
Using a Convolutional Neural Network

Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

Deep Learning Fundamentals & GPGPUs
November 30th, 2017
Ghent, Belgium

Deep Learning

LECTURE 1

Outline

Lecture 1 – Deep Learning Fundamentals & GPGPUs 2 / 72

Outline of the Course

1. Deep Learning Fundamentals & GPGPUs

2. Convolutional Neural Networks & Tools

3. Convolutional Neural Network Applications

4. Convolutional Neural Network Challenges

5. Transfer Learning Technique

6. Other Deep Learning Models & Summary

Lecture 1 – Deep Learning Fundamentals & GPGPUs 3 / 72

Outline

 Deep Learning Foundations
 Biological Inspiration & Perceptron Limits
 Artificial Neural Networks & Backpropagation
 Application Examples in Science & Industry
 Deep Learning Properties & Feature Learning
 Parallel Computing Methods & Architectures

 GPGPUs & Tools
 Terminology & Many-core Architecture
 GPU Acceleration
 NVidia & CUDA Examples
 OpenCL Programming Models
 Usage Models & Applications

Lecture 1 – Deep Learning Fundamentals & GPGPUs 4 / 72

Deep Learning Foundations

Lecture 1 – Deep Learning Fundamentals & GPGPUs 5 / 72

Learning Models derived from Biological Inspiration

 Biological Inspiration (cf. Machine Learning Tutorial last week)
 Humans learn (a biological function) machines can learn
 Means we are interested in ‘replicating’ the ‘biological function’

 Approach: Replicating the ‘biological structure’
 Neurons connected to synapses (large number)
 Action of neurons depends on ‘stimula of different synapses’
 Synapses have ‘weights’
 Principle: neurons are in the following like a ‘single perceptron’
 Neural network: put together a ‘bunch of perceptrons’ in layers
 Deep learning network: create many layers with ‘smart functionalites‘

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[1] Neural Networks
6 / 72

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Solution Tools: Artificial Neural Networks Learning Model

Elements we
not exactly

(need to) know

Training Examples

Elements we
must and/or

should have and
that might raise
huge demands

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we

derive from
our skillset

‘constants‘
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Linear Perceptron)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Perceptron Learning Algorithm)

‘constants‘
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

7 / 72

Perceptron Learning Algorithm – Revisited

 When: If we believe there is a linear pattern to be detected
 Assumption: Linearly seperable data (lets the algorithm converge)
 (cf. Machine learning tutorial last week)

 Simplifications:

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Training Examples

Hypothesis Set

Learning Algorithm (‘train a system‘)

(Perceptron model)

(Perceptron Learning Algorithm)

(existing dataset already being labelled as +1/-1)

(vector notation, using transpose)

[4] Rosenblatt, 1958

(transpose = reflecting elements along main diagonal)
8 / 72

Exercises

Lecture 1 – Deep Learning Fundamentals & GPGPUs 9 / 72

Practice: Non-linearly Seperable Data

 More often in practice, requires a ‘soft threshold‘
 ‘soft-threshold‘ means allowing ‘some errors‘ being ‘overall‘ better

Lecture 1 – Deep Learning Fundamentals & GPGPUs

?
1

2

(known also as XOR problem)

-1-2-3 1 2 3 4 5 6 7

1

2

-2

-1

??

10 / 72

Simple Application Example: Limitations of Perceptrons

 Simple perceptrons fail: ‘not linearly seperable’

Lecture 1 – Deep Learning Fundamentals & GPGPUs

?

