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Review of Lecture 4

= (lassification Challenges
= Scalability, high dimensionality, etc.
= Non-linearly seperable data
= Qverfitting

= Maximal Margin Classifier
= Many possible lines exists

= Maximal margin decision
boundary with best
generalization capabilities

= Constraint optimization problem
= Hard-margin (no errors allowed)

= |ibSVM tool

Error

bad generalization€ E% overfitting occufs

(‘generalization error’) E t (q)

(*training error’)

E. (9)

L
o

Training time

)
~®

" Implements sequential minimal optimization (SMO) used in SVM training

= svm-train and svm-predict with many parameters, e.g. C regularization
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Outline
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Outline of the Course

Machine Learning Fundamentals
Unsupervised Clustering and Applications
Supervised Classification and Applications

Classification Challenges and Solutions

Regularization and Support Vector Machines

Validation and Parallelization Benefits
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Outline

= Regularization & Support Vector Classifier
= Regularization Methods against Overfitting
® From Hard-margin to Soft-margin
= Role of Regularization Parameter C
= Solving and Limitations of Classifier
= Apply Classifier to Flower Problem

= Non-linear Transformations
= Need for Non-Linear Decision Boundaries
= Mapping Data to higher dimensions
= Role of Linear Boundary in Feature Space

= Kernel Methods
= Full Support Vector Machines & Kernel Trick
=  Polynomial and Radial Basis Function Kernel
= Apply Kernels to Remote Sensing Data
= Multi-Class Classification Approaches
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Support Vector Classifier

O
O 0
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Regularization — Key Principle

" |nitial setup
= Considered as ‘free fit" — fit as far as the model can do’
= E.g.use 4 order polynomial model and fit the 5 data points (cf. Figure A)

= ‘Putting the brakes’ regularization to avoid overfitting

= Apply a ‘restrained fit’ — ‘preventing to fit the data perfectly’
= E.g.use 4t order polynomial model but use ‘minimal brakes’ (cf. Figure B)

(equivalent meaning of explicitly forbidding some of the hypothesis to be considered in learning)

(target) (not getting (target)
. all the . .
(free fit) boints right, (restrained fit)
but much

(noise) better fit) (noise) 2
\ — . " 4

. ‘apply _/

\,, ' regularization’
Figure A Figure B
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Exercises
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Regularization — Two Approaches

= Used in almost every machine learning situation

= Two approaches to regularization: mathematics & heuristics

* Mathematics (from ill-posed problems in function approximation)
" Goal: approximate a function
= ‘lll-posed Problem’: there are many functions that fit this function
= Approach: Impose ‘smoothness constraints’ to solve the problem
= Learning practice: assumptions in mathematical approach not realistic
= Solution: use mathematical approach intuitively to create ‘rules of thumb’

= Heuristics
= Handy-capping the minimization of the in-sample-error

= |dea of ‘putting the brakes’ — partly based on mathematEm (g)
= Not a random process and oriented towards preventing overfitting

= Regularization creates simpler models & thus in-line with ‘Occams Razor’ (simple model better)
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Regularization — Regularization Example & Impact

—— A o
= Example: Minimize £ (w) + —w'w (penalizing models wit

N extreme parameter values)
(target) (target) (regularization
: / . i coefficient A
(free fit A = 0) apply little (A =0.0001) controls tradeoff:
regularization’ e how much it
\ >’ is important
E— 7 wittheda
1 well vs. simple
overflttmg) (good generalization & fit) hypothesis)
. (target) ‘apply too . (target)
‘apply more (A=0.01) much (A=1)
.,
reqularization’ 3 . regularization . *
’ 2L —) @:
(poorer generalization & fit) (underfitting)

= Choice of A is extremely critical and can lead with high values to underfitting (as bad as overfitting)
= Choice of type of regularizers is heuristic, but choice of A will be extremely principled (validation)
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Regularizer Methods — Early Stopping & Big Data

" |dea: regularization through the optimizer

= Apply early stopping algorithm

as part of the ‘training time’

= Based on practical validation methods

= Pointin time to stop will
be choosen by validation

= Big data has a bigger dataset N and
more likely also ‘more stochastic noise’

=  Preventing overfitting with big data
tends to require stricter regularization

= Early stopping offers a pragmatic way
for big data to prevent overfitting

= Given large quantities of dataset N, the
training time is massively reduced too

Error

A (‘generalization error’) Eout (g)

~ model
complexity

(“training error’)

E,.(9)

>

Training time
(‘early stopping’)

» Lecture 6 provides details on how validation is used to determine the early stopping point in time I
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Regularization Methods — Choosing Guidelines

= Choosing a regularizer in learning from data is a must have & leads to better generalization
= Choosing not a regularizer will definitely lead to overfitting the data in practical situations

= Selected ‘rules of thumb'

= Choosing constraints with e 1
‘weight growth’ gives terrible results

(harmful regularization space)

= Choosing constraints towards
‘smoother hypothesis‘ gives good results

(no regularizer) ==

(‘weight decay’)

= Reasoning noise is not smooth
= Stochastic noise = ‘high frequency’

(helpful regularization space)

A

. . . . }
= Determinisic noise = ‘non-smooth’

(‘using regularization parameter A
in a smart way leads to a better
proxy for E . than just E, thus

to beter generalization)

= Smaller weights correspond to
smoother hypothesis

(‘hectic dog & calm man have a walk’ analogy)

The rule of thumb in regularization is to constrain the learning with smoother/simpler hypothesis
Regularization forbids some hypothesis & thus reduces the VC dimension: improving generalization
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Other Models — Artificial Neural Networks (ANNs)

= ANNSs are one of the most powerful classification methods
= Often very much optimized for domain-specific solutions
= |dea: Linear models work but are limited (e.g. simple XOR example)

= Example: ‘how we can combine layers of perceptrons to learn from data?’

