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 Deep Learning Foundations
 Biological Inspiration & Perceptron Limits
 Artificial Neural Networks & Backpropagation
 Application Examples in Science & Industry
 Deep Learning Properties & Feature Learning
 Parallel Computing Methods & Architectures

 GPGPUs & Tools
 Terminology & Many-core Architecture
 GPU Acceleration
 NVidia & CUDA Examples
 OpenCL Programming Models
 Usage Models & Applications
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Deep Learning Foundations
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Learning Models derived from Biological Inspiration

 Biological Inspiration (cf. Machine Learning Tutorial last week)
 Humans learn (a biological function) machines can learn
 Means we are interested in ‘replicating’ the ‘biological function’

 Approach: Replicating the ‘biological structure’
 Neurons connected to synapses (large number)
 Action of neurons depends on ‘stimula of different synapses’
 Synapses have ‘weights’
 Principle: neurons are in the following like a ‘single perceptron’
 Neural network: put together a ‘bunch of perceptrons’ in layers
 Deep learning network: create many layers with ‘smart functionalites‘
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[1] Neural Networks
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Solution Tools: Artificial Neural Networks Learning Model

Elements we 
not exactly

(need to) know 

Training Examples

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Linear Perceptron)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Perceptron Learning Algorithm)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise
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Perceptron Learning Algorithm – Revisited 

 When: If we believe there is a linear pattern to be detected
 Assumption: Linearly seperable data (lets the algorithm converge)
 (cf. Machine learning tutorial last week)

 Simplifications:
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Training Examples

Hypothesis Set

Learning Algorithm (‘train a system‘)

(Perceptron model)

(Perceptron Learning Algorithm)

(existing dataset already being labelled as +1/-1)

(vector notation, using transpose)

[4] Rosenblatt, 1958

(transpose = reflecting elements along main diagonal)
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Exercises
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Practice: Non-linearly Seperable Data

 More often in practice, requires a ‘soft threshold‘
 ‘soft-threshold‘ means allowing ‘some errors‘ being ‘overall‘ better
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?
1

2

(known also as XOR problem)

-1-2-3 1 2 3 4 5 6 7
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2

-2

-1

??
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Simple Application Example: Limitations of Perceptrons

 Simple perceptrons fail: ‘not linearly seperable’
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?

Decision Boundary Two-Layer, feed-forward Artificial Neural Network topology

X1

X2

y

Labelled Data Table

X1 X2 Y

0 0 -1

1 0 1

0 1 1

1 1 -1

X2

X1

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

(Idea: instances can be classified using 
two lines at once to model XOR)
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Multi Layer Perceptrons – Artificial Neural Networks

 Key Building Block
 Perceptron learning model
 Simplest linear learning model
 Linearity in learned weights wi

 One decision boundary

 Artificial Neural Networks (ANNs)
 Creating more complex structures 
 Enable the modelling of more complex 

relationships in the datasets
 May contain several intermediary layers 
 E.g. 2-4 hidden layers with hidden nodes
 Use of activation function that can 

produce output values that are 
nonlinear in their input parameters
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(decision boundary)
wi

(perceptron model)

(input
layer)

(hidden
layer)

(output
layer)
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Solution Tools: Artificial Neural Networks Learning Model

Elements we 
not exactly

(need to) know 

Training Examples

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Artificial Neural Networks)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Backpropagation)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise
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Artificial Neural Networks (ANN) – Layers & Nodes
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Input
Layer

Hidden
Layer

Output
Layer

X1 X2 X3 X4 X5

y

 Feed-forward neural network:
nodes in one layer are 
connected only to the nodes 
in the next layer (‘a constraint 
of network construction’)

 Think each hidden node as a 
‘simple perceptron’ that each 
creates one hyperplane

 Think the output node simply 
combines the results of all the 
perceptrons to yield the 
‘decision boundary’ above
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ANN - Learning Algorithm & Optimization

 Determine a set of weights w that 
‘minimize the total sum of squared errors’:
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	ࡱ 	࢝	 =   	࢟ − ý ࡺ
	ୀ	