Decision Boundary Two-Layer, feed-forward Artificial Neural Network topology

X1

X2

y

Labelled Data Table

X1 X2 Y

0 0 -1

1 0 1

0 1 1

1 1 -1

X2

X1

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

(Idea: instances can be classified using
two lines at once to model XOR)

11 / 72

Multi Layer Perceptrons – Artificial Neural Networks

 Key Building Block
 Perceptron learning model
 Simplest linear learning model
 Linearity in learned weights wi

 One decision boundary

 Artificial Neural Networks (ANNs)
 Creating more complex structures
 Enable the modelling of more complex

relationships in the datasets
 May contain several intermediary layers
 E.g. 2-4 hidden layers with hidden nodes
 Use of activation function that can

produce output values that are
nonlinear in their input parameters

Lecture 1 – Deep Learning Fundamentals & GPGPUs

(decision boundary)
wi

(perceptron model)

(input
layer)

(hidden
layer)

(output
layer)

12 / 72

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Solution Tools: Artificial Neural Networks Learning Model

Elements we
not exactly

(need to) know

Training Examples

Elements we
must and/or

should have and
that might raise
huge demands

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we

derive from
our skillset

‘constants‘
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Artificial Neural Networks)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Backpropagation)

‘constants‘
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

13 / 72

Artificial Neural Networks (ANN) – Layers & Nodes

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Input
Layer

Hidden
Layer

Output
Layer

X1 X2 X3 X4 X5

y

 Feed-forward neural network:
nodes in one layer are
connected only to the nodes
in the next layer (‘a constraint
of network construction’)

 Think each hidden node as a
‘simple perceptron’ that each
creates one hyperplane

 Think the output node simply
combines the results of all the
perceptrons to yield the
‘decision boundary’ above

14 / 72

ANN - Learning Algorithm & Optimization

 Determine a set of weights w that
‘minimize the total sum of squared errors’:

Lecture 1 – Deep Learning Fundamentals & GPGPUs

	ࡱ 	࢝	 = 	࢟ − ý ࡺ
	ୀ	

 Error term, associated
with each hidden node

Hidden
Layer

Output
Layer

y

Sum of squared errors depend on w, because predicted
class y is a ‘function of the weights‘ assigned to the

hidden and output nodes

࢟ = sign (w . x)
Linear perceptron

 Error function is quadratic in
its parameters and a
global minimum can
be easily found

 Other objective / loss
functions possible, e.g.
categorical cross-entropy

15 / 72

Gradient Descent Method (1)

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[6] Big Data Tips,
Gradient Descent

16 / 72

Gradient Descent Method (2)

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[6] Big Data Tips,
Gradient Descent

17 / 72

 Gradient Descent (GD) uses all the training samples available for a step within a iteration
 Stochastic Gradient Descent (SGD) converges faster: only one training samples used per iteration

ANN – Backpropagation Algorithm (BP) Basics

 One of the most widely used algorithms for supervised learning
 Applicable in multi-layered feed-forward neural networks

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 ‘Gradient descent method’ can be used to learn the weights
of the output and hidden nodes of a artificial neural network

X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

 Hidden nodes problem:
computing error term
hard: ࣔ	E / ࣔ	wj

 Their Output values are
unknown to us (here)…

 The backpropagation
algorithm solves exactly
this problem with two
phases per iteration(!)

known known Initially unknown

[3] Introduction to Data Mining

18 / 72

ANN – Backpropagation Algorithm Forward Phase

1. ‘Forward phase (does not change weights, re-use old weights)’:
 Weights obtained from the previous iteration are used to compute the

output value of each neuron in the network (‘initialize weights randomly’)
 Computation progresses in the ‘forward direction’,

i.e. outputs ‘out’ of the neurons at level k are computed prior to level k+1

Lecture 1 – Deep Learning Fundamentals & GPGPUs

X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

Layer
K

Layer
K+1

 Use corresponding
‘activation function’
but with ‘old weights’out

out

out

out

out 1 2 3 N-1 N

1 2 M

1 C

...

.....

...