(instances can be classified

A using two hyperplanes at once) y
XZ
XZ
Wy,
(regularization method ‘weight decay is used in neural networks‘)
» Artificial Neural Networks can be considered as Multi-Layered Perceptron: tutorial next week! I
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Other Models — Random Forests & Decision Trees

= Decision Trees and Random Forests often used

= Decision boundaries can be interpreted as regions

T | iR
X; < tr (node label) [1] An Introduction to Statistical Learning A
Years, < 4.5
I 1 45
(split) o
X, <ty . .
(Random Forest with bagging)
(Ieft-hand d splits (d + 1 terminal nodes) (ri ht-hand
branch: 8
years <4.5 branch:
years>=45) | . . L L 4 L
- 1struct multiple trees in parallel, each on a sample of the data
conditions) (Random Forest with boosting)
Hits <[117.6
511
_ (split) — > — >
(Number in each leaf
is the mean of the | N |
6.00 6.74
response for the
observations that fall there) (construct multiple trees in a series, each on a sample of the data)

» Random Forests are ensemble methods of Decision Trees and also often used in practice today
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Support Vector Classifiers — Motivation

Support Vector Classifiers develop hyperplanes with soft-margins to achieve better performance
Support Vector Classifiers aim to avoid being sensitive to individual observations (e.g. outliers)

[1] An Introduction to Statistical Learning

" Approach
. . , ) ) e (get most & but not all training
= Generalization of the ‘maximal margin classifier’ data correcly classified)

" |nclude non-seperable cases with a soft-margin (almost instead of exact)

= Being more robust w.r.t. extreme values (e.g. outliers) allowing small errors

(significant reduction of
the maximal margin)

X,
1
|
Xs
1

(overfitting, cf Lecture 10:
maximal margin classifier &
hyperplane is very sensitive
to a change of

a single data point)
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Support Vector Classifiers — Modified Technique Required

(incorrect side of margin)

" Previous classification technique reviewed 1 7 ‘
= Seeking the largest possible margin, . g
so that every data point is... s j \8
= ... onthe correct side of the hyperplane o {T 1
= ...onthe correct side of the margin e

-05 0.0 0.5 1.0 1.5 2.0 2.5

" Modified classification technique X,

. . . (incorrect side of hyperplane)
= Enable ‘violations of the hard-margin’ -

to achieve ‘soft-margin classifier’

= Allow violations means: o
allow some data points to be... -

= ...ontheincorrect side of the margin =

= ..evenontheincorrect side of the hyperplane T o f‘\‘{ {
(which leads to a misclassification of that point) X,

[1] An Introduction to (SVs refined: data points that lie directly on the margin or on the wrong side
Statistical Learning of the margin for their class are the SVs = affect support vector classifer)
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Support Vector Classifier — Optimization Problem Refined

" Optimization Problem maximize M

) o _ B03B1yeeeyBps€1yeeny €n
= Still maximize margin M

p
= Refining constraints to include subject to Z%; -1,
j=1

violoation of margins
(allow datapoints to be on the wrong

. : . N i
Adding slack variables €1.,.. .., €pn side of the margin o hyperplane)

yr(jﬂ + _,.31;1‘..5.1 + 323_32 —_— _.-3-})"1‘--3'.1)) > :\f(l — .f__i.-_) (slightly violate the Margin)

n (Cis used here
>0, Y ;< C [toboundtneero) = CParameter & slacks
=1 * Cbounds the sum of the
(Cis a nonnegative tuning parameter . _ _
useful for regularization, cf. Lecture 10, slack variables €1, ..., €n
picked by cross-validation method) [1] An Introduction to Statistical Learning

= Cdetermines the number & severity of violations that will be tolerated to margin and hyperplane
= [Interpret C as budget (or costs) for the amount that the margin can be violated by n data points

» Lecture 6 provides details on validation methods that provides a value for C in a principled way I
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Support Vector Classifier — Understanding the Slack

= Allowing some errors or violations of the margin

H
® : . ;
& Margin=2 / vw'w
Misclassified @
point
®
L e
®
.4____________________________________________________++..'_'._.__: R . S, __.,.."_1_____________________________.5.
Support Vector .-“' °
@ Support Vector
e @
o
@

(These all correct samples
dont matter contributing to

. .
(As budget C increases, the classifier . r_ObUSt classnller ?gsc )
becomes more tolerant of violations of the " e UNIque prop'er yo >

margin, margin will be thus wider) v

Lecture 5 — Regularization and Support Vector Machines



Support Vector Classifier — Impact of Regularization with C

1 5 (maximal
= Approach: Maximizing the margin min EHWH :I‘;;gl'f:‘er)
1w
= Equivalent to minimize objective function
= Support Vector Classifier (Cis used here
_ 1 9 to multiply the
= Same approach for solving iy, _HWH e E : ¢. |\ sum of errors
. . w,&; P ' ST forincreased
= Adding slacks variables bk ; severity, because

# errors should be
kept small, not
a budget here)

= C parameter that enables regularization (i.e. size of margin)

[1] An Introduction to Statistical Learning

(Csmall) / ;
b N o e . ,‘I ,'ol
o e o (fewer
= o do o = © = o
- ¢ support
| ( ,'ﬂt . ' Vectors:
5 many suppor N , , .
‘ Y supp v ' L , just #8)
3 vectors) ) . | (highfit/to/the data)
_ X1 _ X 7 X1 7 X1

» Lecture 6 provides details on validation methods that provides a value for C in a principled way I
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Solution Tools: Support Vector Classifier & QP Algorithm

Unknown Target Distribution P (y ‘ X)
target function f .4 — Y plus noise

(ideal fuinction)

<_____-_-_-

Training Examples

(X17 yl)’ T (XN7 yN)

(historical records, gropndtruth data, examples)

\

Learning Algorithm (‘train a system?)

x = (z

19 °°

Probability Distribution

P on X

!

