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Abstract—In cloud environments, resources can be requested
on-demand when they are needed. A cloud management system is
responsible for determining which physical machines are respon-
sible for processing the requests. The problem of determining
which servers are used for which services is referred to as
the Cloud Application Placement Problem (CAPP), and multiple
criteria such as cost and number of migrations must be taken
into account. When applications are constructed as a collection
of communicating services, such as in Service-Oriented Archi-
tectures, it becomes important to take the underlying network
properties into account when these placement decisions are made.
In this paper, we propose an Integer Linear Programming (ILP)
formulation for the CAPP, which optimizes multiple criteria such
as cost, latency and number of migrations between subsequent in-
vocations by using multiple optimization criteria. We also present
hierarchical algorithms based on particle swarm optimization
and genetic algorithms to solve the CAPP. These algorithms are
be executed within a management hierarchy, which reduces the
amount of information needed for the algorithms to function,
increasing scalability of the management system. Finally, we
evaluate the hierarchical algorithms by comparing them to an
optimal algorithm based on the ILP formulation.

I. INTRODUCTION

The Cloud Application Placement Problem (CAPP) is used
to determine on which machines applications and services are
instantiated within clouds. This optimization problem is subject
to many constraints, such as CPU, memory, bandwidth and
management policies, and can greatly influence the number
of requests that can be accepted, making it an important
problem for cloud providers. While it is possible to determine
optimal solutions for the CAPP, these solutions scale badly
as the problem is NP-hard. This makes the calculation very
time-consuming, and hardly scalable when the number of
requests, applications, or resources changes over time.

We consider that applications that are composed of multiple
communicating components, such as applications that are
designed using a Service-Oriented Architecture (SOA). In such
an architecture, applications are constructed by combining a
set of communicating services. Each of these services can be
provided by a virtual machine, and a service may be used
by multiple tenants. When such an application is instantiated
within a cloud, the services of each application are allocated
on resources in the network, and may be distributed within the
network. If this is the case, communication is required between
these different resources, and the impact on the underlying
network should therefore not be abstracted in the problem
definition. Apart from bandwidth use, various other factors,
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such as latency, cost and number of service migrations between
invocations in a dynamic scenario should also be taken into
account.

As the scale of cloud environments increases, the scala-
bility of management applications becomes more important.
Hierarchical management approaches [1] scale well, while still
maintaining a good overview of the global system state: at
lower levels of the hierarchy, the management system has a
detailed view of a small part of the system state, while at
higher levels in the hierarchy, a coarser, less detailed view of
a larger part of the entire system is stored.

In this paper, we address three research questions: (1) How
can the requirements, optimality, network-awareness, and
migration-awareness, be represented formally and how can
the various objectives be prioritized? (2) How can heuristic
hierarchical algorithms, using limited local information to
solve the CAPP, be designed? and (3) How do the heuristic
algorithms perform compared to an optimal, ILP-based algo-
rithm, both in terms of placement quality and execution speed?
To achieve this, we propose a formal model for the network-
aware CAPP which takes the network infrastructure of a cloud
provider into account, that is designed to deal with applications
built conforming a SOA. We also present two hierarchical
algorithms, based on Particle Swarm Optimization (PSO) [2]
and Genetic Algorithms (GAs) [3], that were designed to
calculate scalable near-optimal solutions for this problem. The
presented model and algorithms optimize multiple objectives:
the number of accepted requests, and the network demand
satisfaction are maximized, while the number of compute
nodes used, the number of service migrations and the hop
count between communicating services are minimized.

In the next Section we discuss related work. Subsequently,
in Section III, we formally describe the network-aware CAPP.
In Section IV the designed management algorithms are dis-
cussed. In Section V we describe the evaluation setup, which
is followed by the evaluation in Section VI. Finally, in Sec-
tion VII we state our conclusions.