 Error term, associated 
with each hidden node

Hidden
Layer

Output
Layer

y

Sum of squared errors depend on w, because predicted 
class y is a ‘function of the weights‘ assigned to the 

hidden and output nodes 

࢟ = sign (w . x)
Linear perceptron

 Error function is quadratic in 
its parameters and a 
global minimum can 
be easily found

 Other objective / loss 
functions possible, e.g. 
categorical cross-entropy
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Gradient Descent Method (1)
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[6] Big Data Tips,
Gradient Descent

16 / 72



Gradient Descent Method (2)
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[6] Big Data Tips,
Gradient Descent

17 / 72

 Gradient Descent (GD) uses all the training samples available for a step within a iteration
 Stochastic Gradient Descent (SGD) converges faster: only one training samples used per iteration 



ANN – Backpropagation Algorithm (BP) Basics

 One of the most widely used algorithms for supervised learning
 Applicable in multi-layered feed-forward neural networks
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 ‘Gradient descent method’ can be used to learn the weights 
of the output and hidden nodes of a artificial neural network

X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

 Hidden nodes problem: 
computing error term 
hard: ࣔ	E / ࣔ	wj 

 Their Output values are
unknown to us (here)…

 The backpropagation
algorithm solves exactly 
this  problem with two
phases per iteration(!)

known known Initially unknown 

[3] Introduction to Data Mining
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ANN – Backpropagation Algorithm Forward Phase

1. ‘Forward phase (does not change weights, re-use old weights)’: 
 Weights obtained from the previous iteration are used to compute the 

output value of each neuron in the network (‘initialize weights randomly’)
 Computation progresses in the ‘forward direction’,

i.e. outputs ‘out’ of the neurons at level k are computed prior to level k+1
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X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

Layer
K

Layer
K+1

 Use corresponding
‘activation function’
but with ‘old weights’out

out

out

out

out 1 2 3 N-1 N

1 2 M

1 C

...

.....

...

࢞ ࢞ ࢞ ିࡺ࢞ࡺ࢞

࢟ ࢟
(applicable for
multiclass to)
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ANN – Backpropagation Algorithm Backward Phase

2. ‘Backward phase (‘learning’  change the weights in the ANN)’: 
 Weight update formula is applied in the ‘reverse direction’
 Weights at level K + 1 are updated before the weights at level k
 Idea: use the errors for neurons at layer k + 1 to estimate errors

for neurons at layer k
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X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

Layer
K

Layer
K+1

		࢝ < 	࢝			− − ࣅ	 ࢝	ࣔ(	࢝	)	ࡱ	ࣔ
weight update formula

of the ‘gradient descent method’

Now that can compute
the error one-by-one

(regularization method ‘weight decay‘ 
or ‘weight drop‘ is used in neural networks‘)
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[Video] Towards Multi-Layer Perceptrons

[2] YouTube Video, Neural Networks – A Simple Explanation
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High-level Tools – Keras 
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[19] Keras Python Deep Learning Library

 Keras is a high-level deep learning library implemented in Python that works on top of 
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks 

 Tool Keras supports inherently 
the creation of artificial neural 
networks using Dense layers
and optimizers (e.g. SGD)

 Includes regularization (e.g. 
weight decay) or momentum

22 / 72

keras.layers.Dense(units, 

activation=None, 
use_bias=True, 
kernel_initializer='glorot_uniform', 
bias_initializer='zeros', 
kernel_regularizer=None, 
bias_regularizer=None, 
activity_regularizer=None, 
kernel_constraint=None, 
bias_constraint=None)

keras.optimizers.SGD(lr=0.01, 

momentum=0.0, 
decay=0.0, 
nesterov=False)
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Methods Overview – Focus in this Lecture

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or 
regression augmented with various techniques for data exploration, selection, or reduction
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ANN – Application Example Remote Sensing ‘SALINAS‘
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Feature reduction 

Spatial analysis

Feature reduction 

Classification

224 bands 

Original DAFE DAFE_SDAP_DAFE

(204 Feat.) (14 Feat.) (14 Feat.)

