

BACKGROUND

- GDF15 (Growth Differentiation Factor 15) is a metabolic factor able to induce weight loss
- It reduces food intake by binding to its receptor
 GFRAL in the hindbrain
- Serum GDF15 is elevated in many inflammatory conditions, but whether it acts pro-/antiinflammatory is contested

- Rheumatoid arthritis (RA), Psoriatic Arthritis (PsA) and Osteoarthritis (OA) are musculoskeletal diseases associated with joint pain and stiffness
- RA and PsA are immune-mediated inflammatory diseases, affecting more than just the joint
- OA is a local joint disease, hallmarked by cartilage degradation but affecting the whole joint
- RA, PsA and OA are associated with metabolic conditions such as obesity
- RA, PsA and OA are associated with local or systemic bone adaptations

AIM

- → Is GDF15 involved in the pathogenesis of inflammatory arthritis and OA?
- → Use of mouse models to potentially advance understanding of disease mechanisms
- → Additional focus on bone remodeling

Research paper 1

GDF15 mediates inflammation-associated bone loss through a brain-bone axis

Key findings:

- GDF15 is a <u>novel bone loss inducer</u>, but not a proinflammatory mediator
- In inflammatory conditions, GDF15 mediates bone loss independent of inflammation severity
 - → Explanation why patients can still suffer from bone loss, while inflammatory symptoms are under control
- Bone loss is induced through a <u>brain-bone axis</u>
- The brain sends adrenergic signals to MALP cells in the bone, which will stimulate osteoclasts (specialized cells) to resorb bone
- Potential to manipulate this axis through beta blockers

Research paper 2

An altered subchondral bone architecture increases the risk of cartilage degradation after trauma

Key findings:

- Chondrocytes derived from OA-patients express more GDF15 protein than healthy controls
- In a traumatic injury model for OA, GDF15 deficient mice suffer from more severe cartilage degradation
- This is not true in aging-induced OA
- GDF15 deficient mice show an <u>abnormal subchondral</u> bone architecture
- The subchondral bone is equally affected after trauma in GDF15 deficient mice as in control mice
- We speculate that the abnormal architecture causes excessive OA development after traumatic injury

Thesis submitted to fulfill the requirements for the degree "Doctor of Health Sciences"

PROMOTORS

Prof. Dr. Dirk Elewaut

Department of internal Medicine and Pediatrics Unit for molecular Immunology and Inflammation VIB-UGent Center for Inflammation Research

Prof. Dr. Lars Vereecke

Department of internal Medicine and Pediatrics Host-Microbiota Interaction lab VIB-UGent Center for Inflammation Research

EXAMINATION BOARD

Prof. Dr. Filip Van den Bosch (chair)

Department of internal Medicine and Pediatrics Rheumatology University Hospital Ghent

Prof. Dr. Debby Laukens (secretary)

Department of internal Medicine and Pediatrics IBD research unit
VIB-UGent Center for Inflammation Research

Prof. Dr. Bart Lambrecht

Department of internal Medicine and Pediatrics Unit for Immunoregulation and Mucosal Immunity VIB-UGent Center for Inflammation Research

Prof. Dr. Savvas Savvides

Faculty of Sciences
Unit for Structural Biology
VIB-UGent Center for Inflammation Research

Prof. Dr. Anne-Marie Malfait

Department of Internal Medicine Division of Rheumatology Rush University Medical Center, Chicago IL

Prof. Dr. Adam Croft

Institute of Inflammation and ageing Rheumatology Research group University of Birmingham

CONTACT

www.ugent.be

Unit for Molecular Immunology and inflammation (Rheumatology)
Ghent University Hospital, Ingang 38
renee.vandercruyssen@ugent.be