II. RELATED WORK

In this paper we study the application placement prob-
lem [4]. Multiple centralized solutions to solve this problem
have been proposed [5], [6], [7], [8]. Fully distributed so-
lutions, that lack a global system overview, have also been
proposed in literature. These approaches work using peer-to-
peer communication [9], [10] and economic approaches where
requests are traded between nodes [11], [12].
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In our previous work, we have designed hierarchical
application placement algorithms [13] that were not network-
aware as they focused on placing self-contained applications.
Now, by contrast, we focus on managing applications
consisting of communicating services, where the underlying
network can not be abstracted. Additionally, in [14]
and [15], we describe algorithms for placing highly variable
applications on clouds. These algorithms were however not
designed hierarchically, and while we focused on managing
SOA applications, the underlying network was not taken into
account. In this paper we, by contrast, do take the underlying
network into account, and the algorithms are designed
hierarchically, ensuring they scale better. We use the principles
described in [16], where we discussed the network impact of
adding and removing services within a cloud environment,
to formally define the communication between services. Our
previous work focused solely on determining the network
impact of service changes, and not on allocating the services.

Our management approach incorporates multiple optimiza-
tion objectives. While previously, work has been done in var-
ious areas such as maximal demand satisfaction [5], network-
awareness [12], minimization of the number of migrations [7],
[6], [5], and minimization of the hop count between commu-
nicating services [12], our work combines the various opti-
mizations in a single model. Additionally, we describe scalable
hierarchical algorithms to determine approximate solutions.

In [17], a PSO algorithm capable of scheduling workflows
on servers is presented. The algorithm takes both the network
and computation cost into account during its execution, but is
centralized. Our approach, by contrast, is distributed using a
management hierarchy, making it more scalable. Additionally,
our approach differs in that it focuses on allocating server
resources for longer-running applications, rather than schedul-
ing short-running workflows, which is why the algorithms
described in this paper also take the number of migrations
into account.

III. PROBLEM MODEL

The CAPP takes into account a set of applications that are
constructed by combining multiple communicating services,
and a set of resources on which the services are instantiated.
Based on this information, a placement must be determined
where the services are allocated on the resources, subject to a
collection of constraints:

e  Resources have limited CPU and memory capacities.

e Some services cannot be instantiated on every re-
source, due to the requirement of specific hardware,
software, or because of business or security policies.

e Communication links between resources in the net-
work have limited bandwidth capacities.

The application services are assumed to be multi-tenant,
which implies that one service instance can be used by multiple
applications. Thus, a single service instance, having a fixed
memory requirement, can be used by multiple applications.

The problem is optimized according to multiple objectives.
This is achieved by sequentially executing different optimiza-
tions, where the results from previous optimizations are added

Description

N The set containing all nodes on which services can be executed.

& The set containing all network edges that connect the nodes.

A The set of all applications. Every application consists of a set of

communicating services.

Ra The set containing all requests for an application a € A.

S The set containing all of the services out of which the applications are

composed.

D, The total number of requests for an application a € A.

Q, The CPU capacity of the node n € N (in GHz).

T, The memory capacity of the node n € N (in GB).

[ The CPU requirement of a service s € S (in GHz).

Vs The memory requirement of a service s € S (in GB).

Io,s The instance-matrix, indicating which services are part of which appli-
cation. If I, s = 1, the service s is part of application a, and must
be instantiated when the application is instantiated. If I, s = O, the
service s is not part of application a.

Rsn The relation matrix is used to indicate which services may be executed
on which node. If R, ,, = 1, the service s can be executed on node
n. If R; , = 0, no instances of service s may be allocated on node
n.

051,52 The communication matrix is used to determine the amount of band-
width (in Mbit/s) that is needed between services for an application.

C's, s, represents the amount of bandwidth needed between services
S1 en Sa.

By ,ng The bandwidth matrix, where By, n, contains the capacity available
between nodes n; and ns (in Mbit/s).

Hypy ng The hop count matrix, where Hp, n, indicates the number of devices,

such as routers, are present between the nodes n1 and no.

TABLE I: Input variables of the CAPP.

as constraints for the next solution. As the second objective
must also satisfy the optimal condition of the first problem,
the size of the solution space continuously decreases. This also
implies that the first objectives are deemed more important, as
they take priority over the other objectives. The optimization
objectives are (from most to least important):

1)  First, the number of accepted application requests
is maximized. Applications are weighted based on
their CPU needs, ensuring the maximum amount of
CPU utilization is achieved. Alternative weighting
approaches, such as one based on priory or utility
can also be used.