RF SVM ANN RF SVM ANN RF SVM ANN

AA 91.46 93,11 84,73 94,38 94,23 92,92 97,68 98,02 95,84

OA 87.75 89,12 92,27 89,89 88,22 94,91 96,02 96,77 97,16

K 86.34 87,87 91,37 88,72 86,89 94,32 95,57 96,4 96,84

 Hyperspectral data (AVIRIS sensor)
 ‘Salinas‘ Valley, California
 Spectral resolution: 224 bands
 Spatial resolution: 3.7 meter pixels

(OA = Overall Accuracy; AA = Average Accuracy;
K = Kappa coefficient obtained by classifiers)

(DAFE = Discriminant Analysis Feature Extraction;
SDAP = Self Dual Attribute Profile)
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ANN – Application Example in Industry

 ~2009 - Netflix Prize Challenge 2009 
 Data: Netflix company provided data to learn from previous movie rentals 
 Challenge: Improve Netflix in-house movie recommender system
 Prize: 1.000.000 US $ for team with 10% improvements
 Approaches: Machine learning algorithms and collaborative filterings
 Winner: Prize received by working with Artificial Neural Network (ANNs)
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[5] A. Töscher and M. Jahrer,
‘The BigChaos Solution to the 
Netflix Grand Prize’, 2009
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ANN – Handwritten Character Recognition MNIST Dataset

 Metadata
 Subset of a larger dataset from US National Institute of Standards (NIST)
 Handwritten digits including corresponding labels with values 0 to 9 
 All digits have been size-normalized to 28 * 28 pixels 

and are centered in a fixed-size image for direct processing
 Not very challenging dataset, but good for experiments / tutorials

 Dataset Samples
 Labelled data (10 classes)
 Two separate files 

for training and test
 60000 training samples (~47 MB) 
 10000 test samples (~7.8 MB)
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MNIST Dataset for the Tutorial

 When working with the dataset 
 Dataset is not in any standard image format like jpg, bmp, or gif
 File format not known to a graphics viewer 
 One needs to write typically a small program to read and work for them
 Data samples are stored in a simple file format that is designed for 

storing vectors and multidimensional matrices
 The pixels of the handwritten digit images are organized row-wise with 

pixel values ranging from 0 (white background) to 255 (black foreground)
 Images contain grey levels as a result of an anti-aliasing technique used 

by the normalization algorithm that generated this dataset.

 Available already for the tutorial
 Part of the Tensorflow tutorial package and Keras tutorial package
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Exercises
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Ugent Tier-2 Clusters

 Using Parallel Computing
 Compiled from open source
 Requires MPI library
 Intended to be used 

by High Performance 
Computing  system
(i.e. good  interconnects)

 Job runs
 Use of job 

scripts
 Depend on 

scheduler

[2] UGent Tier-2 Clusters

 Use our ssh keys to get an 
access and use reservation

 Put the private key into 
your ./ssh directory (UNIX)

 Use the private key with 
your putty tool (Windows)
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UGent Tier-2 Clusters – GOLETT in the Tutorial 

[2] UGent Tier-2 Clusters
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UGent Tier-2 Clusters – Login & Module Swap Cluster/golett

[2] UGent Tier-2 Clusters
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Copy Files to your Home Directory
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ANN –MNIST Dataset – Parameters & Data Normalization
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 NB_CLASSES: 10 Class Problem 
 NB_EPOCH: number of times the model is 

exposed to the training set – at each 
iteration the optimizer adjusts the weights 
so that the objective function is minimized

 BATCH_SIZE: number of training instances 
taken into account before the optimizer 
performs a weight update

 OPTIMIZER: Stochastic Gradient Descent 
(‘SGD‘) – only one training sample/iteration

 Data load shuffled between 
training and testing set

 Data preparation, e.g. X_train is 
60000 samples / rows of 28 x 28 
pixel values that are reshaped in 
60000 x 784 including type 
specification (i.e. float32)

 Data normalization: divide by 
255 – the max intensity value
to obtain values in range [0,1]



ANN – MNIST Dataset – A Simple Model
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 Dense() represents a 
fully connected layer 
used in ANNs that 
means that each 
neuron in a layer is 
connected to all 
neurons located in 
the previous layer

 The Sequential() 
Keras model is a 
linear  pipeline (aka 
‘a stack‘) of various 
neural network layers 
including Activation 
functions of different 
types (e.g. softmax)