࢞ ࢞ ࢞ ିࡺ࢞ࡺ࢞

࢟ ࢟
(applicable for
multiclass to)

19 / 72

ANN – Backpropagation Algorithm Backward Phase

2. ‘Backward phase (‘learning’ change the weights in the ANN)’:
 Weight update formula is applied in the ‘reverse direction’
 Weights at level K + 1 are updated before the weights at level k
 Idea: use the errors for neurons at layer k + 1 to estimate errors

for neurons at layer k

Lecture 1 – Deep Learning Fundamentals & GPGPUs

X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

Layer
K

Layer
K+1

		࢝ < 	࢝			− − ࣅ	 ࢝	ࣔ(࢝)	ࡱ	ࣔ
weight update formula

of the ‘gradient descent method’

Now that can compute
the error one-by-one

(regularization method ‘weight decay‘
or ‘weight drop‘ is used in neural networks‘)

20 / 72

[Video] Towards Multi-Layer Perceptrons

[2] YouTube Video, Neural Networks – A Simple Explanation

Lecture 1 – Deep Learning Fundamentals & GPGPUs 21 / 72

High-level Tools – Keras

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[19] Keras Python Deep Learning Library

 Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

 Tool Keras supports inherently
the creation of artificial neural
networks using Dense layers
and optimizers (e.g. SGD)

 Includes regularization (e.g.
weight decay) or momentum

22 / 72

keras.layers.Dense(units,

activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None)

keras.optimizers.SGD(lr=0.01,

momentum=0.0,
decay=0.0,
nesterov=False)

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Methods Overview – Focus in this Lecture

 Groups of data exist
 New data classified

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

23 / 72

ANN – Application Example Remote Sensing ‘SALINAS‘

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Feature reduction

Spatial analysis

Feature reduction

Classification

224 bands

Original DAFE DAFE_SDAP_DAFE

(204 Feat.) (14 Feat.) (14 Feat.)

RF SVM ANN RF SVM ANN RF SVM ANN

AA 91.46 93,11 84,73 94,38 94,23 92,92 97,68 98,02 95,84

OA 87.75 89,12 92,27 89,89 88,22 94,91 96,02 96,77 97,16

K 86.34 87,87 91,37 88,72 86,89 94,32 95,57 96,4 96,84

 Hyperspectral data (AVIRIS sensor)
 ‘Salinas‘ Valley, California
 Spectral resolution: 224 bands
 Spatial resolution: 3.7 meter pixels

(OA = Overall Accuracy; AA = Average Accuracy;
K = Kappa coefficient obtained by classifiers)

(DAFE = Discriminant Analysis Feature Extraction;
SDAP = Self Dual Attribute Profile)

24 / 72

ANN – Application Example in Industry

 ~2009 - Netflix Prize Challenge 2009
 Data: Netflix company provided data to learn from previous movie rentals
 Challenge: Improve Netflix in-house movie recommender system
 Prize: 1.000.000 US $ for team with 10% improvements
 Approaches: Machine learning algorithms and collaborative filterings
 Winner: Prize received by working with Artificial Neural Network (ANNs)

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[5] A. Töscher and M. Jahrer,
‘The BigChaos Solution to the
Netflix Grand Prize’, 2009

25 / 72

ANN – Handwritten Character Recognition MNIST Dataset

 Metadata
 Subset of a larger dataset from US National Institute of Standards (NIST)
 Handwritten digits including corresponding labels with values 0 to 9
 All digits have been size-normalized to 28 * 28 pixels

and are centered in a fixed-size image for direct processing
 Not very challenging dataset, but good for experiments / tutorials

 Dataset Samples
 Labelled data (10 classes)
 Two separate files

for training and test
 60000 training samples (~47 MB)
 10000 test samples (~7.8 MB)

Lecture 1 – Deep Learning Fundamentals & GPGPUs 26 / 72

MNIST Dataset for the Tutorial

 When working with the dataset
 Dataset is not in any standard image format like jpg, bmp, or gif
 File format not known to a graphics viewer
 One needs to write typically a small program to read and work for them
 Data samples are stored in a simple file format that is designed for

storing vectors and multidimensional matrices
 The pixels of the handwritten digit images are organized row-wise with

pixel values ranging from 0 (white background) to 255 (black foreground)
 Images contain grey levels as a result of an anti-aliasing technique used

by the normalization algorithm that generated this dataset.