Lo e— x

Error Measure

>e(xX)<€

A 4 /

Final Hypothesis

A <

(Quadratic’brogramming)

Hypothesis Set

H={h}; ge™H

(Support Vector Classifier)

g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset



Support Vector Classifier — Solving & Limitations

Solving constraint optimization problem chooses coefficients that maximize M & gives hyperplane
Solving this problem efficiently is possible due to sequential minimal optimization (SMO)
Support vector classifiers use a soft-margin & thus work with slightly(!) non-linearly seperable data

" Limitation: Still linear decision boundary...
= Non linearly separable where soft-margins are no solution

= Support Vector Classifier can not establish a non-linear boundary

perfect, but ¢ poor.....o.ooo® . /) (alinear decision boundary by
* 4 impossible ‘e v tseneralization s T L A support vector classifier is not
. o o® AR B SRR R SR SO L e e ¢ .
until now * o FEEIG Sh S R Liiaas Rioe el an option)
. R HHE ) ShEd
" . e RSN
L s s ﬁgrs:}?.lﬁ." S 3 )
™ ] nE M 9 / f
et = SRl 2," oole
=i O R B fo 9 9%
: g '..j' ‘sg’g&zﬁ:’%
R .
o Sk " o
S = S i e ey o
Bf e e ,
. L ) rd
Bl Voo e | (... but maybe there are more
Tf‘ af q‘r U i o . g B | R
Jedn : | advanced techniques that help...)
I I I I I I I I I I
-4 -2 0 2 4 —4 -2 0 2 4
X4 X3

modified from [1] An Introduction to Statistical Learning
Lecture 5 — Regularization and Support Vector Machines




Exercises
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Training Phase: non-linearly seperable case (iris-class2and3)

= Use svm-train (c<=0 not allowed, change value, what happens?)

-bash-4.2% more svm-train2-3.sh
Jsvm-train -t @ -c¢ 1 /homeb/zam/mriedel /datasets/iris-classZand3-training

. -bash-4.2% 1s -al
-bash-4.2% ./svm-train2-3.sh total BYG
* drwxr-xr-x 8 mriedel zam 32768 Jul 6 22:36
drwxr-xr-x mriedel zam 512 Jul 6 20:03

nu = @.360979 -rw-r--r-- 1 mriedel zam 83089 Dec 14 2015 FAQ.html

i = - = - -rW-r--r-- mriedel zam 27670 Dec 14 2015 heart scale
obj = -17.632638, rho 1.602841 re-rooro 1 nriedel Zan 27670 Dec 14 2015 Peart_

8
T—_— : R : 3
= =
Optlml"_athﬂ flﬂlShed, #iter 22 -rw-r--r-- 1 mriedel zam 1497 Dec 14 2015 COPYRIGHT
1
1
hil
1

nsy = 2?; nBsY = 24 -rwW-r--r-- mriedel zam 1430 Jul 6 22:36 iris-classZand3-training.model

i

Total nsV = 27 2
mriedel zam 732 Dec 14 2015 Makefile

mriedel zam 1136 Dec 14 2015 Makefile.win
mriedel zam 512 Dec 14 2015

mriedel zam 512 Dec 14 2015

mriedel zam 28679 Dec 14 2015 README

-rwW-r--r--
-rwW-r--r--
drwxr-xr-x

" Check model file A

-rwW-r--r-- mriedel zam 120 Jul 6 22:32 results.txt
-FwW-r--t-- mriedel zam 64836 Dec 14 2015 svm.cpp
| Next page’ because -W-r--r-- mr%edel zam 477 Dec 14 2015 svm.def
-rwW-r--r-- mriedel zam 3382 Dec 14 2015 svm.h
-rwW-r--r-- mriedel zam 100224 Jul 6 20:05 svm.o
Mma ny Su pport -rwxr-xr-x 1 mriedel zam 78270 Jul 6 20:05
I SPWX =X =X mriedel zam 113 Jul 6 22:35
VeCtorS' -rwW-r--r-- mriedel zam 5536 Dec 14 2015 svm-predict.c
SPWX I -Xr-X mriedel zam 18587 Jul 6 20:05
-rwW-r--r-- mriedel zam 8539 Dec 14 2015 svm-scale.c
drwxr-xr-x mriedel zam 512 Dec 14 2015
SPWX =X =X mriedel zam 78509 Jul 6 20:05
SPWX P -XI-X mriedel zam 76 Jul 6 22:24

mriedel zam 76 Jul 6 22:35
mriedel zam 8986 Dec 14 2015 svm-train.c
mriedel zam 512 Dec 14 2015
mriedel zam 512 Dec 14 2015

