice single-shot gradient echo echo-planar imaging sequence (GE-

EPI). Twelve interleaved slices were acquired with TE = 20ms, slice thickness = 1mm, matrix 

size = 80x80, FOV = 2.5x2.5cm2 and voxel size = 0.312x0.312x1mm3. Each fMRI run consisted 

of 150 repetitions with TR = 2s (total 5min), corresponding to the duration of the stimulation 

protocol. Ten GE-EPI runs (i.e. two times five stimulation intensities in randomized order) were 

acquired with a 5min rest period between scans for neurovascular recovery and to minimize bias 

from potential DBS induced heating and tissue damage. For anatomical reference, T2 weighted 

anatomical images were obtained using a Turbo RARE sequence with TR = 6345ms, TE = 

37ms, slice thickness = 0.6mm, matrix size = 276x320, FOV = 3x3.5cm2.  
 

After completion of the experiment the animals were euthanized with an overdose of 

pentobarbital (150mg/kg, i.p.), and the electrode was removed cautiously. The electrode was 

inspected under the microscope to assess whether any tissue was removed together with the 

electrode, which was in our study never the case. Thereafter, a post-mortem structural MR was 

acquired for electrode path verification purposes and for potential tissue damage evaluation. T2 

weighted anatomical images were obtained with a spatial resolution of 100µm x 100µm in the 

axial plane, i.e. smaller than the thickness of the electrode and thus the lesion. We made sure the 

positioning of one slice was at the level of the electrode. We believe this method is sufficiently 

accurate in assessing the correct electrode position, and thus that a post-mortem histological 

verification was not needed for this purpose. Our goal was to investigate the effect of DBS on 

hippocampal connectivity in general, rather than on the connectivity between hippocampal 

substructures. 
 

The impact of the electrode artifact on the structural and functional MR image is illustrated in 

Fig. 6.3A and Fig. 6.3B/C, respectively. The electrode track obtained via a post-mortem MRI 

and after careful removal of the electrode, is shown in Fig. 6.3D. The electrode track was in the 

right hippocampus for all subjects. 
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Figure 6.3: Illustration of electrode-artifact on MR-images. (A) structural MRI of axial slice at height of electrode. 

(B) functional MRI of axial slice through forebrain. (C) functional MRI of axial slice at height of electrode. (D) post-

mortem structural MRI at height of the electrode path. The post-mortem MRI is used to verify the electrode track 

position. For all rats the electrode track was located in the right hippocampus.  

 

 

6.2.5 Data-analysis 
 

Preprocessing was done in SPM8 (http://www.fil.ion.ucl.ac.uk/) on a subject-by-subject basis. 

First, all images from all sessions were realigned to the first image of the first session, using a 

least squares approach and a 6 parameter rigid body spatial transformation. Second, all datasets 

were coregistered to the anatomical image using a normalized mutual information metric. Third, 

in-plane smoothing was done using a Gaussian kernel with Full Width at Half Maximum 

(FWHM) of (1x1)mm2. Finally, a band pass filter (0.01Hz – 0.08Hz) was applied to reduce low 

frequency and physiological noise (e.g. breathing (~0.3Hz) and heartbeat (~1.0Hz)). No global 

signal regression was performed since detrending of the data did not appear to optimize the 

result. Probably, the filtering step did already suffice to remove low frequency baseline drift 

(e.g. MR scanner drift and aliasing of physiological pulsations), which is particularly important 

in brain regions that weakly activate (Tanabe et al., 2002). In order to prepare the preprocessed 

data for statistical analysis all datasets were normalized on a subject-by-subject basis to their 

mean, using SPM8.  
 

Statistical data-analysis using the general linear model (GLM), which assumes a known 

haemodynamic response function (HRF) to a certain stimulus, is the standard way to identify 

correlated voxels in fMRI data. In this study, we employ a refined data-driven processing 

technique (Independent Component Analysis, ICA) to analyze our fMRI data. ICA has 

demonstrated successful extraction of a priori unknown independent components related to 

brain activations, without imposing constraints on the HRF. This technique divides the BOLD 

signal into different independent temporally correlated components. Therefore, ICA allows the 

detection of varying BOLD responses to a stimulus with varying delays and shapes, which 

could not be detected with GLM analysis that is restricted by HRF constraints. Additionally, 

also independent components related to both physiological and non-physiological noise are 

extracted using ICA (McKeown et al., 2003). ICA is frequently applied in neuroscience 

research to examine functional connectivity of the brain in the resting state, when no stimulus is 

present, and thus when no prior HRF-information can be included in the analysis (Becerra et al., 

2011; Jonckers et al., 2011; Hutchison et al, 2010). However, limited prior information is 

included through the selection of the anatomically relevant components by the investigator 

during interpretation. ICA of the preprocessed fMRI data was performed using GIFT (Group 

ICA of fMRI toolbox (http://icatb.sourceforge.net/). We used 5 components, except in one 

subject that required 15 components for a clear separation of the actual activation for the ICA 

analysis. By choosing a balanced number of components, we prevent that components with 

similar temporal characteristics are not split up over different components, or that regions with 
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different temporal characteristics pile up into one component (Jonckers et al., 2011). Every 

activation or response map is an average across 6 fMRI-sessions, acquired at three different 

scanning days. Only voxels with a Bonferroni corrected p-value below 0.05 were considered 

active and used in further investigation and visualization. Bonferroni correction was done by 

dividing the significance level by the number of brain voxels, i.e. post-smoothing. The 

Bonferroni correction method corrects more strictly than is actually necessary, because it 

assumes that the data at neighbouring voxels are completely independent from each other. 