2)  Subsequently, the satisfaction of the bandwidth re-
quirement of all services is maximized, ensuring the
communication requirements between services are
guaranteed as best as possible.

3)  Next, the total number of computation nodes used is
minimized, making it possible to shut unused nodes
down, improving energy-efficiency and reducing the
cost of the placement.

4)  Then, the number of service migrations between
subsequent invocations of the algorithm invocations
is minimized.

5) Finally, the hop count between nodes is minimized.
This places communicating services as closely to-
gether as possible in order to reduce communication
latency.

Multiple optimization objectives are considered within the
model. To achieve this, the optimization is executed iteratively,
with a different objective in every iteration. In every iteration,
additional constraints and variables that are needed to formu-
late the new optimization objective are added to the model. Ad-
ditionally the previous optimization objective and its value are
then also added as additional constraints, imposing an upper or
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Symbol Description

Ga,r The acceptance matrix. G~ = 1 indicates that the rth request
for application a could be accepted. G, = O if the request
is not accepted.

P&y The placement matrix. Py, = 1 indicates that an instance
of service s is executed on node m for the rth request of
application a. Otherwise, P, = 0.

Usn The execution matrix. If U, , = 1, an instance of service s
is executed on node n. Otherwise, Us ,, = 0.

U, The node utilization matrix. U,, = 1 indicates that n is being
used by at least a single service. If U, = 0 the service is
unused.

& (’I’Ll,’ﬂg)

o so The flow matrix. F&", (n1,n2) contains the amount of

51,8
bandwidth (in Mbit/s),1 beﬁonging to the rth request for appli-
cation a, that is used for communication between services s1,
executed on node n1, and so executed on node no.

The percentage of requested service bandwidth that is guaran-
teed for every flow between services s; and so for the rth
request of application a.

a,r
Zs1,52

TABLE II: The decision variables of the CAPP.

lower bound for its value. Thus, every subsequent optimization
extends the model defined in the previous optimization. This
approach ensures that every new iteration further refines the
previous result, improving it based on additional criteria. The
first optimization objective, maximization of the number of
accepted requests thus defines the bulk of the formal model,
while subsequent objectives only add limited numbers of
decision variables to the defined model. An overview of the
used symbols is shown in Table I and Table II.

A. Maximizing the Number of Accepted Requests

Given are a set of applications A, and a set R, containing
all requests for an application a € A. A discrete input variable
D, represents the total number of requests for an application a.
Every application a consists of a collection of communicating
services, which are contained in the set S. Every service
s € S has a given CPU and memory demand, respectively
represented by w, (in GHz) and ~, (in GB). A binary instance
matrix [ indicates whether service s is part of application a,
which is the case if I, ; = 1. The services are to be placed
on computation nodes that are contained in the set . Every
node n € N has a CPU capacity, €, (in GHz) and a memory
capacity I',, (in GB).

Additionally, we define a binary relation matrix R, that
indicates which services may be executed on which nodes. If
R, = 1, the service s can be executed on node n. Otherwise,
the service may not be executed on the chosen node. This
could, for example, occur because specific hardware is needed
for executing a service, due to security policies, or due to
software licensing restrictions.

A binary acceptance matrix G is used to indicate which
requests 1 € R, can be accepted. G,, = 1 indicates that
the rth request for an application a can be placed. Using
these parameters, the maximization of the number of accepted
request can be represented as shown in Equation (1). This
equation maximizes the CPU utilization of the datacenter.

max » Y Gap x| Y o X ws (1)

a€ATER, sES

The optimization objective in Equation (1) is subject to
multiple constraints. To represent these constraints, additional
decision variables are needed.

First, we define the placement matrix P, which is used to
represent the final service placement. If P¢";" = 1, this implies
that a service s is executed on node n for the rth request of
application a; otherwise, if P = 0, this is not the case. For
an application a to be active, however, each of its services
s from which is composed must also be executed within the
network. Equation (2) ensures that if a request 7 for application
a can not be satisfied, none of its services are placed within
the network. Equation (3) ensures a service request can be
executed on at most one server. Finally, Equation (4) states
that all of the services s of an application a must be executed
in the network before the application is placed.