 Available already for the tutorial
 Part of the Tensorflow tutorial package and Keras tutorial package

Lecture 1 – Deep Learning Fundamentals & GPGPUs 27 / 72

Exercises

Lecture 1 – Deep Learning Fundamentals & GPGPUs 28 / 72

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Ugent Tier-2 Clusters

 Using Parallel Computing
 Compiled from open source
 Requires MPI library
 Intended to be used

by High Performance
Computing system
(i.e. good interconnects)

 Job runs
 Use of job

scripts
 Depend on

scheduler

[2] UGent Tier-2 Clusters

 Use our ssh keys to get an
access and use reservation

 Put the private key into
your ./ssh directory (UNIX)

 Use the private key with
your putty tool (Windows)

29 / 72

Lecture 1 – Deep Learning Fundamentals & GPGPUs

UGent Tier-2 Clusters – GOLETT in the Tutorial

[2] UGent Tier-2 Clusters
30 / 72

Lecture 1 – Deep Learning Fundamentals & GPGPUs

UGent Tier-2 Clusters – Login & Module Swap Cluster/golett

[2] UGent Tier-2 Clusters
31 / 72

Copy Files to your Home Directory

Lecture 1 – Deep Learning Fundamentals & GPGPUs 32 / 72

ANN –MNIST Dataset – Parameters & Data Normalization

Lecture 1 – Deep Learning Fundamentals & GPGPUs 33 / 72

 NB_CLASSES: 10 Class Problem
 NB_EPOCH: number of times the model is

exposed to the training set – at each
iteration the optimizer adjusts the weights
so that the objective function is minimized

 BATCH_SIZE: number of training instances
taken into account before the optimizer
performs a weight update

 OPTIMIZER: Stochastic Gradient Descent
(‘SGD‘) – only one training sample/iteration

 Data load shuffled between
training and testing set

 Data preparation, e.g. X_train is
60000 samples / rows of 28 x 28
pixel values that are reshaped in
60000 x 784 including type
specification (i.e. float32)

 Data normalization: divide by
255 – the max intensity value
to obtain values in range [0,1]

ANN – MNIST Dataset – A Simple Model

Lecture 1 – Deep Learning Fundamentals & GPGPUs 34 / 72

 Dense() represents a
fully connected layer
used in ANNs that
means that each
neuron in a layer is
connected to all
neurons located in
the previous layer

 The Sequential()
Keras model is a
linear pipeline (aka
‘a stack‘) of various
neural network layers
including Activation
functions of different
types (e.g. softmax)

 The non-linear Activation function
‘softmax‘ represents a generalization of
the sigmoid function – it squashes an n-
dimensional vector of arbitrary real
values into a n-dimenensional vector of
real values in the range of 0 and 1 – here
it aggregates 10 answers provided by
the Dense layer with 10 neurons

 Loss function is a multiclass logarithmic
loss: target is ti,j and prediction is pi,j

ANN – MNIST Dataset – Job Script

Lecture 1 – Deep Learning Fundamentals & GPGPUs 35 / 72

ANN –MNIST Dataset – A Simple Model – Output

Lecture 1 – Deep Learning Fundamentals & GPGPUs 36 / 72

 Approach: Prepare data before
 Classical Machine Learning
 Feature engineering (e.g. SDAP)
 Dimensionality reduction techniques (e.g. DAFE: smaller, better data)
 Low number of layers (many layers computationally infeasible in the past)
 Very succesful for speech recognitition (‘state-of-the-art in your phone‘)

(Perceptron model: designed after human brain neuron) (Artificial neural network two layer feed – forward)