However, in reality, neighbouring voxels show similar activation patterns within functionally 

defined brain regions. In order to avoid type II errors, we made the correction less strict, by 

dividing by the number of brain voxels post-smoothing. This number was estimated to be 

around 10000, since the rat brain consists approximately of 30000 voxels with dimensions of 

0.312x0.312mm2 and a smoothing kernel of 1 mm FWHM was used. 

The response maps were overlaid on the structural MR. The response maps were not masked. 

The inter-subject reproducibility was evaluated based on the visual comparison of the mean 

response map of all subjects.  
 

Prior to ICA analysis, response maps were compiled using standard GLM analysis, by 

calculating the correlation between the stimulation paradigm and the BOLD response over time 

for each voxel. A Bonferroni corrected p-value of 0.05 was used as the threshold for display. For 

the generation of the GLM-based response maps all fMRI sessions were grouped per subject, per 

stimulation intensity. For completeness, we compared the findings of ICA and GLM analyses.  

 

 

6.3 Results 
 

Bipolar Poisson distributed hippocampal DBS induces a reproducible positive stimulation 

intensity-dependent BOLD response in: ipsilateral hippocampal structures (il HC); contralateral 

hippocampal structures (cl HC); medial thalamic structures (mThal) such as the ventral 

posteromedial thalamic nucleus (VPM) and mediodorsal thalamic nucleï (MD); lateral thalamic 

structures (lThal), such as the ventral posterolateral thalamic nucleus (VPL), the reticular 

thalamic nucleus (Rt), the medial geniculate nucleus (MGN); septal nuclei; striatum; 

hypothalamus (hypoT); medial forebrain structures (mFB), including the nucleus Accumbens 

(NAc); and sensory cortex (SC). In some subjects a positive BOLD response was also observed 

in other structures, such as the mammillary bodies (MM) and the ventral tegmental area (VTA). 
 

Table 6.1 shows the brain structures with a significant DBS-induced BOLD response per 

subject (S1/7). The most reproducible to least reproducible brain structures are listed from top to 

bottom. The response in the cl HC is reproducible throughout all subjects. mThal, septum, mFB 

and hypoT are present in 6/7 subjects and il HC, striatum, lThal and SC in 5/7 subjects. Mean 

whole-brain ICA- and GLM-based response maps are shown for one subject in Fig. 6.4A and 

Fig. 6.4B respectively. Supplementary figures are added in paragraph 10.7 at the end of this 

chapter, showing the ICA-based response maps for the six other subjects.  
 

Furthermore, we can conclude that our results are reproducible within each subject (i.e. in-

between sessions), since data-analysis of the grouped fMRI sessions (within one subject) results 

in a mean response map with significant activation in several brain structures, for all subjects. 
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Table 6.1: Inter-subject reproducibility. 

Structure S1 S2 S3 S4 S5 S6 S7 

cl HC x x x x x x x 

mThal - x x x x x x 

septum - x x x x x x 

mFB x x x x x - x 

hypoT x x x x x - x 

il HC x x x x - x - 

striatum - x x x x - x 

lThal - - x x x x x 

SC - x x x x - x 

MM x x - - - - - 

VTA - x - - - - - 
 

The BOLD response became more widespread with a higher stimulation intensity for all 

subjects. A bilateral BOLD response was observed at 90% of the seizure threshold in all 

subjects, at 70% of the seizure threshold in 5/7 subjects, at 50% of the seizure threshold in 4/7 

subjects, and in two subjects already at 30% of the seizure threshold. At 10% of the seizure 

threshold only a unilateral response was observed in all subjects. These results indicate the 

impact of the stimulation intensity to the spatial extent of the DBS-induced BOLD response. In 

each subject the response became more widespread with increasing stimulation intensity. There 

were no brain structures with a negative BOLD response (after Bonferroni correction) induced 

by DBS in any subject, at any stimulation intensity.   
 

The unlabeled clusters in Fig. 6.4A, and in Supplementary Fig. 6.2-6.7, are considered to be 

fMRI-related artifacts. We observed an artifact in the lateral ventricles (e.g. the two clusters in 

the first two axial slices in Fig. 6.4A) and in the aqueduct, the small channel connecting the 

third and fourth ventricles of the rat brain (e.g. the cluster in the latter axial slice in 

Supplementary Fig. 6.5). These are probably artifacts because their cluster size is independent 

of the stimulation intensity, whilst it is hypothesized that DBS-related clusters become bigger 

with increasing stimulation intensity.  

 

For completeness of the study, we compared the results from the standard GLM analysis to 

those from the ICA analysis. Mean whole-brain ICA- and GLM-based response maps are shown 

for one subject, for all stimulation intensities, in Fig. 6.4A and Fig. 6.4B respectively. 

Additional information on the GLM analysis can be found in Supplementary Fig. 6.1. As to be 

expected, GLM maps and ICA maps show significant correlation. However, GLM analysis 

reveals only unilateral BOLD responses in brain structures of the hippocampal formation, 

whereas ICA analysis also reveals bilateral and secondary BOLD responses in target areas of 

the hippocampus, more distant from the electrode tip. GLM analysis of the individual sessions 

shows significant activation in secondary brain structures in some sessions, but the response 

was not reproducible over sessions or within subject. 