Vae Ar € Reys€SneN Pl <Gap  (2)
Vae A,r € Rey,s €S : ZP;;:’Sl 3)

neN
VCLEA,TERGZGCL,TXZI@,S:ZZpsa}: (4’)
sES seSneN ’

Additionally, the CPU and memory limits of the applica-
tions must be respected when services are executed. For this,
we first define the execution matrix U. The binary decision
variable U, , = 1 indicates that an instance of service s is
executed on node n. With this, we can express that the sum
of the CPU of all services s running on a node n must be less
than the available CPU capacity of the node; this is shown
in Equation (5). Similarly, in Equation (6), a memory limit
is defined, but as memory can be shared between multiple
application instances, this memory cost is only added once
if the service is used on the server, resulting in a different
formulation.

VReN D D Y PHT xwe <Qy )

a€ATreER, s€S

¥n €N ) Usn x7s < Ty ©)
seES
Usm €{0,1} ™

Equation (8) ensures U, ,, can only take on value 0 if the
service is not used for any application request: the left part
of the inequality represents the total number of services s that
are executed on node n, while the right part of the inequality
is a binary variable indicating whether at least one instance
of the service s is executed on node n which is multiplied by
an upper limit to the number of services that can be executed.
Equation (9) ensures that the constraints defined in the relation
matrix R, indicating whether or not a service may execute on
a node, are respected.

VSGS,HENZZZP;’}ZSUS,nX ZDaXIms

a€ATreER, acA
®

VseS,neN :Us, <Ry 9)
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In the network, bandwidth is allocated between every pair
of communicating service s; and sy that are part of the same
request 7. As not all requests are continuously active however,
it is not necessary for the entire demand to be available at all
times. Therefore, a request is permitted on the network if 80%
of its bandwidth requirement can be guaranteed at all times.
In a subsequent optimization, an effort is made to increase
the amount of bandwidth that is guaranteed. This two-stage
approach to allocating bandwidth is similar to the one we
described in [16].

The CAPP is extended by incorporating every communi-
cation link e € £ in the network, and defining the bandwidth
matrix B, where B, ,, indicates the amount of bandwidth
(in Mbit/s) available between the pair of nodes n; and ns. To
model the amount of bandwidth needed between services, the
communication matrix C' is defined, where Cj, ,, indicates
the amount of bandwidth needed between services s;, which
is the source of the communication, and s, which is the sink
of the network flow. The flow passing over the edges is stored
in the flow matrix F. F{", (n1,n2) contains the amount of
bandwidth used by services s; and so for the rth request of
application a when the services are executed on nodes n; and
Nna.

The additional network constraints are similar to those
introduced in [16]. Two additional constraints are needed to
correctly represent network flows: edge capacity limitations,
expressed in Equation (10), limiting the amount of bandwidth
of network edges, and flow conservation, which ensures no
flow is lost within the network, which is expressed in Equa-
tion (11) and Equation (12). In this formulation, zgl’f@ is a
decision variable that contains the percentage of the requested
bandwidth between services s; and so that is guaranteed for
the rth request of application a.

Vny,ng € N : Z Z Z F&', (n1,n2) < Bpy o,

a€ATER, 51,52€S
(10)

Va € A,r € Ry, 51,52 €S, neEN :
For ()= Y F&,(mm)— Y Fu%, (n,m)

(m,n)e€ (n,m)e€
(1)
a,r : : .
=247, X Cs, s, 1f m is the source of s;
Fg,(n) = +287, x Cq, 5, if n is the sink of s,
0 otherwise

12)

In the expression of the flow conservation constraint in
Equation (11), an additional decision variable F&", (n) is
introduced, which represents the net flow on every node n, and
which can be computed using the flow matrix F'. The sum of
incoming and outgoing flows on a node should equal this net
flow value, the value of which is defined in Equation (12): the
source has a negative net flow, the sink has a positive net flow,
and for other nodes this flow must be 0.