- PWXP-X-X
-rwW-r--r--
drwxr-xr-x

1
1
2
2
1
1
1
1
1
1
1
-rwxr-®r-x 1 mriedel zam 113 Jul 6 22:31
1
1
1
1
5
1
1
1
1
2
drwxr-xr-x 2

Lecture 5 — Regularization and Support Vector Machines



Model File: non-linearly seperable case (iris-class2and3)

-bash-4.2% more iris-classZand3-training.model
= Many SVs /sample  snpee e
kernel_type linear
f I . d nr class 2
| ( f— total sv 27
careru Indicator ot e
label 2 3

for problems) nrev 14 13

sV

—_

1:0.5 3:0.254237 4:0.0833333

1:0.166667 3:0.186441 4:0.166667

1:0.444444 2:-0.0833334 3:0.322034 4:0.166667
1:-0.333333 2:-0.75 3:0.0169491 4:-4.03573e-08
1:0.222222 2:-0.333333 3:0.220339 4:0.166667
1
1
1

=" |nthe linear case
we know from looking
at the data it still

1-0,222222 2:-0.333333 3:0.186441 4:-4.03573e-08
:0.111111 2:0.0833333 3:0.254237 4:0.25
b k . h_ 10.277778 2:-0.25 3:0.220330 4:-4.03573=-08
.3069670881822512 1:-0.5 2:-0.416667 3:-0.0169491 4:0.0833333
eo In t IS case 1:-0.111111 2:-0.166667 3:0.0847457 4:0.166667
1:-1.32455e-07 2:-0.25 3:0.254237 4:0.0833333
.3272536585778756 1:0.333333 2:-0.0833334 3:0.152542 4:0.0833333

. Llnear SVM Worked: 1 1:-0.277778 2:-0.166667 3:0.186441 4:0.166667

. 1 1:0.6555554 2:-0.833333 3:0.186441 4:0.166667
PLA instead would 1 1:-8.666667 2:-0.583333 3:0.186441 4:0.333333
-0.6342607467601266 1:0.222222 3:0.38983 4:0.583333

not ab|e to Stop -1 1:0.222222 2:-0.166667 3:0.525424 4:0.416667

-1 1:-0.0555556 2:-.833333 3:0.355932 4:0.166667
. . 1 1:0.111111 2:-0.416667 3:0.322034 4:0.416667
with this dataset -1 1:0.0555554 2:-0.333333 3:0.288136 4:0.416667
1 1:-1.32455e-07 2:-0.166667 3:0.322034 4:0.416667
1 1:0.611111 2:-0.166667 3:0.627119 4:0.25
1 1:0.111111 2:-0.333333 3:0.38983 4:0.166667
1
1
1
1

Lo e e e B e el e el

-1 1:-1.32455e-07 2:-0.5 3:0.559322 4:0.0833333
-1 1:0.166667 2:-0.0833334 3:0.525424 4:0.416667
-1 1:-0.0555556 2:-0.166667 3:0.288136 4:0.416667
-1 1:-0.111111 2:-0.166667 3:0.38983 4:0.416667

Generalization measure: #SVs as ‘in-sample quantity’ 2 10SVs/1000 samples ok, 500SVs/1000 bad
Reasonsing towards overfitting due to a large number of SVs (fit many, small margin, gives bad E_,)
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Testing Phase: non-linearly seperable case (iris-class2and3)

= Use svm-predict (using newly created model file & testing data)

-bash-4.2% more svm-predict2-3.sh
JSsum-predict Shomeb/zam/mriedel /datasets/iris-classZand3-testing ./iris-classZand3-training.model ./results.txt

-bash-4.2% ./svm-predict2-3.sh
Accuracy = 93.3333% (56/60) (classification)

-bash-4.2% head results.txt 2

3 (4) Modelling Phase (X] Y, )? (x:\” -UN)
2 A (resampled, again

3 25 = N = 100 samples)

Z

Z2 2 -

2 '/

3

Z 15 + Irisversicolor

W Iris~vrginica

(linear decision boundary)

(consistent with our graph: ~4 1 L e N
data point will be misclassified by (non-linear decision boundary)

a linear decision boundary) 0s

i'm
0
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Non-Linear Transformations

O
O 0
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Need for Non-linear Decision Boundaries

" Lessons learned from practice .
= Scientists and engineers are often “ e .
faced with non-linear class boundaries AR T ’:;-;::,_-:
= Non-linear transformations approach 1 K
* Enlarge feature space (computationally intensive) '

= Use quadratic, cubic, or higher-order o _ X, _
. . . (time invest: mapping done by explictly carrying
polynomial functions of the predictors  out the map into the feature space)

= Example with Support Vector Classifier

X1, X, X reviously used p features maximize M
1,422 Ap (P Y P ) Bo,B115812---+38p1,8p2,€1,-.-,€n
2 2 2
Xi, X7, Xo, Xo, .o, -Xp, )(p (new 2p features) p P
b’th@Ct to y; Bo + Z ,-Sjliifz'j =+ Z .,Sjg;ligj > JI(1 — Ei)

(decision boundary is linear in the enlarged feature space) j=1 j=1

(decision boundary is non-linear in the original feature n P2 5

v !
space with q(x) = 0 where q is a quadratic polynomial) Z e <C, ¢ >0, Z Z .ﬁjk =1
i=1 j=1k=1

[1] An Introduction to Statistical Learning
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Understanding Non-Linear Transformations (1)

= Example: ‘Use measure of distances from the origin/centre’

= (Classification

(still linear models applicable)

= (1) new point; (2) transform to z-space; (3) classify it with e.g. perceptron

(‘changing
constants’)