 

We were not able to correlate the stimulation intensity to the intensity or the significance of the 

BOLD response. This is illustrated in Fig. 6.5 for one subject. The graph depicts the mean 

timecourse of the cluster with the highest correlation to the stimulation paradigm per 
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stimulation intensity. This mean timecourse was calculated using GLM. The purpose of this 

graph is only to illustrate that the degree of correlation to the stimulation paradigm could not be 

correlated to the stimulation intensity. However, the size of the used clusters to calculate the 

mean timecourse increased with increasing stimulation intensity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Representative whole-brain BOLD fRMI response-maps of one subject resulting from ICA and GLM 

analysis, listed separately in (A) and (B) respectively. All activation maps are thresholded with a Bonferroni 

corrected p-value < 0.05. Every response map displays the DBS-induced BOLD-response of 5 different stimulation 

intensities. Every row in the activation map represents a single intensity, listed from top to bottom, from 10% of the 

seizure threshold to 90% of the seizure threshold. Every row displays the mean of 6 fMRI-datasets for the specific 

stimulation intensity. Axial anatomical scans are co-registered with the corresponding activation maps. Slices 

progress from most anterior at the left to most posterior at the right. The hippocampal structures (HC), lateral 

thalamic structures (lThal), medial thalamic structures (mThal), septal nuclei (septum), striatum, hypothalamus 

(hypoT), medial forebrain (mFB), sensory cortex (SC), mammillary bodies (MM), and ventral tegmental area 

(VTA) are labeled with white arrows. (A) ICA-based response maps. The intensity of the color corresponds to the 

level of significance of the BOLD response, indicated by a z-score in the color bar on the right. (B) SPM-based 

response maps. The intensity of the color corresponds to the level of correlation of the voxel’s timecourse to the 

stimulus, indicated by an F-value in the color bar on the right. 
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Figure 6.5: BOLD responses at different stimulation intensities in one subject. The graph depicts the mean timeseries 

per stimulation intensity in the volume of interest with the highest significance, per stimulation intensity, in one 

subject. The volume of interest increased with increasing stimulation intensity. 

 

 

 

6.4 Discussion 
 

6.4.1    Whole-brain response of DBS 
 

With our simultaneous DBS-fMRI experiment we demonstrated that hippocampal DBS, with 

preclinically proven successful stimulation parameters to treat TLE (Vonck et al., 2013), 

significantly affects the BOLD signal in several brain structures of the limbic system. In some 

subjects, additional BOLD responses were observed in mesolimbic brain structures. Secondly, 

we were able to visualize not only global, but also bilateral responses to in vivo stimulation of 

the hippocampus. Moreover, this bilateral connectivity appears to increase with increasing 

intensity.  

 

6.4.1.1  Limbic activation 
 

The rat hippocampus is anatomically and physiologically well defined and is known as the key 

structure in the limbic system. Thus, it is not surprisingly that, in this study, local stimulation of 

the hippocampus induces distal responses in other structures of the limbic system, such as 

thalamic structures, the hypothalamus, septum and mammillary bodies.  

 

6.4.1.2  Mesolimbic activation 
 

In some subjects, we observed significant BOLD responses in brain structures of the 

mesolimbic pathway (VTA, mFB/NAc) as well. The mesolimbic pathway is a dopaminergic 

pathway in the brain, which begins in the VTA and connects to the NAc. However, 

neuroimaging studies have shown that the hippocampus and amygdala are also part of the 

mesolimbic network (Bunzeck et al., 2012; Koob and Volkow, 2010). This might explain why 

we find additional responses in the VTA and mesial forebrain structures. Moreover, previous 

fMRI studies of electrical stimulation of the rat hippocampus have also shown secondary fMRI 

responses in target regions of the hippocampus, such as the septum, striatum, NAc/mFB, 

substantia nigra, anterior cingulate cortex (ACC) and SC, indicating that stimulation of the 

hippocampal formation can activate the limbic and mesolimbic pathway (Alvarez-Salvado et 
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al., 2014; Helbing et al., 2013; Angenstein et al., 2013; Krautwald et al., 2013; Canals et al., 

2009; Canals et al., 2008).  

With regard to epilepsy, clinical and experimental studies have investigated the role of the 

dopaminergic system (Bozzi et al., 2011; Starr, 1996; Star, 1993), which is well known to 

regulate seizure activity. An fMRI study in unilateral mesial TLE (mTLE) patients has shown 

important decreases of functional connectivity in the ventromesial limbic forebrain regions and 

in the NAc (Pittau et al., 2012). These regions are involved in long-term memory for novel 

events and reward. The authors also observed reduced connectivity in the hippocampus, 

amygdala and default mode network (Pittau et al., 2012). An ictal iEEG study in TLE patients 

has suggested that the mFB is strongly affected by mesial temporal activity (Lieb et al., 1991), 

indicating a preferential seizure spread from mesial temporal lobes to mesial frontal lobes, 

consequently leading to reduced connectivity in all brain structures affected by seizure 

propagation. This reduced functional connectivity in the mesial temporal lobe structures may 

explain cognitive and psychiatric impairments often found in patients with mTLE. The 

therapeutic potential of DBS for mTLE patients, for seizure reduction purposes has been 

hypothesized in literature  (Velasco and Fischer, 2014; Velasco et al., 2007; Vonck et al., 2013). 

Further research is necessary to investigate potential DBS-induced restoration of mTLE-induced 

loss of functional connectivity. 

 

6.4.1.3  Bilateral activation 
 

We observed increasing DBS-induced bilateral connectivity with increasing stimulation 

intensity. These findings are concordant with previous rodent fMRI research of direct 

stimulation of the perforant pathway of the rat hippocampus, which revealed a linear 

relationship between the intensity used to stimulate the hippocampal formation and the 

extension of the induced BOLD response. The higher the stimulation intensity, the more 

bilateral the response was (Canals et al., 2008; McIntyre et al. 2004).  