As mentioned previously, we only consider an application
to be placed if at least 80% of its net flow is achieved, even

if its CPU and memory requirements can be achieved. This is
expressed in Equation (13), the final constraint of the accepted
requests optimization.

Vae Ar € Re,51,82 €S :Gop < 207

1,52

+02  (13)

B. Maximizing the Satisfied Service Bandwidth Demand

Within the previous model, bandwidth and the underlying
network are already incorporated, as 80% of the required
bandwidth must be guaranteed. The objective of this second
optimization is to further increase the allocated bandwidth,
ensuring as much capacity as possible is allocated to the
application services. This can be achieved by maximizing the
sum of the z values defined in the previous section. This
maximization is expressed in Equation (14).

maxz Z Z Zg) sy (14)

a€AreA, s1,52€S

C. Minimizing the Number of Used Computation Nodes

A third optimization objective is the number of computa-
tion nodes used in a placement, as reducing the number of
server used can result in cost and energy savings. To achieve
this an additional binary decision variable U, is defined, where
U, = 1 indicates a node n is used in the placement. This
results in the optimization objective shown in Equation (15),
where the number of used servers is minimized.

min Z U, (15)

The U,, decision variables are subject to additional con-
straints, ensuring they can only take on value 1 if there are no
active applications. This is expressed in Equation (16).

VneN : > Usn U, x |S] (16)
seS
U, €{0,1} (17)

D. Minimizing the Number of Migrations Between Algorithm
Invocations

In a dynamic management scenario, services can be mi-
grated from one node to another node. Despite this, it is
preferable to select a solution where the amount of resource
migrations is kept at a minimum. To minimize this information,
an addition input variable, U t=1 the execution matrix resulting
from the previous invocation of the placement algorithm, is
used. This matrix corresponds to the execution matrix of the
current iteration U, but while U contains decision variables,
U'~1! contains constant values. Minimizing the number of mi-
grations compared to the previous invocation can be expressed
as shown in Equation (18).

min» Y " |Usp — UL (18)

seSneN

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 14:05:51 UTC from IEEE Xplore. Restrictions apply.



E. Minimizing the Hop-Count Between Service Instances

A final objective is to minimize the network latency of
the communication between services. We achieve this by
minimizing the hop count between the services, which we
use as a metric to define the distance between nodes. This
information is an additional input variable which is stored in
the hop count matrix H. The variable H,,, ,, contains the
number of hops (e.g. routers) between nodes n; and ny,. We
use a hop count matrix as it is easier to determine these values
than it is to accurately estimate the network latency: the latter
can vary throughout the execution, so it would have to be
continuously updated. For increased accuracy, but at the cost
of additional management overhead, the hop count matrix can
be replaced by a latency matrix without any other changes to
the model.

We introduce a measure, referred to as the Bandwidth-
Hopcount Distance (BHD), indicating the efficiency of the
network routing, which is determined using the total network
flow between nodes and the hop count between the nodes.
The BHD will have a lower value if smaller hop counts are
used but this is weighted by the network bandwidth: if a low
amount of bandwith is needed, the penalty of using nodes that
are further away lessens. Using the flow matrix I this can be
stated as shown in Equation (19). This objective ensures the
largest amount network communication occurs between nodes
close to each other.

min Z thnzxz Z Z F&T, (n,me) (19)

n1,n2€N aC€ATER, 51,52€S

F. Integer Linear Programming (ILP) Algorithm

The formal problem description, discussed in this section
was used to define an Integer Linear Programming (ILP)-
based algorithm which was implemented in Java using the
CPLEX [18] ILP solver. This solver can, for small problem
sizes, determine the optimal solution of the CAPP using
Simplex and Branch and Bound algorithms. As noted, the
optimization is executed five times for the different objec-
tives, where the result of the previous iterations are added
as additional restrictions to the model for the subsequent
optimizations.

IV. HIERARCHICAL CAPP ALGORITMS

An ILP-based algorithm for solving the CAPP was de-
scribed in the previous section. In this section, we describe
two heuristic algorithms, based on PSO and GAs, for solving
the CAPP. These algorithms are executed within a hiearchic
management system, which is also explained in this section.
Both approaches are based on meta-heuristics, and are en-
tirely defined by how the specific subfunctions are defined.
Therefore we will focus on how these specific functions are
defined.