Lecture 1 – Deep Learning Fundamentals & GPGPUs

Artificial Neural Network – Feature Engineering & Layers

37 / 72

Deep Learning – Feature Learning & More Smart Layers

 Approach: Learn Features
 Classical Machine Learning
 (Powerful computing evolved)
 Deep (Feature) Learning

 Very succesful for image recognition and other emerging areas
 Assumption: data was generated by the interactions of many different

factors on different levels (i.e. form a hierarchical representation)
 Organize factors into multiple levels, corresponding to different levels

of abstraction or composition(i.e. first layers do some kind of filtering)
 Challenge: Different learning architectures: varying numbers of layers,

layer sizes & types used to provide different amounts of abstraction

(Example: Parcellation
of cytoarchitectonic

cortical regions
in the human brain)

Lecture 1 – Deep Learning Fundamentals & GPGPUs 38 / 72

Deep Learning – Feature Learning Benefits

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[3] H. Lee et al., ‘Convolutional Deep
Belief Networks for Scalable
Unsupervised Learning of Hierarchical
Representations’

 Traditional machine learning applied feature engineering
before modeling

 Feature engineering requires expert knowledge, is time-
consuming and a often long manual process, requires
often 90% of the time in applications, and is sometimes
even problem-specific

 Deep Learning enables feature learning promising a
massive time advancement

39 / 72

Deep Learning – Key Properties & Application Areas

 Application before modeling data with other models (e.g. SVM)
 Create better data representations and create deep learning models to

learn these data representations from large-scale unlabeled data

 Application areas
 Computer vision
 Automatic speech recognition
 Natural language processing
 Bioinformatics
 …

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 In Deep Learning networks are many layers between the input and output layers enabling multiple
processing layers that are composed of multiple linear and non-linear transformations

 Layers are not (all) made of neurons (but it helps to think about this analogy to understand them)
 Deep Learning performs (unsupervised) learning of multiple levels of features whereby higher

level features are derived from lower level features and thus form a hierarchical representation

(Deep Learning is often characterized as ‘buzzword‘)

(Deep Learning is often ‘just‘ called
rebranding of traditional neural networks)

(hierarchy from low level to high level features)
40 / 72

Basic ImageNet Dataset as Base for Learning

 Dataset: ImageNet
 Total number of images: 14.197.122
 Number of images with

bounding box annotations: 1.034.908

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[7] J. Dean et al., ‘Large-Scale Deep Learning’ [8] ImageNet Web page
41 / 72

Exercises – Add Hidden Layers

Lecture 1 – Deep Learning Fundamentals & GPGPUs 42 / 72

ANN – MNIST Dataset – Add Two Hidden Layers

Lecture 1 – Deep Learning Fundamentals & GPGPUs 43 / 72

 A hidden layer in an ANN can be
represented by a fully connected
Dense layer in Keras by just
specifying the number of hidden
neurons in the hidden layer

 The non-linear Activation function ‘relu‘
represents a so-called Rectified Linear
Unit (ReLU) that only recently became
very popular because it generates good
experimental results in ANNs and more
recent deep learning models – it just
returns 0 for negative values and grows
linearly for only positive values

ANN – MNIST Dataset – Add Hidden Layers – JobScript

Lecture 1 – Deep Learning Fundamentals & GPGPUs 44 / 72

ANN – MNIST Dataset – Add Hidden Layers - Output

Lecture 1 – Deep Learning Fundamentals & GPGPUs 45 / 72

Deep Learning Architectures

 Deep Neural Network (DNN)
 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)
 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)
 Composed of mult iple layers of variables; only connections between layers

 Recurrent Neural Network (RNN)
 ‘ANN‘ but connections form a directed cycle; state and temporal behaviour

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for high accuracy – works not well on sparse data

(focus in this course)

46 / 72

Deep Learning – Parallel Computing Methods

 Exploiting two kinds of parallelism
 Model and data parallelism (‘hierarchical domain decomposition‘)
 Challenge: distributed asynchronous stochastic gradient descent algorithm
 Minimal network cost: most densely connected areas are on one partition