 

6.4.1.4  Reproducibility 
 

To our knowledge this is the first DBS-fMRI study with a chronically implanted MR-

compatible electrode for hippocampal DBS. Previous fMRI studies of direct electrical 

stimulation of the hippocampus, are limited to acute stimulation and do not use a chronically 

implanted DBS-electrode, meaning their experimental protocol cannot be used for longitudinal 

studies (Alvarez-Salvado et al., 2014; Helbing et al., 2013; Angenstein et al., 2013; Krautwald 

et al., 2013; Canals et al., 2009; Canals et al., 2008). Other DBS-fMRI studies have used 

chronically implanted electrodes where they targeted thalamic structures and could reveal 

thalamic-cortical connectivity (Yang et al., 2014; Shyu et al., 2004). Besides longitudinal 

investigation of DBS, a chronically implanted electrode allows for a post-surgical recovery to 

minimize acute tissue inflammation and for electrode fixation with dental cement to minimize 

electrode movement during acquisition. With this study, we showed that our experimental 

protocol, for longitudinal DBS-fMRI studies, provides reproducible results.  
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6.4.2    GLM vs. ICA 
 

Comparison of the results from the GLM analysis to those from the ICA analysis demonstrates 

that: (1) ICA analysis is able to replicate the results found with the standard GLM analysis; (2) 

ICA analysis returns additional information. 

Since the GLM map indicates voxel regions that vary according to the a priori defined stimulus, 

a statistically independent source analysis should indeed include the brain activation found with 

GLM. With GLM we only found a unilateral brain response, whereas with ICA we were able to 

trace a bilateral brain response in structures remote from the stimulated area. With GLM, each 

voxel is independently evaluated for a statistical relationship between its timeseries and an a 

priori modeled stimulus response. ICA analysis is not restricted by the use of a specific 

modeled response, since it looks for functionally connected regions, which are indirectly 

dependent, or independent of the stimulus. This could explain why ICA analysis returns more 

information. Since with ICA, areas with a delayed HRF, remote from the stimulated area, can 

be traced as well.  Our findings coincide with previous evoked fMRI studies where both data 

analysis techniques are compared. The authors found the regions of activation identified by ICA 

overlapped substantially with those identified by SPM and that ICA was able to separate 

additional structures. ICA is less sensitive to motion artifacts and therefore could provide better 

results in datasets corrupted with motion artifacts, e.g. due to changes in the level of sedation 

(Quigley et al., 2002; Simeral et al., 1999).   

 

 

6.4.3    Comparison to other imaging modalities 
 

In contradiction to the DBS induced increased BOLD responses, our PET study (chapter 5) 

shows a general trend toward hippocampal and limbic inhibition. Comparison between PET and 

fMRI findings is difficult, because each technique is based on different physiological processes 

and uses a different timescale. While BOLD fMRI uses a temporal resolution of seconds, 18F-

FDG-PET has a time window of 30-45 minutes. The contradiction between findings could be 

attributed to this difference in time course between both imaging modalities. We hypothesize 

that DBS might lead to initial (order of seconds) activation of the targeted structure and might 

lead to a decrease in baseline activity of the targeted structure after 30 minutes of continuous 

stimulation (due to homeostatic downscaling mechanisms). 
 

On the other hand, the spatial extent of the response was similar between modalities. Similar to 

the PET (and SPECT study), we observed a response in the bilateral hippocampus and other 

limbic structures, and that the intensity of the response remained unaltered for all stimulation 

intensities, but that the spatial extent of the response became more widespread with higher 

stimulation intensities, meaning that higher stimulation intensities lead to larger volumes being 

stimulated. Another 18F-FDG-PET study investigated the neuronal network activity patterns in 

the healthy rat brain, affected by DBS of the subthalamic nucleus. They also concluded that 

unilateral DBS affects brain activity ipsi- as well as contralateral to the stimulation site, which 

implies a bilateral effectiveness (Klein et al., 2011).  
 

Taken together our functional imaging studies of DBS in the healthy rat brain indicate that DBS 

exerts its effect not just locally but globally through a combination of several mechanisms (not 

just activation or inhibition alone), resulting in a network effect (Chang et al., 2012; Lyons et 

al., 2011). Since the hippocampus is not only the presumed ictal focus in TLE but is also a 
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structure involved in networks regulating neuronal excitability, it is plausible that hippocampal 

DBS may subsequently affect the entire epileptogenic network (Boon et al. 2007). 

 

 

6.4.4   Limitations 
 

Simultaneous DBS-fMRI studies come with a few limitations: (1) Electrode artifact. The 

presence of metal in the MRI scanner causes the (f)MRI-signal to be distorted at and around the 

electrode, even with the use of an MR-compatible electrode (Lai et al., 2014; Younce et al., 

2014). This might cause underestimation of the BOLD response at the site of the electrode, and 

could explain why we mainly observed a contralateral hippocampal response as opposed to an 

ipsilateral hippocampal response. PET imaging on the other hand does allow the visualization of 

DBS induced changes nearby the electrode. (2) Deviations in electrode placement, smaller than 

the spatial resolution of the MR images, may lead to large differences in response. This might 

explain the inter-subject variability of the affected brain structures, as shown in table 1. (3) DBS 

might cause temporary changes in cellular activity that might be overlooked with fMRI. (4) The 