A. Management Hierarchy

The structure of the management system is based on that
proposed in [13] and is structured hierarchically. Leaf nodes
are referred to as execution nodes, and inner nodes are referred
to as management nodes. The execution nodes are responsible
for executing the cloud applications, while the management

\
remaining .-~ ->
requests ,/

<~, remaining
\\ requests

>~ Management
nodes

Execution
nodes

Fig. 1: The hierarchical approach to CAPP. When placement
requests cannot be handled by lower level management nodes
they are passed on to higher-level management nodes.

nodes are responsible for executing the CAPP algorithm. For
the algorithms we use four layers to manage the network,
organized as in Figure 1. Initially, all requests are passed to
the lowest management nodes, whose children are execution
nodes. Out of all these lowest level nodes, the one that has
most available resources is chosen, which is the cluster with
the lowest ratio between used CPU capacity and total available
CPU capacity. If this resource is unable to process the request,
it is passed on to higher level management nodes. Using this
approach, the lowest management nodes only have a limited
view of the network and are used to process the majority of
the requests. Higher level management nodes have a broader
system overview, and thus take longer to execute the CAPP
algorithms, but also process less requests.

B. PFarticle Swarm Optimization (PSO)

PSO [2] is a strategy for defining heuristics based on
simulating the behavior of a swarm of particles. Every particle
determines its best position, and the entire swarm is aware of
current best position. The speed of particles is dependent on
the local best position and the global best position, ensuring
every particle searches in its own vicinity while still moving
towards a known good position. To build a PSO-based algo-
rithm, multiple factors must be determined: (1) first a particle
representation must be determined, making it possible to map
particles to a position in a multi-dimensional space; (2) next,
a measure of the quality of a solution must be determined,
making it possible to find out which solutions are better than
others; and finally (3) a velocity is used to determine how
particles move throughout the solution space during subsequent
iterations.

1) Particle Representation: Every particle represent a so-
Iution of the CAPP. Every application, service and node in
the system is assigned a number. We define a solution as a
3-dimensional array of elements. The first dimension is the
application, the second dimension is the request number of the
application, and finally, the third dimension are the services.
Contained in the array is the number corresponding to the node
on which the service is executed, or —1 if the services are not
instantiated. This is illustrated in Figure 2.

2) Particle Quality Evaluation: Every particle in the swarm
is assigned a quality based on a quality function. This objective
function is shown in Equation (20). The various parameters are
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Applications

Requests

Services

Ns n;

Sl 52 53 S4 55 S6

Fig. 2: Particles are represented as a multi-dimensional array,
where the dimensions are application, request, and service.
The value of the array indicates the server on which a given
service is executed. In this example, service sa for request r
of application a is executed on node ns.

TABLE III: Parameters used in the PSO objective function.

Symbol Description
placedCPU The total CPU that is placed for the applications.
totalC PU The total CPU that is requested.

total Requests The number of application requests.
placedRequests The number of placed application requests.
[NV The number of nodes available within the network.

usedN odes The number of nodes used by the placement.
migrationCount  The number of migrations for this placement.
|S| The number of services.

explained in Table III. If a particle violates any of the model
constraints, its quality is reduced to 0.

obj = ( placedCPU >2
requestedC PU
placedRequests

< total Requests >

" <1 3 usedNodes)

IV +1
migrationCount
<(1- ") 0

3) Particle Velocity: The positions of particles are modi-
fied iteratively. During every iteration, the speed vector of a
particle, which is used to determine its next position within
the solution space, is modified based on the quality of the
particle. Every particle retains the best position it has en-
countered, pbest. Additionally, the entire swarm is aware of
the global best position gbest. The speed vector v, of a
particle p for a dimension d is changed using Equation (21).
The factors r; and ro are random numbers chosen in the
interval {0,1} using a uniform distribution. The parameters
c1 and ¢y modify the weight of both parameters; if ¢; < ¢, a
solution closer to the global best value will be chosen, while
if ¢ > ¢ a solution closer to the personal best will be
chosen. We choose ¢; = 2 and co = 1 based on empirical

[:III:III:III:III:III:'II[] [:III:lll[[::]:[::]:l::]:[::[]
S1 S; S3 S; Ss Sg

S1 S, S3 S; Ss Sg

OO0 SO EEE]
S, S3 Ss Ss Sg S1 S» S3 Si S5 Sg

S1

Fig. 3: An illustration of crossover.

evaluations.

