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Doubly-stochastic matrices

A doubly-stochastic matrix has non-negative real entries and all row

sums and column sums equal to 1.
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The Birkhoff – von Neumann polytope Bn is the set of all n× n doubly-

stochastic matrices.

Birkhoff – von Neumann Theorem. Bn is a polytope whose extreme

points (vertices) are the permutation matrices.
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Lattice polytopes

A lattice is the set of integer combinations of some set of generators.

A lattice polytope is the closed convex hull of some set of lattice points.

polytope 

generators

cell

lattice

basic

Birkhoff polytope 3



Volume (area) can be measured in the standard fashion, or in terms of

the basic cell. The latter is the relative volume.

A lattice polytope can have dimension lower than the lattice. The

volume and relative volume are measured according to the span of the

polytope and the sublattice it induces.

Volume = the length of the line segment

Relative volume = 2

Birkhoff polytope 4



Ehrhart polynomials

For lattice polytope P, let E(P, t) = the number of lattice points in tP.

E(P, 1) = 7

E(P, 2) = 21

E(P, 3) = 43
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A celebrated theorem of Ehrhart says that E(P, t) is a polynomial

for integer t.

For the example:

E(P, t) = 4t2 + 2t + 1

For large t, the relative volume of tP is approximately E(P, t)
(boundary effects become negligible).

Therefore:

The leading coefficient of E(P, t) is the relative volume.

Therefore:

If d is the dimension, the relative volume is

lim
t→∞

E(P, t)/td .
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Birkhoff polytopes

Bn is a subset of Rn×n, but has dimension (n − 1)2.


a b 1−a−b

c d 1−c−d

1−a−c 1−b−d a+b+c+d−1


Using the lattice Zn×n,

E(B1, t) = 1

E(B2, t) = t + 1

E(B3, t) = 1
8
t4 + 3

4
t3 + 15

8
t2 + 9

4
t + 1

Beck and Pixton (2006) found (Bn, t) for t ≤ 9 and the leading term

for t = 10.
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The lattice points in tBn are the n×n matrices of non-negative integers

whose row and columns are all equal to t.

A lattice point in 6B3 : 
1 0 5

4 2 0

1 4 1


The volume of a basic cell is nn−1 (Diaconis and Efron, 1985).

Therefore, the volume of Bn is

nn−1 lim
t→∞

M(n, t)

t(n−1)2
,

where M(n, t) is the number of n× n matrices of non-negative integers

whose row and columns are all equal to t.
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Integer matrices

Let M(m, s; n, t) be the number of non-negative integer matrices of

order m × n, such that each row sum is s and each column sum is t.

Obviously we need ms = nt.

An example of a matrix counted by M(3, 20; 4, 15) = 965071 :

5 4 0 11 20

2 8 9 1 20

8 3 6 3 20

15 15 15 15

M(18, 10; 20, 9) = 717,197,213,652,153,417,464,506,119,278,691,

437,121,387,356,187,926,222,586,832,234,613,738,328,

256,525,810,124,867,047,876,056,407,343,493,714,445,200
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Asymptotic value of M(m, s; n, t)?

We seek the asymptotic value of M(m, s; n, t) as m, n →∞
with s = s(m, n), t = t(m, n).

Despite a large literature on M(m, s; n, t), there are very few exact or

asymptotically exact results.

The case s, t = O(1) was solved by Everett and Stein (1971), Békéssy,

Békéssy and Komlós (1972), and Bender (1974).

The case st = o
(
(mn)1/2

)
was solved by Greenhill and McKay (2007).

However, these results do not help with Bn, since that requires s, t →∞
for fixed m, n.
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Algebraic approach

M(m, s; n, t) is the coefficient of x s1x
s
2 · · · x sm y t1y t2 · · · y tn in

F (x1, . . . , xm, y1, . . . , yn) =
m∏
j=1

n∏
k=1

(
1 + xjyk + x2

j y
2
k + x3

j y
3
k + · · ·

)

=
m∏
j=1

n∏
k=1

(
1− xjyk

)−1

Define the density λ = s/n = t/m, which is the average value of a

matrix entry.

We now estimate the required coefficient by the saddle-point method

in n complex dimensions.

Integrate each variable around a circle of radius√
λ

1 + λ
.
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Algebraic approach (continued)

xj =

√
λ

1 + λ
e iθj , yk =

√
λ

1 + λ
e iφk .

By Cauchy’s theorem,

M(m, s; n, t) =
1

(2π)m+n

(
λ−λ(1 + λ)1+λ

)mn
I(m, n),

where

I(m, n) =

∫ π

−π
· · ·
∫ π

−π

∏
j,k

(
1− λ(e i(θj+φk) − 1)

)−1

exp
(
is
∑
j θj + it

∑
k φk

) dθ1 · · · dθm dφ1 · · · dφn .

The integrand has an obvious symmetry:

Add a constant to each θj and subtract the same constant from each φk.
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Estimation of the integral

1. Guess that the value comes mostly from a small region near

where the integrand is maximum.

2. Inside the central region:

(a) Change variables down to dimension m + n − 1.

(b) Expand the integrand up to terms of order 4.

(c) Infer the integral over the central region.