(named as x-space)

(also called input space)

Lecture 5 — Regularization and Support Vector Machines

(named as z-space)

(also called feature space)



Understanding Non-Linear Transformations (2)
= Example: From 2 dimensional to 3 dimensional: [e1z2 = [e1,22,2:2 + 227
= Much higher dimensional can cause memory and computing problems

Data projected to R™~2 (nonseparable)

1.5
Data in R™3 (separable)
L ]
b °
10} e B
Lot o e
[ ]
'. ° .. 1.4 ° A i
. -'o ... ° ° ¢ ° &
° ® o
05 e &, 1.2 7 ° ‘?o i ‘ °°s B
. [ L] ° ()
5 w't £ =g § P S Son o
e ° 4, At ® e, © 1.0 7 ’Ogg S el o2 %-%"‘
o o aa ® o N ol e .':O. 8 °® (o '%.o:
E @ A M, n l‘; =08 1 FA 'o" . ° o, : 2
© 00} ° i ah '. E ® ° °
- ° o NS A 0.6 T
°, BN
.. A 4 A ‘.‘ A ..
L aatta M 2 e . 0.4 7
- ° A A L4
0.5 :. R .'.. 0.2 ‘,‘?‘.A: :A;A“
° A ., A
6o ® o o ::. \:n%fa‘&
]
&, o% ° . °%° . —1.W
Lol . o aeas Wt ] 00 oo s 00 05 -1.0
e L : ; :
abe/ 10 1.0 ¥ Label
s ‘ . . | . [2] E. Kim
15 -1.0 -0.5 0.0 0.5 1.0 1.5
X Label

I = Problems: Not clear which type of mapping (search); optimization is computationally expensive task
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Understanding Non-linear Transformations (3)

= Example: From 2 dimensional to 3 dimensional: [e, =2 = [e1.22,2:2 + 257
= Separating hyperplane can be found and ‘mapped back’ to input space

Data projected to R~2 (hyperplane projection shown)

15
Data in R™3 (separable w/ hyperplane)
1.0}
14 4 b °
] o0
° L o
- ° L
1.2 .f . .Q. ° o | e ..D 0.5}
ee [ 8
1.0 ree. ot 3%, %3 J
0!0“ ° .'. 00 o
N b ‘ o0 o o(. .’S _
ch . o °8 ® 00}
06 T -
i =
A —0.5}
4 44 e
0.2 .4‘{5“*’32“ aasd
1.0
0:5
0.0 05 1.0 -1.0}
=0.5 0.0 -
Y -1.0 - -0.5
“abef L0 X Label
(input space)
(feature space) -1

5 - - : : :
. -1.5 -1.0 -0.5 0.0 0.5 1.0 15
[2] E. Kim X Label

Problem: ‘curse of dimensionality’ — As dimensionality increases & volume of space too: sparse data!
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Kernel Methods

O
O 0
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Term Support Vector Machines — Revisited

=  Support Vector Machines (SVMs) are a classification technique developed ~1990

{

= SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers

[1] An Introduction to Statistical Learning

" Term detailed refinement into ‘three separate techniques’

= Practice: applications mostly use the SVMs with kernel methods

= ‘Maximal margin classifier’
= A simple and intuitive classifier with a ‘best’ linear class boundary
= Requires that data is ‘linearly separable’

= ‘Support Vector Classifier’

= Extension to the maximal margin classifier for non-linearly seperable data
= Applied to a broader range of cases, idea of ‘allowing some error’

= ‘Support Vector Machines’ = Using Non-Linear Kernel Methods
= Extension of the support vector classifier
= Enables non-linear class boundaries & via kernels;
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Constrained Optimization Steps SVM & Dot Product

_ 1
= Rewrite formula: £ = 5 Z QYX;) - (Z ;Y X5 )

~ |Z aixi - () 0y%;)

(the same)

;@% Y
(was 0)

l (results in)

(optimization
depends only on dot
product of samples)

L = Z{J{ ——ZZaayiy

= Equation to be solved by some
guadratic programming package

Lecture 5 — Regularization and Support Vector Machines

!



Kernel Methods & Dot Product Dependency

= Use findings for decision rule
(decision rule also

@W: E ;Y X depends on

dotproduct)

@W-qusz* » Zafiyib?j(]*
", (projection) = Dotproduct enables nice more elements

= E.g.consider non linearly seperable data

= Perform non-linear transformation @ of the
samples into another space (work on features)

[— Za _ —Zzaaﬂ ?;ETJE@

(optimization
» q) XE ) (in opt|m|zat|on) depends only on dot
(for decision rule product of samples)
» (P X? ll ) above too)
(kernel trick is +.- - (trusted Kernel
substitution) K (X_?' ' XJ-‘) = &g Xj@ B‘ Xi: X_?) ( ) ( ) avoids to know Phi)
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Support Vector Machines & Kernel Methods

= Support Vector Machines are extensions of the support vector classifier using kernel methods
=  Support Vector Machines enable non-linear decision boundaries that can be efficiently computed
=  Support Vector Machines avoids ‘curse of dimensionality’ and mapping search using a ‘kernel trick’

= Non -lin ear tran SfO rmations [1] An Introduction to Statistical Learning

= Lead to high number of features - Computations become unmanageable
) ] (including the danger to run into ‘curse of dimensionality‘)
= Benefits with SVMs

= Enlarge feature space using ‘kernel trick’ = ensures efficient computations
= Map training data into a higher-dimensional feature space using (I)
= Create a seperating ‘hyperplane’ with maximum margin in feature space