 The non-linear Activation function 
‘softmax‘ represents a generalization of 
the sigmoid function – it squashes an n-
dimensional vector of arbitrary real 
values into a n-dimenensional vector of 
real values in the range of 0 and 1 – here 
it aggregates 10 answers provided by 
the Dense layer with 10 neurons

 Loss function is a multiclass logarithmic 
loss: target is ti,j and prediction is pi,j



ANN – MNIST Dataset – Job Script
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ANN –MNIST Dataset – A Simple Model – Output 
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 Approach: Prepare data before
 Classical Machine Learning
 Feature engineering (e.g. SDAP)
 Dimensionality reduction techniques ( e.g. DAFE: smaller, better data)
 Low number of layers (many layers computationally infeasible in the past)
 Very succesful for speech recognitition (‘state-of-the-art in your phone‘)

(Perceptron model: designed after human brain neuron) (Artificial neural network two layer feed – forward)
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Artificial Neural Network – Feature Engineering & Layers
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Deep Learning – Feature Learning & More Smart Layers

 Approach: Learn Features
 Classical Machine Learning
 (Powerful computing evolved)
 Deep (Feature) Learning  

 Very succesful for image recognition and other emerging areas
 Assumption: data was generated by the interactions of many different 

factors on different levels (i.e. form a hierarchical representation)
 Organize factors into multiple levels, corresponding to different levels 

of abstraction or composition(i.e. first layers do some kind of filtering)
 Challenge: Different learning architectures: varying numbers of layers, 

layer sizes & types used to provide different amounts of abstraction

(Example: Parcellation 
of cytoarchitectonic

cortical regions
in the human brain)
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Deep Learning – Feature Learning Benefits
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[3] H. Lee et al., ‘Convolutional Deep 
Belief Networks for Scalable 
Unsupervised Learning of Hierarchical 
Representations’

 Traditional machine learning applied feature engineering 
before modeling

 Feature engineering requires expert knowledge, is time-
consuming and a often long manual process, requires 
often 90% of the time in applications, and is sometimes 
even problem-specific

 Deep Learning enables feature learning promising a 
massive time advancement
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Deep Learning – Key Properties & Application Areas

 Application before modeling data with other models (e.g. SVM)
 Create better data representations and create deep learning models to 

learn these data representations from large-scale unlabeled data

 Application areas
 Computer vision
 Automatic speech recognition
 Natural language processing
 Bioinformatics
 …
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 In Deep Learning networks are many layers between the input and output layers enabling multiple 
processing layers that are composed of multiple linear and non-linear transformations

 Layers are not (all) made of neurons (but it helps to think about this analogy to understand them)
 Deep Learning performs (unsupervised) learning of multiple levels of features whereby higher 

level features are derived from lower level features and thus form a hierarchical representation 

(Deep Learning is often characterized as ‘buzzword‘)

(Deep Learning is often ‘just‘ called 
rebranding of traditional neural networks)

(hierarchy from low level to high level features)
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Basic ImageNet Dataset as Base for Learning

 Dataset: ImageNet
 Total number of images: 14.197.122
 Number of images with

bounding box annotations: 1.034.908
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[7] J. Dean et al., ‘Large-Scale Deep Learning’ [8] ImageNet Web page
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Exercises – Add Hidden Layers
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ANN – MNIST Dataset – Add Two Hidden Layers
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 A hidden layer in an ANN can be 
represented by a fully connected 
Dense layer in Keras by just 
specifying the number of hidden 
neurons in the hidden layer

 The non-linear Activation function ‘relu‘ 
represents a so-called Rectified Linear 
Unit (ReLU) that only recently became 
very popular because it generates good 
experimental results in ANNs and more 
recent deep learning models – it just 
returns 0 for negative values and grows 
linearly for only positive values



ANN – MNIST Dataset – Add Hidden Layers – JobScript
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ANN – MNIST Dataset – Add Hidden Layers - Output
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Deep Learning Architectures

 Deep Neural Network (DNN)
 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)
 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)
 Composed of mult iple layers of variables; only connections between layers