BOLD response to a stimulus involves a complex interaction of the cerebral blood flow (CBF), 

cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2) (Logothetis et 

al., 2001). This complex interaction within the fMRI signal makes it difficult to interpret BOLD 

fMRI data alone. Additional fMRI studies, such as CBV, CBF, and functional connectivity 

studies, and cellular studies might provide complementary information. (5) MRI is generally 

considered to be a safe imaging technique, as opposed to PET and SPECT, which are prone to 

the risk of exposure to ionizing radiation. However, the presence of intracerebral metal makes 

MRI a potentially dangerous technique in patients with subcutaneously DBS units. Safety risks 

include heating, local tissue damage due to high frequency currents and electrode displacement, 

induced by the MR gradient coils or/and radiofrequent pulses (Tagliati et al., 2009; Baker et al., 

2005; Jech et al., 2003; Finelli et al., 2002). Despite the presence of intracerebral metal, 

neuronal function is unlikely to be affected by the high frequency of induced currents (Georgi et 

al., 2004). Provided a number of technical precautions are taken, MRI can be regarded as safe 

even in patients implanted with a DBS system (Zrinzo et al., 2011; Tagliati et al., 2009; Rezai et 

al., 2004). Carmichael et al. reported that temperature increases sufficiently low to suggest that 

thermal or electromagnetically mediated experimental confounds to fMRI with DBS are 

unlikely (Carmichael et al., 2007). Additionally, in patients with a DBS-system implanted, MRI 

is used routinely to control for correct implantation or more recently, for MR-guided 

implantation of the electrode (Carmicheal et al., 2007; Yelnik et al., 2003; Liu et al., 2001). 

However, further studies are required to rule out safety risks of MRI in patients implanted with 

a DBS system.  
 

Due to an elaborate pre-experimental preparation we were able to establish an experimental 

protocol (i.e. the surgery, DBS and scan protocol) that minimized these limitations. Because we 

did not observe any signs of local tissue damage on the post-mortem structural MR images, and 

the BOLD response to DBS was found to be consistent, we can conclude we established a safe 

and robust experimental design.  
 

As a final note to limitations of this study: inherent to electrical stimulation is the lack of 

specificity, which makes it difficult to evaluate the relevance of a specific brain structure to the 

network that is modulated by hDBS. In the future, opto-fMRI, which is characterized by an 

unprecedented spatial resolution, could be used to investigate the functional contribution of 
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separate brain structures of the limbic system to the epileptogenic network or the therapeutic 

efficacy of DBS-therapy.  

 

 

6.5 Conclusion 
 

With this study, we demonstrated that simultaneous DBS-fMRI is able to map distal and 

bilateral responses to local circuit activation on a large spatial scale, and that the brain volume 

affected by DBS increases with an increasing stimulation intensity. To our knowledge this is the 

first DBS-fMRI study with a chronically implanted MRI-compatible electrode for hippocampal 

DBS. We showed that our experimental protocol, for longitudinal DBS-fMRI studies, provides 

reproducible results. Our results demonstrate that hDBS robustly modulates the limbic and 

mesolimbic network. These findings may hold clinical relevance for hippocampal DBS therapy 

in epilepsy cases, as connectivity in these networks have previously been shown to be 

suppressed in mTLE. Further research is necessary to investigate potential DBS-induced 

restoration of mTLE-induced loss of functional connectivity in (meso)limbic brain structures. 

Clinical simultaneous DBS-fMRI studies could be complemented with behavioral and cognitive 

evaluation in order to achieve the visualization of therapeutic DBS circuits. In this way, 

translation to clinical investigation of existing as well as new parameters and targets for DBS 

might lead to the reduction of non-responders to the treatment. 

 

 

6.6 Original contributions 
 

The work presented in this chapter resulted in three international conference contributions (see 

[5, 8-10] in list of conference contributions). The results of this experiment were published in 

the peer-reviewed A1 journal Plos One (see [2] in list of publications) (first author). The 

surgeries discussed in section 6.2.3 were performed by Ine Dauwe or the author of this chapter. 

The design of the electrode, stimulation set-up, acquisition and data-analysis, were performed 

by the author of this chapter. 
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Supplementary figure 6.1: Representative DBS fMRI result of one subject, obtained with GLM analysis. The 

response map is the result of 6 sessions grouped together of one subject, at a stimulation intensity of 90% of the 

threshold. A positive BOLD response can be clearly observed in the ipsilateral hippocampus. The response map is 

thresholded at p < 0.05, after Bonferroni correction.  
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Supplementary figure 6.2: Individual whole-brain BOLD fRMI response map of subject 2, resulting from ICA 

analysis. The response map is thresholded with a Bonferroni corrected p-value < 0.05. The intensity of the color 

corresponds to the level of significance of the BOLD response, indicated by a z-score in the color bar on the right. 

The response map displays the DBS-induced BOLD-response of 5 different stimulation intensities. Every row in the 

response map represents a single intensity, listed from top to bottom, from 10% of the seizure threshold to 90% of the 

seizure threshold. Every row displays the mean of 6 fMRI-datasets for the specific stimulation intensity. Axial 

anatomical scans are co-registered with the corresponding activation maps. Slices progress from most anterior at the 

left to most posterior at the right. The hippocampal structures (HC), medial thalamic structures (mThal), septal 

nuclei (septum), striatum, hypothalamus (hypoT), medial forebrain (mFB), mammillary bodies (MM) and ventral 

tegmental area (VTA) are labeled with white arrows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 6.3: Individual whole-brain BOLD fRMI response map of subject 3, resulting from ICA 

analysis. The response map is thresholded with a Bonferroni corrected p-value < 0.05. The intensity of the color 

corresponds to the level of significance of the BOLD response, indicated by a z-score in the color bar on the right. 