= Solve constraint optimization problem
= Using Lagrange multipliers & quadratic programming (cf. earlier classifiers)
" Solution involves the inner products of the data points (dot broducts)
= Inner product of two r-vectors a and b is defingd as (@,b) = 2 imy aibi
= Inner product of two data points: (u;, ;) = Z L3 T
j=1
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Linear SV Classifier Refined & Role of SVs

p
" Linear support vector classifier (e, 20) = ;“*W’j
* Details w.r.t. inner products ; ‘
= With n parameters ;. © = 1,..., n  f@) =P+ ) aile, )
(Lagrange multipliers) =
= Use training set to estimate parameters (between all pairs of training data points)
" Estimate ... ., oy and  Jo using inner products (., /)
n (n—1) /2 number of pairs
T
* Evaluate f(x) with a new point flx) = B+ E a; (x, )
= Compute the inner product between i=1 |
new point x and each of the training points x. ol dara
» |dentify support vectors = Quadratic programming f‘o'n‘jfutmg

= (v; is zero most of the times (identified as not support vectors)

= (; is nonzero several times (identified as the support vectors) 4 () = o+ PILACED
i€S
[1] An Introduction to Statistical Learning (S with indices of support vectors)
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The (‘Trusted’) Kernel Trick

(sompute the hyperplane without explictly

u Summary fOf' COmputation carrying out the map into the feature space)
n
= All th-a’F is neede.d to compute £(x) = Bo + Z i {, )
coefficients are inner products P
= Kernel Trick (inner product used before)
P
= Replace the inner product (wi, ) =Y wijier
with a generalization j=1

of the inner product K (i, xq) (kernel ~ distance measure)

= Kissome kernel function (choosing a specific kernel type)
= Kernel types l

p
= linear kernel ff(;l-'z'ul-'z") = Z LijLi'5 (linear in features)
j=1
p
. - d
- Polynomlal kernel K (x;, Ty) = (1+ Z i’z‘ji«'i’j) (polynomial of degree d)
[1] An Introduction to Statistical Learning j=1

= Kernel trick refers to a mechanism of using different kernel functions (e.g. polynomial)
= Akernel is a function that quantifies the similarity of two data points (e.g. close to each other)
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Kernel Trick — Example

= Consider again a simple two dimensional dataset
= We found an ideal mapping (I) after long search
= Then we need to transform the whole dataset according to (]:)

b - (.”L'l,l'g) — (-CUl,ZUQg \/7-/1;17 \/7'/1;27 )

" |nstead, with the ‘kernel trick’ we ‘wait‘ and ‘let the kernel do the job:

K(X“Xj) = (I)(Xz) : (I)(Xj) ‘mina _Zzazajyzy] XzaX Z@z

(no need to compute the mapping aIready
d(u) - P(v) = (Up u3, \f'u,l, V2us, 1 1) - (vy,v3, V201, V209, 1 1)
®(u) - ®(v) = ujvi + usvs + 2ugvy + 2ugvy + 1

(I)(u) . (I)(V) — (u -V 4+ 1) — K(ll, V) (in transformed space still a dot product

in the original space = no mapping needed)
(we can save computing time by do not perform the mapping)

= Example shows that the dot product in the transformed space can be expressed in terms of a
similarity function in the original space (here dot product is a similiarity between two vectors)
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Linear vs. Polynomial Kernel Example

" |inear kernel

= Enables linear decision boundaries
(i.e. like linear support vector classifier)

= Polynomial kernel

p
K(xg,wy) = E LijLi’j (linear in features)
j=1

(observed useless for .
non-linear data)

P
- d
K(xij,xy)=(1+ E LijLirj) (polynomial of degree d)
j=1

= Satisfy Mercer‘s theorem = trusted kernel

= Enables non-linear decision boundaries
(when choosing degree d > 1)

= Amounts to fit a support

vector classifier in a

higher-dimensional space

= Using polynomials of degree d \_
(d=1 linear support vector classifier) B/ A A ——

[1] An Introduction to Statistical Learning

(SVM with polynomial kernel of degree 3)

<l BEESENY
(significantly SLoig

improved SR
decision rule due =~ s
to much more 3 ‘
flexible decision
boundary) .

<+ -

I = Polynomial kernel applied to non-linear data is an improvement over linear support vector classifiers
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Polynomial Kernel Example

* Circled data points are from the test set

O B 0 A5 (KEmE ZlIeRT SVM Decision Boundary accuracy=1.0 (Kernel=poly
' : ' ‘ : C=1.0 coef0=10.0 gamma=0.1 degree=4)
1.0
0.5+
0.0}
-0.5
_10 L

Z10 205 0.0 0.5 1.0

[2] E. Kim
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RBF Kernel

= Radial Basis Function (RBF) kernel (also known as radial kernel)
. p
|
One of the mostly used kernel function K (rie) = exp(— Y (g — r0)?)
= Uses parameter 7/ as positive constant j=1

= ‘Local Behaviour functionality’

= Related to Euclidean distance measure d([z1,za....,2,], [y1,y2.-- -1
(ruler distance)

= Example

*\T
5)
= Euclidean distance gives ™ far from £ .