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[7] J. Dean et al., ‘Large-Scale Deep Learning’
47 / 72

[Video] Deep Learning ‘Revolution‘

[9] The Deep Learning Revolution, YouTube

Lecture 1 – Deep Learning Fundamentals & GPGPUs 48 / 72

GPGPUs

Lecture 1 – Deep Learning Fundamentals & GPGPUs 49 / 72

 Significant advances in CPU
(or microprocessor chips)
 Multi-core architecture with dual,

quad, six, or n processing cores
 Processing cores are all on one chip

 Multi-core CPU chip architecture
 Hierarchy of caches (on/off chip)
 L1 cache is private to each core; on-chip
 L2 cache is shared; on-chip
 L3 cache or Dynamic random access memory (DRAM); off-chip

Multi-core CPU Processors

Lecture 1 – Deep Learning Fundamentals & GPGPUs

one chip

 Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
 Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
 Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

[10] Distributed & Cloud
Computing Book

50 / 72

Many-core GPUs

 Use of very many simple cores
 High throughput computing-oriented architecture
 Use massive parallelism by executing a lot of concurrent threads slowly
 Handle an ever increasing amount of multiple instruction threads
 CPUs instead typically execute a single long thread as fast as possible

 Many-core GPUs are used in large
clusters and within massively
parallel supercomputers today
 Named General-Purpose

Computing on GPUs (GPGPU)

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
 Compared to multi-core CPUs, GPUs consist of a many-core architecture with

hundreds to even thousands of very simple cores executing threads rather slowly

[10] Distributed & Cloud Computing Book

51 / 72

GPU Acceleration

 GPU accelerator architecture example (e.g. NVIDIA card)
 GPUs can have 128 cores on one single GPU chip
 Each core can work with eight threads of instructions
 GPU is able to concurrently execute 128 * 8 = 1024 threads
 Interaction and thus major (bandwidth)

bottleneck between CPU and GPU
is via memory interactions

 E.g. applications
that use matrix –
vector multiplication

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 CPU acceleration means that GPUs accelerate computing due to a massive parallelism with
thousands of threads compared to only a few threads used by conventional CPUs

 GPUs are designed to compute large numbers of floating point operations in parallel

[10] Distributed & Cloud Computing Book

(other well known accelerators & many-core processors are e.g. Intel Xeon Phi run ‘CPU’ applications easier)

52 / 72

Exercises

Lecture 1 – Deep Learning Fundamentals & GPGPUs 53 / 72

GPU Application Example – Matrix-Vector Multiplication

 What are the benefits of using GPUs in this application?

Lecture 1 – Deep Learning Fundamentals & GPGPUs 54 / 72

NVIDIA Fermi GPU Example

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[10] Distributed &
Cloud Computing
Book

55 / 72

GPGPUs – Terminology

 Origin & HPC relationships
 Starting ~2001 with reformulating computational problems in terms of

graphics primitives (e.g. matrix multiplications)

 Programming Models
 OpenCL as open general-purpose GPU programming model
 NVidia Compute Unified Device Architecture (CUDA)

as dominant propriety framework

 Selected Application Fields
 GPU-accelerated scientific computing applications increasing
 Increasing machine learning & statistical data mining implementations

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 General-Purpose Computing On Graphics Processing Units (GPGPUs)
 GPUs have been traditionally used to perform computing for computer graphics (e.g games)
 GPGPUs use GPUs to perform application computation instead or in addition to normal CPUs

[11] NVidia Tesla

56 / 72

GPGPUs – Architecture

 Parallelizes the already ‘parallel nature of graphics processing’
 Use of multiple graphics cards on one computer
 Use of large numbers of graphics chips

 Terminology
 GPU ‘device‘
 CPU ‘host‘
 Function ‘kernel‘

(runs on device)
 Vertices & fragments are

elements in processing ‘streams‘

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 GPUs have a parallel throughput architecture that emphasizes executing many concurrent
threads slowly, rather than executing a single thread very quickly

