

Modeling nanoporous materials at the nanoscale: the role of high performance computing in materials science

Chiara Caratelli

HPC-UGent User Meeting - 28 Jan 2019 http://molmod.ugent.be

An interfaculty research center

Head

Prof. dr. ir. Veronique Van Speybroeck (EA)

Senior Academic Staff

Prof. dr. Dimitri Van Neck (WE)
Ass. Prof. dr. ir. An Ghysels (EA)
Ass. Prof. dr. ir. Toon Verstraelen (WE)
Em. Prof. dr. Michel Waroquier (WE)

Associated Academic Staff

Ass. Prof. dr. Stefaan Cottenier (EA)

Guest Academic Staff

Ass. Prof. dr. S. Catak (Boğaziçi University)

7 Postdoctoral Researchers

25 PhD Students

2 Administrative members

An international collaboration network

KU LEUVEN

RUHR UNIVERSITÄT BOCHUM

Frontier research in six major areas

Research is conducted by a multidisciplinary team of physicists, chemists, and engineers

Frontier research in six major areas

Research is conducted by a multidisciplinary team of physicists, chemists, and engineers

Chemical transformations and catalysis in nanoporous materials

Following complex chemical reactions with operando in silico techniques

Metal-organic frameworks are hybrid materials

Inorganic chemistry

Organic chemistry

Metal ions or clusters

Organic molecules

Metal-organic frameworks are hybrid materials

More than 10000 distinct MOF structures exist!

MOFs exhibit many attractive properties, such as their high porosity

NU-110: 4.4 ml g⁻¹ pore volume 7140 m² g⁻¹ surface area

~ 40 g of NU-110 has the same surface area as all the 160 floors of the Burj Khalifa

This gives rise to a large variety of possible MOF applications

Chemical and physical processes in MOFs

How does molecular modeling fit in?

Computational modeling at the nanoscale

The macroscopic properties of a material are determined by the fundamental interactions on the nanoscale

The potential energy is a central quantity

The PES determines the energy of a system as a function of a well-chosen set of parameters, e.g. the nuclear coordinates

Which path is the easiest?

Which path is the easiest?

The PES is a highly dimensional function

The complexity of the PES dramatically increases with the number of atoms

Towards operando description

Towards operando description

Molecular modeling methods

Quantum mechanical approach: the Schrödinger equation

Time-independent Schrödinger equation

$$\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$$

Classical approach: force fields

Molecules are described as a set of classical spheres and springs which imitate the interactions provided by quantum chemistry laws

How large are the systems we can model today?

Access to large-scale computer programs

Access to large-scale computer programs

Licenses for major simulation packages

Dedicated in house developed software

Made available open source at https://molmod.ugent.be/software

Zeobuilder

HiPart

MD-Tracks

Yaff, MolMod, Con3F, ...

Access to large-scale computer facilities: the HPC

 CMM is one of the largest users of tier-2 and tier-1 HPC

• 35 frequent users

A lot of number-crunching

 Heavily involved in pilot-user phases: testing and benchmarking codes/clusters

Pushing machines to their limits

Co-investor in central HPC infrastructure

High-end infrastructure necessary to stay competitive in our research field

Fundamental role of HPC in highly competitive research

nature chemistry

Structure-performance descriptors and the role of Lewis acidity in the methanolto-propylene process

Irina Yarulina, Kristof De Wispelaere, Simon Bailleul, Joris Goetze, Mike Radersma, Edy Abou-Hamad, Ina Vollmer, Maarten Goesten, Brahim Mezari, Emiel J. M. Hensen, Juan S. Martínez-Espín, Magnus Morten, Sharon Mitchell, Javier Perez-Ramirez, Unni Olsbye, Bert M. Weckhuysen, Veronique Van Speybroeck, Freek Kapteijn & Jorge Gascon

Nature Chemistry 10, 804–812 (2018) | Download Citation ±

Article | OPEN | Published: 15 January 2018

Thermodynamic insight into stimuli-Science MAAAS responsive behaviour of soft porous crystals