The response map displays the DBS-induced BOLD-response of 5 different stimulation intensities. Every row in the 

response map represents a single intensity, listed from top to bottom, from 10% of the seizure threshold to 90% of the 

seizure threshold. Every row displays the mean of 6 fMRI-datasets for the specific stimulation intensity. Axial 

anatomical scans are co-registered with the corresponding activation maps. Slices progress from most anterior at the 

left to most posterior at the right. The hippocampal structures (HC), lateral thalamic structures (lThal), medial 

thalamic structures (mThal), septal nuclei (septum), striatum, hypothalamus (hypoT), medial forebrain (mFB) and 

sensory cortex (SC) are labeled with white arrows.  
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Supplementary figure 6.4: Individual whole-brain BOLD fRMI response map of subject 4, resulting from ICA 

analysis. The response map is thresholded with a Bonferroni corrected p-value < 0.05. The intensity of the color 

corresponds to the level of significance of the BOLD response, indicated by a z-score in the color bar on the right. 

The response map displays the DBS-induced BOLD-response of 5 different stimulation intensities. Every row in the 

response map represents a single intensity, listed from top to bottom, from 10% of the seizure threshold to 90% of the 

seizure threshold. Every row displays the mean of 6 fMRI-datasets for the specific stimulation intensity. Axial 

anatomical scans are co-registered with the corresponding activation maps. Slices progress from most anterior at the 

left to most posterior at the right. The hippocampal structures (HC), lateral thalamic structures (lThal), medial 

thalamic structures (mThal), septal nuclei (septum), striatum, hypothalamus (hypoT), medial forebrain (mFB) and 

sensory cortex (SC) are labeled with white arrows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 6.5: Individual whole-brain BOLD fRMI response map of subject 5, resulting from ICA 

analysis. The response map is thresholded with a Bonferroni corrected p-value < 0.05. The intensity of the color 

corresponds to the level of significance of the BOLD response, indicated by a z-score in the color bar on the right. 

The response map displays the DBS-induced BOLD-response of 5 different stimulation intensities. Every row in the 

response map represents a single intensity, listed from top to bottom, from 10% of the seizure threshold to 90% of the 

seizure threshold. Every row displays the mean of 6 fMRI-datasets for the specific stimulation intensity. Axial 

anatomical scans are co-registered with the corresponding activation maps. Slices progress from most anterior at the 

left to most posterior at the right. The hippocampal structures (HC), lateral thalamic structures (lThal), medial 

thalamic structures (mThal), septal nuclei (septum), striatum, hypothalamus (hypoT), medial forebrain (mFB), and 

sensory cortex (SC) are labeled with white arrows.  
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Supplementary figure 6.6: Individual whole-brain BOLD fRMI response map of subject 6, resulting from ICA 

analysis. The response map is thresholded with a Bonferroni corrected p-value < 0.05. The intensity of the color 

corresponds to the level of significance of the BOLD response, indicated by a z-score in the color bar on the right. 

The response map displays the DBS-induced BOLD-response of 5 different stimulation intensities. Every row in the 

response map represents a single intensity, listed from top to bottom, from 10% of the seizure threshold to 90% of the 

seizure threshold. Every row displays the mean of 6 fMRI-datasets for the specific stimulation intensity. Axial 

anatomical scans are co-registered with the corresponding activation maps. Slices progress from most anterior at the 

left to most posterior at the right. The hippocampal structures (HC), lateral thalamic structures (lThal), medial 

thalamic structures (mThal) and septal nuclei (septum) are labeled with white arrows.  

 

Supplementary figure 6.7: Individual whole-brain BOLD fRMI response map of subject 7, resulting from ICA 

analysis. The response map is thresholded with a Bonferroni corrected p-value < 0.05. The intensity of the color 

corresponds to the level of significance of the BOLD response, indicated by a z-score in the color bar on the right. 

The response map displays the DBS-induced BOLD-response of 5 different stimulation intensities. Every row in the 

response map represents a single intensity, listed from top to bottom, from 10% of the seizure threshold to 90% of the 

seizure threshold. Every row displays the mean of 6 fMRI-datasets for the specific stimulation intensity. Axial 

anatomical scans are co-registered with the corresponding activation maps. Slices progress from most anterior at the 

left to most posterior at the right. The hippocampal structures (HC), lateral thalamic structures (lThal), medial 

thalamic structures (mThal), septal nuclei (septum), striatum, hypothalamus (hypoT), medial forebrain (mFB) and 

sensory cortex (SC) are labeled with white arrows.  
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Chapter 7 

 

Conclusions and future 

perspectives 
 

 

7.1 Significance  
 

In the current work, we used functional neuroimaging techniques and optogenetics to explore 

experimental deep brain stimulation (DBS) targets for the treatment of Parkinson’s disease (PD) 

and epilepsy. Currently, the subthalamic nucleus (STN) and the anterior thalamic nucleus 

(ANT) are standardly targeted in DBS-therapy for PD and epilepsy, respectively. Our 

investigation is significant because despite the well-reported clinical success of STN- and ANT-

DBS, there are still non-responders to the treatment. In order to improve treatment efficacy, 

research is necessary to explore whether other brain structures might have therapeutic potential 

as well. More specifically, we aimed to investigate three experimental DBS targets associated 

with either PD or epilepsy, namely the substantia nigra pars reticulata, globus pallidus externa 

and hippocampus. Therefore, we defined three specific research goals in this thesis. In this 

chapter, a general overview of this work is presented, results and conclusions are summarised, 

and we will draw some general conclusions and provide some possible future research 

directions. 