 Recurrent Neural Network (RNN)
 ‘ANN‘ but connections form a directed cycle; state and temporal behaviour
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 Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural 
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for high accuracy – works not well on sparse data

(focus in this course)
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Deep Learning – Parallel Computing Methods

 Exploiting two kinds of parallelism
 Model and data parallelism (‘hierarchical domain decomposition‘)
 Challenge: distributed asynchronous stochastic gradient descent algorithm
 Minimal network cost: most densely connected areas are on one partition
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[7] J. Dean et al., ‘Large-Scale Deep Learning’
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[Video] Deep Learning ‘Revolution‘

[9] The Deep Learning Revolution, YouTube
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GPGPUs
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 Significant advances in CPU 
(or microprocessor chips)
 Multi-core architecture with dual, 

quad, six, or n processing cores
 Processing cores are all on one chip

 Multi-core CPU chip architecture  
 Hierarchy of caches (on/off chip)
 L1 cache is private to each core; on-chip
 L2 cache is shared; on-chip
 L3 cache or Dynamic random access memory (DRAM); off-chip

Multi-core CPU Processors
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one chip

 Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
 Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
 Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

[10] Distributed & Cloud 
Computing Book
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Many-core GPUs

 Use of very many simple cores
 High throughput computing-oriented architecture 
 Use massive parallelism by executing a lot of concurrent threads slowly
 Handle an ever increasing amount of multiple instruction threads
 CPUs instead typically execute a single long thread as fast as possible

 Many-core GPUs are used in large 
clusters and within massively 
parallel supercomputers today
 Named General-Purpose 

Computing on GPUs (GPGPU)
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 Graphics Processing Unit (GPU) is great for data parallelism and task parallelism 
 Compared to multi-core CPUs, GPUs consist of a many-core architecture with 

hundreds to even thousands of very simple cores executing threads rather slowly

[10] Distributed & Cloud Computing Book
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GPU Acceleration

 GPU accelerator architecture example (e.g. NVIDIA card)
 GPUs can have 128 cores on one single GPU chip
 Each core can work with eight threads of instructions
 GPU is able to concurrently execute 128 * 8 = 1024 threads
 Interaction and thus major (bandwidth) 

bottleneck between CPU and GPU 
is via memory interactions

 E.g. applications 
that use matrix –
vector multiplication
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 CPU acceleration means that GPUs accelerate computing due to a massive parallelism with 
thousands of threads compared to only a few threads used by conventional CPUs

 GPUs are designed to compute large numbers of floating point operations in parallel

[10] Distributed & Cloud Computing Book

(other well known accelerators & many-core processors are e.g. Intel Xeon Phi  run ‘CPU’ applications easier)
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Exercises
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GPU Application Example – Matrix-Vector Multiplication

 What are the benefits of using GPUs in this application?
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NVIDIA Fermi GPU Example
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[10] Distributed & 
Cloud Computing 
Book
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GPGPUs – Terminology

 Origin & HPC relationships
 Starting ~2001 with reformulating computational problems in terms of 

graphics primitives (e.g. matrix multiplications)

 Programming Models
 OpenCL as open general-purpose GPU programming model
 NVidia Compute Unified Device Architecture (CUDA) 

as dominant propriety framework

 Selected Application Fields
 GPU-accelerated scientific computing applications increasing
 Increasing machine learning & statistical data mining implementations
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 General-Purpose Computing On Graphics Processing Units (GPGPUs)
 GPUs have been traditionally used to perform computing for computer graphics (e.g games)
 GPGPUs use GPUs to perform application computation instead or in addition to normal CPUs

[11] NVidia Tesla
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GPGPUs – Architecture 

 Parallelizes the already ‘parallel nature of graphics processing’
 Use of multiple graphics cards on one computer 
 Use of large numbers of graphics chips

 Terminology
 GPU ‘device‘
 CPU ‘host‘
 Function ‘kernel‘ 

(runs on device)
 Vertices & fragments are 

elements in processing ‘streams‘
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 GPUs have a parallel throughput architecture that emphasizes executing many concurrent 
threads slowly, rather than executing a single thread very quickly

 In the context of GPUs, the Kernel is a function that runs on the GPU device

[11] J. Owens, GPGPU Architecture Overview
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GPGPUs – From Pure Graphics to General Processing
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[11] J. Owens, GPGPU Architecture Overview