L. Vanduyfhuys , S. M. J. Rogge, J. Wieme, S. Vandenbrande, G. Maurin, M. Waroquier Speybroeck M

Design of zeolite by inverse sigma transformation

Elke Verheyen¹, Lennart Joos², Kristof Van Havenbergh³, Eric Breynaert¹, Nataliia Kasian^{1,4}, Elena Gobechiya¹, Kristof Houthoofd¹, Charlotte Martineau⁵, Manuel Hinterstein⁶, Francis Taulelle⁵ Veronique Van Speybroeck², Michel Waroquier², Sara Bals³, Gustaaf Van Tendeloo³, Christine E. A. Kirschhock^{1*} and Johan A. Martens¹

Reproducibility in density functional theory calculations of solids

Kurt Lejaeghere^{1,*}, Gustav Bihlmayer², Torbjörn Björkman^{3,4}, Peter Blaha⁵, Stefan Blügel², Volker Blum⁶, Damien Caliste^{7,8}, Ivano E. Castelli⁹, Stewart J. Clark¹⁰, Andrea Dal Corso¹¹, Stefano de Gironcoli¹¹. Thierry Deutsch^{7,8}. John Kay Dewhurst¹². Igor Di Marco¹³. Claudia Draxl^{14,15}. Marcin Dułak¹⁶, Olle Eriksson¹³, José A. Flores-Livas¹², Kevin F. Garrity¹⁷, Luigi Genovese^{7,8}, Paolo Giannozzi¹⁸,

Different types of jobs

job type 1: large static calculations

limiting factor: RAM memory

e.g. RPA on 76-atom MOF – 26 TB, 2800 cores

J. Wieme, K. Lejaeghere et al., Nat. Commun. 2018

Different types of jobs

job type 2: high-throughput calculations

limiting factor: core hours + storage

e.g. high-throughput simulations on 14 MOFs 576 core hours (x700), 78 GB storage

P.Z. Moghadam, S.M.J. Rogge et al., *Joule*, **2019**, in revision.

Different types of jobs

job type 3: dynamic calculations

limiting factor: wall time + storage

e.g. dynamic behavior of UiO-66 [50k steps, 16k core hours, 8 GB] x 36

J. Hajek, et al. Chemical Science, 2018

Chemical processes in MOFs

Catalysis in MOFs

Reaction without a catalyst

Reaction with a catalyst

Activation energy barrier

Reactants
Products

A catalytic reaction: a path between different minima on the PES

A catalytic reaction in nanoporous materials

Construction of a free energy diagram

Molecular dynamics methods allow to explore the PES

Exploring the free energy surface at operating conditions using molecular dynamics methods

Two main approaches to study reactions

UiO-66

Point defects

Missing linker defects

Dehydration mechanism

Job type 3 Dynamic calculations with extended

Dynamic nature of UiO-66

Job type 3

Dynamic calculations with extended time and/or length scale

Dynamic nature of UiO-66

Method: Umbrella sampling, CV = 0.9

Rotation

Point defects

Missing linker defects

Interaction between material and solvent

Job type 3

Dynamic calculations with extended time and/or length scale

Ab initio MD simulation, PBE-D3, T = 298 K, p = 1 atm

Interaction between material and solvent

Hydrogen bond configuration

Proton transport in solvent

Advanced MD: metadynamics

Metadynamics T = 298 K, p = 1 atm CP2K

$$CV = \sum_{i=1}^{n} \frac{1 - \left(\frac{r_i}{r_0}\right)^n}{1 - \left(\frac{r_i}{r_0}\right)^m}$$

Physical transformations in nanoporous materials

Physical transformations in MOFs: pressure as a stimulus

Flexible MOFs, such as MIL-53(Al), undergo single-crystal-to-single-crystal phase transitions already at low pressures (< 100 MPa)

Physical transformations in MOFs: pressure as a stimulus

Rigid MOFs, such as UiO-66(Zr), undergo single-crystal-to-amorphous transitions only at elevated pressures (> 100 MPa)

Physical transformations in MOFs: other stimuli

Physical transformations in MOFs are activated processes, requiring enhanced sampling methods

A proper description of the PES is crucial to obtain quantitative results

Random phase approximation (RPA) to the correlation energy to quantitatively predict the transition temperature in MIL-53(AI)

High-throughput screening of MOFs and COFs

Different types of spatial disorder are inherently present in MOFs

To model the different types of short-range spatial disorder, nanometer-sized unit cells are sufficient

Impact of defects on the mechanical stability of UiO-66(Zr)

Special thanks to

Prof. Veronique Van Speybroeck

Dr. Sven Rogge

Dr. Julianna Hajek

Thank you for your attention!