 

 

7.2 Research goals 
 

 

Goal 1 - Functional circuit mapping of two striatal output nuclei using 

simultaneous DBS-fMRI 

 

We employed DBS-fMRI to functionally and unbiasedly map the functional connectivity of 

Substantia Nigra pars reticulata (SNr) and the Globus Pallidus externa (GPe), and to 

investigate the influence of the stimulation frequency on the measured connectivity profiles. 

This set of experiments is described in chapter 3 of this thesis.  

Previously, the SNr and GPe have been described as simple functionally antagonistic relay 

nuclei through the basal ganglia. However, recent anatomical studies have demonstrated 

newfound complexity in their connectivity, highlighting their potential role as far more than 
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relay nuclei alone. The functional roles of these novel circuit elements are likely complex and 

not easily predicted.Therefore, closer evaluation of the functional connectivity patterns among 

its constituent nuclei is necessary. Complementary to anatomical studies, functional Magnetic 

Resonance Imaging (fMRI) combined with neural stimulation approaches such as DBS, provide 

an ideal means for mapping the dynamic output patterns of target nuclei, including the 

directionality of downstream modulation (excitation or inhibition), and alterations in healthy vs. 

disease states. Moreover, the SNr and GPe are currently being explored as potential non-

canonical DBS targets for high frequency DBS-therapy of PD.  

Simultaneous DBS-fMRI with Cerebral Blood Volume (CBV) measurements revealed a 

number of surprising evoked responses, including unexpected CBV decreases within the 

striatum during DBS at either target, as well as GPe-DBS-evoked positive modulation of frontal 

cortex. Functional connectivity MRI provided evidence of robust, frequency-dependent global 

network modulation by electrical SNr- and GPe -stimulation, with more robust network changes 

observed with 130Hz compared to 40Hz stimulation. This work thus contributes to a growing 

literature demonstrating extensive and unanticipated functional connectivity among basal 

ganglia nuclei. Further, the inclusion of high frequency stimulation in our DBS experiments 

facilitates a translational perspective on our connectivity maps, as high frequency DBS at the 

SNr or GPe has demonstrated therapeutic benefits in Parkinson’s disease. 

 

 

Goal 2 - Functional circuit mapping of the Globus Pallidus externa using 

simultaneous opto-fMRI 
 

We employed optogenetics with simultaneous fMRI measurements, also called “opto-fMRI”, to 

investigate functional connectivity of the GPe in healthy and Parkinsonian rats. Optogenetics, or 

stimulation using light, is a state-of-the-art neuromodulation technique that has been proposed 

as a more selective alternative to electrical stimulation (DBS). This set of experiments is 

explained in chapter 4 of this thesis.  

Electrical stimulation is well known to affect passing afferent fibers, in addition to cell bodies 

and efferent fibers, causing diffuse off-target effects. The presence of a metal electrode in the 

brain together with these diffuse off-target effects potentially confound the fMRI signal. In 

contrast, optogenetic stimulation has been confined to opsin gene transduction of local cell 

bodies without the confound of photosensitizing passing fibers. Furthermore, the size of the 

optic fiber artifact is substantially less as opposed to the DBS-electrode artifact. Consequently, 

opto-fMRI enables the visualization of downstream responses with increased specificity. 

However, little is known regarding the extent to which optogenetic stimulation mirrors the 

circuit-level responses achieved with electrical DBS. 

As opposed to electrical stimulation, optogenetic stimulation resulted in only ipsilateral 

modulation, namely CBV increases in the GPe, and CBV decreases in the neighboring dorsal 

striatum. Furthermore, we were unable to achieve detectable circuit modulation in the prefrontal 

cortex, confirming the selectivity of the optogenetics technology.  

Surprisingly, in Parkinsonian rats, we observed larger positive responses in the GPe, reduced 

striatal vasoconstriction and a unique prefrontal negative CBV signal during GPe stimulation. 

Our data clearly do not conform to the traditional model of the GPe as a “simple” relay nuclei, 

since modulation of several non-canonical downstream circuits was observed, including 

prefrontal cortex and striatum. Additionally, this study confirms GPe circuit remodeling 

following dopamine loss. Correlation of these findings to motor improvement in these rats could 

reveal the therapeutic role of the GPe neurons in DBS. With this study we exhibited the added 
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value of using opto-fMRI for a more detailed investigation of normal and pathological brain 

circuitry.  

 

 

Goal 3 - Functional investigation of hippocampal DBS using simultaneous DBS-

PET and DBS-fMRI 
 

Our third goal is twofold. Hippocampal DBS has been proposed as an effective treatment in 

case of refractory temporal lobe epilepsy. Previous animal research has shown that electrical 

stimulation of the hippocampus results in reduced perfusion of several regions of the limbic 

system. Hence, we wanted to investigate whether hippocampal DBS also results in a reduced 

glucose metabolism using PET. Moreover, our progress in the development of fMRI 

procedures, to study DBS effects in rats, has created the opportunity to study additional 

experimental DBS-targets, such as the hippocampus. Thus secondly, we wanted to investigate 

how hippocampal DBS modulates brain circuitry because the results might contribute to the 

interpretation of the PET study. The DBS-PET experiments are explained in chapter 5, and the 

DBS-fMRI experiments are described in chapter 6. 