 Rendering Pipeline  Programmable Pipeline

 Rendering pipeline designed for massively parallelism and independent operations
 General processing in science and engineering partly rely on independent operations & data
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GPGPUs – Performance & Programming Approach

 GPUs are ‘massively multithreaded’ many-core chips
 Hundreds of cores &  thousands of concurrent threads
 Aggressive performance growth

 ‘Stream‘ / data parallel programming approach
 ‘Set of records’ that require similar computation (less communication)
 Kernel functions are applied to each element of the stream
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[31] NVidia Training Introduction

 GPGPUs are very restrictive in operations and programming, but ideal for data parallel tasks
 GPGPUs are very effective for a set of records that require similar computation named as streams

 Different to plain ‘multi-core‘
(multi-core – heavy weight fast threads)

(GPUs – fine light-weight slow threads)
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GPGPUs – Programming Model OpenCL

 Open Computing Language (OpenCL)
 The open standard for parallel programming of heterogeneous systems
 Enable algorithms & programming 

patterns to be easily ‘accelerated’

 Practice
 Hard to compete with NVidia 

CUDA & emerge as standard 
(e.g. MPI took > 10 years to position 
itself as the programming standard)
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 OpenCL is the open general-purpose GPU programming model approach that is vendor neutral
 Despite of the open standard OpenCL the de-facto standard in GPU programming is CUDA today

[12] Khronos Group, OpenCL

[13] Rastergrid, OpenCL platform model
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GPGPUs – Programming Model CUDA

 Compute Unified Device Architecture (CUDA)
 Industry standard programming model
 Dominant since NVidia is major producer of GPGPUs in the market
 Subset of programming language C
 Defines a programming model and a memory model

 (Unlimited) Scalability
 Parallel portions of application executed on the GPU device as kernels
 Program for one thread can be instantiated on many parallel threads
 Program runs on any number of processors without recompiling
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 CUDA is the dominant propriety general-purpose GPU programming model that is vendor-specific
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GPGPUs – NVidia Usage Models

 Example: Three ‘different types of NVidia GPUs‘ 
 Designed for different levels of performance requirements
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[14] NVidia Training Introduction

(constant 
evolution:
NVidia Fermi
as successor of 
NVidia Tesla)

(constant 
innovation: 
NVidia Kepler)
as successor of
NVidia Fermi)
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Hybrid Programming: CPUs & GPGPUs Revisited

 Emerging ‘hybrid programming model‘
 Using General-purpose computing on graphics processing units (GPGPUs)
 Combine with traditional CPUs to accelerate elements of processing
 Idea: exploit parallelism across host CPU cores in addition to the GPU cores
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[15] ‘Boosting CUDA Applications with CPU-GPU Hybrid Computing’

 One drawback of a typical GPU is that it requires a host CPU in order to be used in a HPC system

(constant innovation: new generation Intel Knights Landing many integrated cores (MIC)  run directly as host CPUs)
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GPGPUs – Selected Applications

 Human brain research
 Example: Registration of high resolution brain images 

 AMBER / CHARMM applications
 Traditional HPC Applications
 Molecular dynamics package to simulate 

molecular dynamics on biomolecules
 Emerging support for GPGPU processing
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[16] NVidia Application Lab Juelich
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HPC System KU Leuven – GPUs 
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modified from [18] HPC System KU Leuven

 Accelerators
 Nodes with two 10-core "Haswell" Xeon E5-2650v3 2.3GHz CPUs, 

64 GB of RAM and 2 GPUs Tesla K40
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Exercises – Check Login into the KU Leuven System
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Keras with Tensorflow Backend – GPU Support

Lecture 1 – Deep Learning Fundamentals & GPGPUs

 Keras is a high-level deep learning library implemented in Python that works on top of 
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks 

[19] Keras Python Deep Learning Library

 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are 

so-called tensors (also known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[20] Tensorflow Deep Learning Framework

[21] A Tour of 
Tensorflow
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[Video] GPGPUs & Applications
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[17] ‘HPC – GPGPUs’, YouTube Video
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