Up,d <~ Up,d
c1 X r1 (pbesty — xp.q) + c2 X 12 (gbestq — T, 4)
C1 + Co

2y

Equation (21) describes how the new speed of particles is
determined. Based on the resulting speed vector v, the new
position x,, of all particles can be determined. Determining
these new positions is done using Equation (22), where the
new position of a particle p for a given dimension d is shown.

Tpd < Tpdt Upd (22)

C. Genetic Algorithm (GA)

A second heuristic for solving the CAPP is constructed
using GAs. GAs, like PSO, simulate natural processes for
solving problems. The process is based on natural selection.
A population of solutions is maintained, and new solutions are
created by combining two existing solutions. Between different
iterations, natural selection occurs based on the solution fitness,
where better solutions have a higher chance of survival. To
create a GA, three functions must be defined: (1) a solution
must be represented using an identifying string of characters,
similar to a chromosome for living creatures, (2) a method
must be defined to combine two solutions into a new solution
that has properties of both parent solutions, and (3) a fitness
function, used to determine the quality of a solution must be
defined.

We re-use both the solution representation and the quality
function used for the PSO algorithm. Creating new solutions
is done using one-point crossover, where at the start of a
first solution is combined with the end of another solution,
resulting in two new solutions. The point where crossover
occurs is chosen uniformly and at random. This process is
illustrated in Figure 3. Additionally there is a 10% chance for
mutation to be applied to a solution, where values are randomly
changed to a different value. This process of mutation is used
to add additional randomness, and to prevent the algorithm
from getting stuck in a local optimum.

V. EVALUATION SETUP

To evaluate the algorithms, we consider generated scenarios
where long-running service workflows are active within a
datacenter. When determining problem inputs to compare the
ILP, PSO and GA algorithms, very small problem sizes must
be used, as the ILP scales very badly. For this reason, we use a
small collection of 3 randomly generated applications that are
composed of 4 services. The probability of a service belonging
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to a given application is 60%. The CPU demand of a service is
randomly chosen from the set {0.5,0.6,0.7,0.8,0.9,1GHz}.
Memory demand of a service is randomly chosen from the
set {0.5,0.7,0.9,1.1,1.3,1.5GB}. Every node of the man-
agement system manages two nodes, resulting in a hierar-
chy with 8 execution servers and 7 managing servers. The
CPU capacity of a server! is randomly chosen from the set
{9,12,15,18,21GHz}, and the memory capacity of servers is
chosen from the set {6, 8,10, 12, 14GB}. The communication
demand between services is a random number in the range
[0.02,0.04] Mbit/s. The hop count between pairs of execution
servers are chosen at random between 1 and 10, while the
available bandwidth between the servers is randomly chosen
in the range [6, 14] Mbit/s.

A second problem setup is used to compare the PSO
and GA algorithms for larger problem configurations. In this
second configuration, 10 applications composed of 13 services
are considered, where there is a 40% chance that a service
belongs to an application. The CPU and memory demand
and capacities are chosen like in the small problem setup.
A larger management hierarchy is used, with 160 execution
servers and 21 management servers (every management either
manages 4 other management servers or 10 execution servers).
The communication demand between services is normally
distributed with p = 2.5 and o = 0.20. The hop count between
servers is also normally distributed with 4 = 7 and 0 = 2,
while there is a 5% chance of there being a direct link between
two nodes with a capacity which is normally distributed with
pw=20and o =1.

The complexity of these generated problems can vary
greatly. To better characterize the difficulty of solving a
problem, we define the CPU Load Factor (CLF), a factor to
determine the CPU intensity of a given problem. This factor,
shown in Equation (23), is computed by summing the total
CPU demand of all requests, and dividing the result by the total
available CPU within the network. The symbols used within
the equation are shown in Table 1.