(;,{.';f — J:ij )Q(Iarge value with large distance) >

»I{(J’**' "‘I"?l) — er(_ﬁ; ?:1(1,'; — ;{Tij)g) (tiny value) o

= Usetestdata ™ = (&7 ...«

p
j=1

» flxr) = Bo+ Z (_'_ti_[((;(f? ;) (training data x; plays no role for x* & its class label) =+ = ° 2 ¢

X
ieS [1] An Introduction to Statistical Learning

I = RBF kernel have local behaviour (only nearby training data points have an effect on the class label
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RBF Kernel Example

" (Circled data points are from the test set (similiar decision boundary

as polynomial kernel)

SVM Decision Boundary accuracy=0.445 (Kernel=linear
C=1.0)

SVM Decision Boundary accuracy=1.0 (Kernel=rbf

C=10.0 gamma=0.1)

10 205 0.0 0.5 1.0

[2] E. Kim

Lecture 5 — Regularization and Support Vector Machines 42 /58



Exact SVM Definition using non-linear Kernels

= True Support Vector Machines are Support Vector Classifiers combined with a non-linear kernel
= There are many non-linear kernels, but mostly known are polynomial and RBF kernels

[1] An Introduction to Statistical Learning

= General form of SVM classifier
= Assuming non-linear kernel function K f(;g) = o + Z o K (i, ‘i.*.i,-.)
= Based on ‘smaller’ collection S of SVs icS

= Major benefit of Kernels: Computing done in original space

(independent from transformed space)

p
= Linear Kernel K(xi,x¢) = Y _aijw; (linear in features)
j=1
p
= Pol ial K | K(rgoop) =1+ ajm05)° :
olynomial Kerne \ Ly Ly ( LijLi'j) (polynomial of degree d)
Jj=1
p
= RBF Kernel K (a3, xq) = exp( AZ {13 11,3 ’(Iarged|stance small impact)

j=1
(the win: kernel can compute this without ever computing the coordinates of the data in that space, next slides)
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Solution Tools: Support Vector Classifier & QP Algorithm

Unknown Target Distribution P (y ‘ X)
target function f .4 — Y plus noise

(ideal fuinction)

<_____-_-_-

Training Examples

(X17 yl)’ T (XN7 yN)

(historical records, gropndtruth data, examples)

\
Learning Algorithm (‘train a system?)

x = (z

19 °°

Probability Distribution

P on X

!

Lo e— x

Error Measure

>e(xX)<€

A 4 /

Final Hypothesis

A <

(Quadratic’brogramming)

Hypothesis Set
H={h}; geH

(Support Vector Machines with Kernels)

g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset



Non-Linear Transformations with Support Vector Machines

= Same idea: work in z space instead of x space with SVMs
= Understanding effect on solving (labels remain same)

= SVMs will give the ‘best seperator’
N N N

1 -
ﬁ(@) — E oy — § E E Y Y, oo X;‘Txm (replace this simply with z‘s obtained by @ )

n=1 n=1 m=1

(result from this new inner product is given to quadratic programming optimization as input as before )

= Value: inner product is done with z instead of x —the only change
= Result after quadratic programming is hyperplane in z space using the value

= |mpacts of ¢ to optimization
= From linear to 2D = probably no drastic change
= From 2D to million-D = sounds like a drastic change but just inner product
= |nput for K(z;,7;) remains the number of data points (nothing to do with million-D)
= Computing longer million-D vectors is ‘easy’ — optimization steps ‘difficult’

I = Infinite-D Z spaces are possible since the non-linear transformation does not affect the optimization
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Kernels & Infinite Z spaces
» Understanding advantage of using a kernel K(i,%;) = 0)T0))
(maps data to higher-dimensional

= Better than simply enlarging the feature space feature spaces)

= E.g. using functions of the original features like X, X7, X2, X3,..., X, X7

= Computational advantages
= By using kernels only compute A’ (z;, z})
= Limited tojustall (%) distinct pairs . i/
(number of 2 element sets from n element set)
= Computing without explicitly working in the enlarged feature space

= |mportant because in many applications the enlarged feature space is large
(computing would be infeasible then w/o kernels)

" [nfinite-D Z spaces Kk(xix;) = 0(x)"0(x;)
= Possible since all that is needed to compute coefficients are inner products

[1] An Introduction to Statistical Learning

I = Kernel methods like RBF have an implicit and infinite-dimensional features space that is not ‘visited’
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Visualization of SVs

" Problem: z-Space is infinite (unknown)

= How can the Support Vectors (from existing points) be visualized?

Solution: non-zero alphas have been the identified support vectors
(solution of quadratic programming optimization will be a set of alphas we can visualize)

Support vectors exist in Z — space (just transformed original data points)

Example: million-D means a million-D vector for W

But number of support vector is very low, expected E_, is related to #SVs
(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,

fitting to well, cf. Lecture 2) " Counting the number of support

vectors remains to be a good indicator
for generalization behaviour even

, when performing non-linear

® e ¢ transforms and kernel methods that

: can lead to infinite-D spaces

Input Space Feature Space

[3] Visualization of high-dimensional space

(rule of thumb)
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LibSVM - svm-train Parameters — Supported Kernels

= |mportant parameters (training phase)

-bash-4.2% ./svm-train
Usage: svm-train [options] training set file [model file]

options:
-s svm_type : set type of SVM (default Q)
@ -- C-5SVC (multi-class classification)
1 -- nu-5vC (multi-class classification)
2 -- one-class SWM
3 -- epsilon-SVR ( regression)
ﬂ __ SR fr‘wihn‘l
-t kerneé_typfl: set ty?e of kernel function (default 2) (choose a kernel, but it may need
-- linear: u'*y !
1 -- polynomial: (gamma*u'*v + coef0)~degree additional parameters, e.g. 2 here needs
2 -- radial basis function: exp(-gamma*|u-v|”~2) gamma as additional parameter)
3 -- sigmoid: tanh{gamma*u'*v + coefd)
4 -- precomputed kernel (kernel values in training et file)
TQ aegree | Ser GegFee Th Rerner TuncLion (aerautt 3] -

gamma : set gamma 1n kernel functlom (default L/num_Teatures) | (Regulaﬁzatk)n Paranqeter)
: o