 In the context of GPUs, the Kernel is a function that runs on the GPU device

[11] J. Owens, GPGPU Architecture Overview

57 / 72

GPGPUs – From Pure Graphics to General Processing

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[11] J. Owens, GPGPU Architecture Overview

 Rendering Pipeline Programmable Pipeline

 Rendering pipeline designed for massively parallelism and independent operations
 General processing in science and engineering partly rely on independent operations & data

58 / 72

GPGPUs – Performance & Programming Approach

 GPUs are ‘massively multithreaded’ many-core chips
 Hundreds of cores & thousands of concurrent threads
 Aggressive performance growth

 ‘Stream‘ / data parallel programming approach
 ‘Set of records’ that require similar computation (less communication)
 Kernel functions are applied to each element of the stream

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[31] NVidia Training Introduction

 GPGPUs are very restrictive in operations and programming, but ideal for data parallel tasks
 GPGPUs are very effective for a set of records that require similar computation named as streams

 Different to plain ‘multi-core‘
(multi-core – heavy weight fast threads)

(GPUs – fine light-weight slow threads)

59 / 72

GPGPUs – Programming Model OpenCL

 Open Computing Language (OpenCL)
 The open standard for parallel programming of heterogeneous systems
 Enable algorithms & programming

patterns to be easily ‘accelerated’

 Practice
 Hard to compete with NVidia

CUDA & emerge as standard
(e.g. MPI took > 10 years to position
itself as the programming standard)

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 OpenCL is the open general-purpose GPU programming model approach that is vendor neutral
 Despite of the open standard OpenCL the de-facto standard in GPU programming is CUDA today

[12] Khronos Group, OpenCL

[13] Rastergrid, OpenCL platform model

60 / 72

GPGPUs – Programming Model CUDA

 Compute Unified Device Architecture (CUDA)
 Industry standard programming model
 Dominant since NVidia is major producer of GPGPUs in the market
 Subset of programming language C
 Defines a programming model and a memory model

 (Unlimited) Scalability
 Parallel portions of application executed on the GPU device as kernels
 Program for one thread can be instantiated on many parallel threads
 Program runs on any number of processors without recompiling

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 CUDA is the dominant propriety general-purpose GPU programming model that is vendor-specific

61 / 72

GPGPUs – NVidia Usage Models

 Example: Three ‘different types of NVidia GPUs‘
 Designed for different levels of performance requirements

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[14] NVidia Training Introduction

(constant
evolution:
NVidia Fermi
as successor of
NVidia Tesla)

(constant
innovation:
NVidia Kepler)
as successor of
NVidia Fermi)

62 / 72

Hybrid Programming: CPUs & GPGPUs Revisited

 Emerging ‘hybrid programming model‘
 Using General-purpose computing on graphics processing units (GPGPUs)
 Combine with traditional CPUs to accelerate elements of processing
 Idea: exploit parallelism across host CPU cores in addition to the GPU cores

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[15] ‘Boosting CUDA Applications with CPU-GPU Hybrid Computing’

 One drawback of a typical GPU is that it requires a host CPU in order to be used in a HPC system

(constant innovation: new generation Intel Knights Landing many integrated cores (MIC) run directly as host CPUs)

63 / 72

GPGPUs – Selected Applications

 Human brain research
 Example: Registration of high resolution brain images

 AMBER / CHARMM applications
 Traditional HPC Applications
 Molecular dynamics package to simulate

molecular dynamics on biomolecules
 Emerging support for GPGPU processing

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[16] NVidia Application Lab Juelich