2acaDa X (Xies las X ws)
ZnGN Q”

CLF = (23)

All measurements are repeated 100 times.

VI. EVALUATION RESULTS
A. ILP, PSO and GA, small evaluation setup

First, the ILP, PSO and GA algorithms are compared using
the small problem setup presented in Section V. In Figure 4
we compare the number of accepted requests for the various
algorithms. We observe that, for lower CLF values, 100% of all
requests can be fulfilled. As the CLF value increases, and the
problems thus become harder, the number of accepted requests
decreases. The PSO and GA algorithms both achieve results
close to the optimal value, with the ILP algorithm placing +8%
more requests for an overloaded datacenter with CLF 1. For
this scenario, there is no significant difference in the behavior
of the PSO and GA algorithms.

I These values represent the processing power per core times the number of
cores.
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Fig. 4: Ratio of placed requests versus received requests for
varying datacenter CPU loads using the small evaluation setup.
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Fig. 5: Comparison of the execution speed of the algorithms.

The execution time of the ILP, PSO and GA algorithms
is shown in Figure 5. The ILP requires significantly more
time to calculate a solution compared to the PSO and GA
algorithms. As the CLF increases, the gap between the optimal
and heuristic algorithms further increases, with the execution
speed of the PSO and GA algorithms remaining less than 0.3
seconds while the ILP algorithm requires 30 seconds to run.

B. PSO and GA, large evaluation setup

Using the larger problem setup, we compare the PSO and
GA algorithms. In this scenario, network capacity becomes
a bottleneck, and some applications can not be placed as it
is not always possible to guarantee 80% of the requested
network bandwidth. In Figure 6, the average network demand
satisfaction of accepted applications is shown. For lower CLF
values, nearly 100% demand satisfaction is achieved, but as
the CLF approaches 1, the achieved network demand decreases
until it is slightly over 80%, the minimal value.

In Figure 7, the ratio of placed requests for applications
to the number of received requests is illustrated. We can see
that the placement of applications indeed decreases from a
CLF of 0.40. This corresponds to the decrease in bandwidth
satisfaction observed in Figure 6.

The PSO and GA algorithms have a similar performance,
with only minor differences. In Figure 6 we observe that
the GA algorithm achieves a slightly higher average network
demand satisfaction. This can be explained as the PSO algo-
rithm accepts a little more requests. Because of this, the PSO
algorithm has more active applications which in turn need more

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 14:05:51 UTC from IEEE Xplore. Restrictions apply.



0.98
0.96
0.94
0.92 a

0.9
0.88
0.86 :
0.84 X
0.82

0.8 . . . . . . . . . .
010 020 030 040 050 060 070 0.80 0.90 1.00

CPU Load Factor (CLF)

&= GA |

Workflow voldoening

e

Fig. 6: Network demand satisfaction for varying datacenter
CPU loads using the large evaluation setup.

o PSO
- GA

o s

173

g " .

2 08 S

o "“‘\.\

el s

$ o6 2o

o

o 04

5

o

02

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
CPU Load Factor (CLF)

Fig. 7: Ratio of placed requests to received requests for varying
datacenter CPU loads using the large evaluation setup.

bandwidth, increasing the total network demand and lowering
the achieved demand. Thus, for this scenario, the PSO-based
algorithm slightly outperforms the GA-based algorithm.

VII. CONCLUSION

In this paper, a generic model for the network-aware CAPP
was presented that takes the network infrastructure of a cloud
provider into account. The model optimizes multiple param-
eters such as achieved requests, achieved network demand,
server use, the number of service migration and latency. We
then presented a hierarchical cloud management architecture
and two hierarchical algorithms based on PSO and GA to
solve the network-aware CAPP. We evaluated the PSO and GA
algorithms, and compared their performance with an optimal
ILP algorithm. We found that the optimal algorithm manages
to accept 8% more requests than the hierarchical PSO and
GA algorithms, but the optimal algorithm can only computed
for very small problem sizes as the computation time needed
to determine the optimal value quickly becomes prohibitively
large.
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