-c cost set the parameter C of C- SUC ep5110n SVR, and nu-SVR (default 1)

-n nu @ set the parameter nu of nu-SYC, one-class SYM, and nu-SVYR (default 0.5)

-p epsilon @ set the epsilon in loss function of epsilon-SYR (default ©.1)

-m cachesize : set cache memory size in ME (default 1060)

-2 epsilon : set tolerance of termination criterion (default @.001)

-h shrinking : whether to use the shrinking heuristics, @ or 1 (default 1)

-b probability estimates : whether to train a SVC or SVR model for probability estimates, @ or 1 (default O)
-wi weight : set the parameter C of class 1 to weight*C, for C-5VC (default 1)

-v n: n-fold cross validation mode

-g @ guiet mode (no outputs)

[4] LibSVM Webpage
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Moderate Complexity — Rome Dataset (B2SHARE Record 86)

= Example dataset: Geographical location: Image of Rome, Italy
= Remote sensor data obtained by Quickbird satellite

= High-resolution (0.6m)
panchromatic image

(Reasoning for picking SVM: Good classification
accuracies on high dimensional datasets,

even with a small ,rare’ number of training samples)
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Pansharpened (UDWT) low-resolution
(2.4m) multispectral images

ks pwel yectar x,

] 2
|m§\

nurdreds af I
harxls e

(high
dimension)

[5] Rome Image dataset (o) B2 SH*ARE




Moderate Complexity — Rome Dataset (B2SHARE Record 86)

= Datais publicly available in EUDAT B2SHARE tool

[5] Rome Image dataset (%) SBZSHAR

tore and Share Research Data

Rome data set OK

22 May 2014

Abstract: Attribute area
Export
Name Date Size Export as
22May 2014 127 MB
22 May 2014 467MB
Metadata
M 1 114 B
PID
22 May 2014 4200MB
Publication S e e (persistent handle link for

publication into papers)
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Exercises
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High Complexity — Indian Pines Dataset

= /ndian Pines Dataset Raw and Processed

Abstract: 1) Indian raw: 1417x614x200 (training 10% and test)

2) Indian processed:1417x614x30 (training 10% and test)

Name Date Size

05 Feb 2015 11.7 MB

05 Feb 2015 7471 MB
05 Feb 2015 83.0MB

05 Feb 2015 105.6 MB

ywnload

nload

[vscd2544@gligar02 Romel$ pwd
/apps/gent/tutorials/machine learning/classification/Rome

[vscd42544@gligar@2 Romel$ 1s -al
total 11606512

drwxr-xr-x
drwxr-xr-x
-rwW-r--r--
-rwW-r--r--
-rwW-r--r--
-rwW-r--r--

2

6
1
1
1
1

vscd@RE3
vscdBEe3
vsc4B603
vesc4RE0E3
vscd@RE3
vscdBEe3
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vscdEnE3
vscdEee3
vsc4a6063
vsc4aE0E3
vscdEnE3
vscdEee3

4096
40596

419974873

46652874

114763982

12745692

MNowv
MNowv
Mow
Mow
MNowv
MNowv

[6] Indian Pine Image dataset

22
22
22
22
22
22

15
15
15
15
15
15

- (650)

;43
144
139
+40
142
142

B2SHARE

Store and Share Research Data

sdap_area_all test.el

sdap _area all training.el
sdap_area panch_test.el
sdap_area panch_training.el



SVM Multi-class Classification (1)

= Multi-class classification common in science & engineering
= Requires different approach as previous ‘binary classification’ (2 classes)
= (Cf. associated remote sensing SVM application (e.g. 52 land cover classes)

(advanced topic — required much more study — here just the two most popular approaches)

" One vs. One (all pairs) classification
= Given K > 2 classes, this approach creates (f) different SVMs
= Each of the different SVMs compares a pair of classes (i.e. binary classifier)
= (Classification is done by using test data points with each of the classifiers
= Count number of times that each point is assigned to each of the k classes

= (Class is which it was most frequently assigned in (I;) pairwise classification

(the more classes —the more SVMs are created to perform pairwise classification —the more computational complexity)

[1] An Introduction to Statistical Learning

I =  One vs. one multi-class classification creates different SVMs that compare each a pair of k classes
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SVM Multi-class Classification (2)

= One vs. All classification

Given K > 2 classes, this approach fits only K SVMs
Each time one of the K classes is compaired to the remaining K-1 classes

Coefficients that result from fitting an SVM comparing the kth class
(coded as +1) to the others (coded as -1) are 3[}!;1 31&.- Ce e 3.1,_};{_

Classification with testset data

Assign the testset data to the class for which the following is largest:

Reasoning: high level of confidence that the test data points belong
to the kth class rather than to any of the other classes

(less SVMs are created — but more comparisons are done while creating the classifiers — can be computationally intensive)

[1] An Introduction to Statistical Learning

I =  One vs. all multi-class classification creates K SVMs compairing it with to the remaining K-1 classes
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[Video] SVM with Polynomial Kernel Example

[7] YouTube, SVM with Polynomial Kernel
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