64 / 72

HPC System KU Leuven – GPUs

Lecture 1 – Deep Learning Fundamentals & GPGPUs

modified from [18] HPC System KU Leuven

 Accelerators
 Nodes with two 10-core "Haswell" Xeon E5-2650v3 2.3GHz CPUs,

64 GB of RAM and 2 GPUs Tesla K40

65 / 72

Exercises – Check Login into the KU Leuven System

Lecture 1 – Deep Learning Fundamentals & GPGPUs 66 / 72

Keras with Tensorflow Backend – GPU Support

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

[19] Keras Python Deep Learning Library

 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are

so-called tensors (also known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[20] Tensorflow Deep Learning Framework

[21] A Tour of
Tensorflow

67 / 72

[Video] GPGPUs & Applications

Lecture 1 – Deep Learning Fundamentals & GPGPUs

[17] ‘HPC – GPGPUs’, YouTube Video

68 / 72

Lecture Bibliography

Lecture 1 – Deep Learning Fundamentals & GPGPUs 69 / 72

Lecture Bibliography (1)

 [1] YouTube Video, ‘The Deep Learning Revolution’,
Online: https://www.youtube.com/watch?v=Dy0hJWltsyE

 [2] YouTube Video, ’Neural Networks, A Simple Explanation’,
Online: http://www.youtube.com/watch?v=gcK_5x2KsLA

 [3] H. Lee et al., ‘Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical
Representations’, Proceedings of the 26th annual International Conference on Machine Learning (ICML), ACM,
2009

 [4] Rosenblatt,’The Perceptron: A probabilistic model for information storage and orgainzation in the brain’,
Psychological Review 65(6), pp. 386-408, 1958

 [5] Andreas Töscher and Michael Jahrer, The BigChaos Solution to the Netflix Grand Prize, 2009
 [6] Big Data Tips, ‘Gradient Descent‘,

Online: http://www.big-data.tips/gradient-descent
 [7] J. Dean et al., ‘Large scale deep learning’, Keynote GPU Technical Conference, 2015
 [8] ImageNet Web page,

Online: http://image-net.org
 [9] YouTube Video, ‘The Deep Learning Revolution’,

Online: https://www.youtube.com/watch?v=Dy0hJWltsyE
 [10] K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book,

Online: http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049
 [11] NVidia Tesla,

Online: http://www.nvidia.de/object/tesla-high-performance-computing-de.html

Lecture 1 – Deep Learning Fundamentals & GPGPUs 70 / 72

Lecture Bibliography (2)

 [11] J.Owens, ‘GPGPU Architecture Overview‘,
Online: http://gpgpu.org/static/s2007/slides/02-gpu-architecture-overview-s07.pdf

 [12] Khronos Group, ‘OpenCL‘,
Online: https://www.khronos.org/opencl/

 [13] Rastergrid Blog Figure,
Online: http://rastergrid.com/blog/2010/11/texture-and-buffer-access-performance/

 [14] SDSC, Nvidia Training – Introduction,
Online: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-01-Intro.pdf

 [15] Changmin Lee, Won Woo Ro, Jean-Luc Gaudiot, ‘Boosting CUDA Applications with CPU–GPU Hybrid
Computing’, Int J Parallel Prog (2014) 42:384–404, DOI 10.1007/s10766-013-0252-y

 [16] Juelich NVidia Application Lab @SC2013,
Online: http://on-demand.gputechconf.com/supercomputing/2013/presentation/SC3134-GPU-Accelerated-Applications-Julich.pdf

 [17] ‘HPC – Get a low-cost supercomputer by unleashing the power of GPUs‘,
Online: https://www.youtube.com/watch?v=HYlWxPeL9-k

 [18] HPC System KU Leuven,
Online: https://www.vscentrum.be/infrastructure/hardware/hardware-kul

 [19] Keras Python Deep Learning Library,
Online: https://keras.io/

 [20] Tensorflow Deep Learning Framework,
Online: https://www.tensorflow.org/

 [21] A Tour of Tensorflow,
Online: https://arxiv.org/pdf/1610.01178.pdf

Lecture 1 – Deep Learning Fundamentals & GPGPUs 71 / 72

72 / 72Lecture 1 – Deep Learning Fundamentals & GPGPUs