In 2010, a SPECT-study in our lab revealed hippocampal DBS-induced hypoperfusion in the 

limbic system. Complementary to these findings, we observed significant decreases in the 

glucose metabolism in the ipsi- and contralateral hippocampus, as well as in other areas of the 

limbic network. Both studies suggest an underlying functional inhibition mechanism of DBS, 

i.e. downregulation of neuronal activity, and that this downregulation is not only local but 

appears also distal from the site of stimulation. Importantly, these findings may explain the 

seizure-suppressive of DBS, since a seizure is characterized by excessive and hypersynchronous 

neural activity.  

In contradiction to the DBS induced metabolic signal drop in the limbic system, our DBS-fMRI 

study demonstrates DBS-induced activation of the limbic system. This may be attributed to the 

difference in length of stimulation in both experimental protocols, i.e. 60min of DBS (PET-

study) vs. blocks of 20s of DBS (fMRI-study). Taken together, these studies suggest an initial 

acute DBS-evoked activation (characterized by fMRI signal increases), after which homeostatic 

downscaling mechanisms take place in response to more chronic stimulation (characterized by 

metabolic decreases). Moreover, this study highlights the importance of multi-modal imaging in 

the investigation of DBS and neurological disorders.  

 

 

7.3 Future research possibilities 
 

7.3.1 Preclinical applications 
 

To our knowledge, these are the first preclinical DBS-fMRI studies to investigate the SNr, GPe 

and hippocampus in vivo; and the first opto-fMRI study to investigate GPe-circuitry in healthy 

and Parkinsonian rats. Our considerable progress in the development and application of fMRI 

procedures to study the effects of DBS and optogenetics in rats, tackling several of the major 

technical obstacles, can be seen as one of the major contributions of this research. The 

knowledge and experience obtained throughout these studies, enables further preclinical 

investigation using DBS- and opto-fMRI to explore neurological disorders and DBS-therapy.  
 

One possible research direction involves the identification of therapeutically effective DBS-

targets within the circuit modulated by DBS. When combining optogenetics with behavioral 
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testing in rat models for PD or epilepsy, therapeutic relevance of DBS-targets or other 

stimulation parameters could be determined. If preclinical in vivo studies using optogenetics 

reveal that there is an optimal target and stimulation paradigm that most effectively suppresses 

the symptoms of PD or epilepsy, then this would have an immediate impact on DBS-treatment 

in the clinical setting.  
 

Besides the use of optogenetic techniques to help uncover the mechanisms of action of DBS, 

optogenetics, and more specifically opto-fMRI, could also be used as a complementary tool to 

investigate neurological disorders such as epilepsy. For instance, it would be highly interesting 

to investigate the role of a specific group of neurons in seizure initiation/propagation or seizure 

suppression in rodent models of epilepsy. It has already been demonstrated that optical 

inhibition of eNpHR-expressing hippocampal excitatory neurons delays seizure onset, and 

diminishes seizure evolution (Sukhotinsky et al., 2013). Moreover, seizure control has been 

achieved by activating parvalbumin-containing hippocampal interneurons with ChR2 or by 

inhibiting eNpHR-expressing hippocampal excitatory neurons (Armstrong et al., 2013). 

Nowadays, combinatorial opsins have become available, which enable the independent control 

of neuronal populations with blue and green light simultaneously (e.g. SFO: 546 nm 

deactivation; 470 nm activation). An interesting future experiment would be to simultaneously 

enhance the activity of inhibitory interneurons while reducing the activity of the excitatory cells 

in order to obtain a more effective seizure control in a rodent model of TLE (e.g. the viral 

injection of AAV5-CaMKIIa-SSFO-EYFP in transgenic mice with C1V1-mCherry expression 

in GABA-ergic PV neurons). 

 

 

7.3.2 Translational research 
 

Despite the promising progress in the development of closed-loop electrical neuromodulation 

devices, the use of optogenetic technology might improve the specificity of modulation and 

provide dynamic adjustments of stimulation on the basis of an individual patient’s needs. 

Additionally, it is believed that optogenetics might even be used as a neuromodulation therapy 

in humans in the future because some viral delivery vectors such as AAV are considered to be 

safe. The remaining safety issues therefore mainly relate to the transgenes used itself. ChR2 has 

been proven to work successful in humans, and on-going gene therapy trials for the treatment of 

PD might open doors for using gene therapy for future opsin delivery in humans. 
 

Although translational research of optogenetic neuromodulation therapies would be highly 

interesting, it is still highly challenging due to the high amount of translational obstacles 

(technical, practical and regulatory). Thus, rather than using optogenetics as a treatment, the use 

of optogenetics as a research tool (to investigate neurological disorders and treatments) will 

probably have a more direct impact of optogenetics on clinical care. 

 

 

7.4  Final conclusion 
 

In the current work we developed a robust fMRI protocol to investigate how DBS or 

optogenetics affects brain circuitry. We first employed DBS-fMRI to explore brain circuitry 

modulation by electrical stimulation of the SNr and GPe, and revealed new unanticipated 

connections between basal ganglia nuclei. Moreover, cortical responses (including motor 

cortex) to GPe-DBS peaked at a clinically relevant frequency (i.e. 130Hz), suggesting that the 
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GPe is functionally connected with motor cortex at therapeutic stimulation frequencies. To 

investigate these interesting findings more in detail, we next integrated fMRI and optogenetics 

for selective stimulation of GPe neurons in healthy and Parkinsonian rats, and confirmed the 

added specificity of using opto-fMRI. Finally, we aimed to further investigate hippocampal 

DBS, by performing a DBS-PET and DBS-fMRI study, and revealed opposing mechanisms 

between acute and long-term DBS. The experience gained through this set of experiments 

facilitates future investigation of epilepsy using opto-fMRI. 
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