3. Bound the integral outside the central region.

Analytic difficulties require us to limit how non-square the matrix can

be and what values λ can take:

n = O(m logm) and m = O(n log n),

1/ log n ≤ λ ≤ nO(1).

Birkhoff polytope 13



The integral within the central region

The central region is where θj +φk is close to 0 for all j, k. This implies

that the θj ’s are approximately equal to some value and the φk’s are

approximately equal to the negative of that value.

Specifically, we define

θ̄ =
1

m

m∑
j=1

θj

φ̄ =
1

n

n∑
k=1

φk

then we change variables as follows:

ν = θ̄ − φ̄
µ = θ̄ + φ̄

θ̂j = θj − θ̄ (1 ≤ j ≤ m−1)

φ̂k = φk − φ̄ (1 ≤ k ≤ n−1)
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The integrand is independent of ν, so we remove it.

The other variables define the central region:

|µ| ≤ (1 + λ)−1(mn)−1/2+2ε

Central region : |θ̂j | ≤ (1 + λ)−1n−1/2+ε, 1 ≤ j ≤ m

|φ̂k | ≤ (1 + λ)−1m−1/2+ε, 1 ≤ k ≤ n

Within the central region, the integrand can be approximated

by its Taylor expansion to order 4:

exp
(
− 1

2
λ(1 + λ)

∑
j,k

(µ+ θ̂j + φ̂k)2

− i
6
λ(1 + λ)(1 + 2λ)

∑
j,k

(µ+ θ̂j + φ̂k)3

+ 1
24
λ(1 + λ)(1 + 6λ+ 6λ2)

∑
j,k

(µ+ θ̂j + φ̂k)4 + o(1)
)
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Finishing the integral within the central region

Next we apply the linear transformation that diagonalises the quadratic

form.

Unfortunately this has two unpleasant consequences:

(a) The region of integration is no longer a cuboid, but close to the

intersection of a cuboid and the region between two parallel planes.

(b) The cubic and quartic terms are messed up badly.

These problems can be handled, and the integration can be performed.
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The integral outside the central region

The part of the region of integration outside the central region

contributes negligibly.

This can be shown by breaking the region into a large number of

pieces and bounding the integrand in each one.

The details are very messy.
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Very dense matrices

To estimate the volume of Bn we we need the behaviour of

M(n, t) = M(n, t; n, t) as t →∞ for fixed n.

However, our analysis so far required t = nO(1).

A theorem of Richard Stanley comes to the rescue:

If P is a lattice polytope of dimension d, then there are

nonnegative h0, . . . , hd such that for integer t ≥ 1,

E(P, t) =
d∑
i=0

hd−i
(t + i

d

)
.

This is enough to show that for α ≥ n5,

M(m,αn; n, αm)

M(m, n6; n,mn5)
=

(
α

n5

)(m−1)(n−1)(
1 + o(1)

)
.
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Asymptotic value of M(m, s; n, t)

Recall:

The number of ways to write n as a sum of k nonnegative terms is(n + k − 1

k − 1

)
.

1. The number of m × n matrices whose overall sum is ms = nt is

N =
(mn +ms − 1

mn − 1

)
.

Now choose a random matrix with this sum.

2. The probability that the row sums all equal s (Event R) is

P1 =
(n + s − 1

n − 1

)m /
N.
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Asymptotic value of M(m, s; n, t) (continued)

3. The probability that the column sums all equal t (Event C) is

P2 =
(m + t − 1

m − 1

)n /
N.

4. If events R and C were independent, we would have

M(m, s; n, t) = N P1 P2.

In fact we have

M(m, s; n, t) = N P1 P2 exp
(

1
2

+ o(1)
)
.
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Asymptotic value of M(m, s; n, t) (continued)

3. The probability that the column sums all equal t (Event C) is

P2 =
(m + t − 1

m − 1

)n /
N.

4. If events R and C were independent, we would have

M(m, s; n, t) = N P1 P2.

In fact we have

M(m, s; n, t) = N P1 P2 exp
(

1
2

+ o(1)
)
.

Interesting fact: The same formula holds in the sparse case.
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Volume of the Birkhoff polytope

For any ε > 0,

vol(Bn) =
1

(2π)n−1/2n(n−1)2
exp

(
n2 + 1

3
+O(n−1/2+ε)

)
as n →∞.

n estimate/actual

1 1.51345
2 1.20951
3 1.25408
4 1.22556
5 1.19608
6 1.17258
7 1.15403
8 1.13910
9 1.12684

10 1.11627
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What’s next?

The mysterious constant e1/2 has been proved for:

(i) st = o
(
(mn)1/2

)
(Greenhill & McKay)

(ii) m ≈ n, s, t ≥ 1/ log n (Canfield & McKay)

Supported by a large number of exact values, we conjecture

M(m, s; n, t) = N P1 P2 exp
(

1
2

+ o(1)
)
.

as m, n →∞ for any functions s = s(m, n), t = t(m, n) with ms = nt.

Two techniques now exist which probably have the power to prove it:

(a) A recurrence approach by Liebenau and Wormald.

(b) A cumulant expansion approach by Isaev and McKay.
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